
Front. Comput. Sci.

DOI 10.1007/s11704-012-1175-2

Effectively deploying services on virtualization infrastructure

Wei GAO, Hai JIN, Song WU , Xuanhua SHI, Jinyan YUAN

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract Virtualization technology provides an opportu-

nity to acieve efficient usage of computing resources. How-

ever, the management of services on virtualization infras-

tructure is still in the preliminary stage. Contstructing user

service environments quickly and efficiently remains a chal-

lenge. This paper presents a service oriented multiple-VM

deployment system (SO-MVDS) for creating and configur-

ing virtual appliances running services on-demand. The sys-

tem provides a template management model where all the

virtual machines are created based on the templates with the

software environment pre-prepared. To improve the deploy-

ment performance, we explore some strategies for incremen-

tal mechanisms and deployment. We also design a service de-

ployment mechanism to dynamically and automatically de-

ploy multiple services within virtual appliances. We evalu-

ate both the deployment time and I/O performance using the

proposed incremental mechanism. The experimental results

show that the incremental mechanism outperforms the clone

one.

Keywords multi-VM deployment, template, incremental

mechanism, batch deployment

1 Introduction

With the expanding scale of resources and processing capac-

ities of computing systems, administrators face challenges in

using and managing these resources flexibly and effectively.

Over the last twelve years, the rapid development of vir-

tualization technology has provided a good opportunity for

resolving these issues. Virtualization [1–3] is a technology

Received March 26, 2012; accepted June 11, 2012

E-mail: wusong@hust.edu.cn

capable of decoupling the underlying physical device, the op-

erating system and the software. Modern virtualization plat-

forms, such as Barham, et al. [4] and Sugerman, et al. [5] are

able to divide physical resources into isolated slices with ap-

propriate sizes for different applications. Consequently, dif-

ferent types of job can be run on the same nodes with suffi-

cient resources and without interfering with each other. This

encourages virtual machines to be introduced as service con-

tainers for improving resource utilization of the service com-

puting system.

In a virtualization infrastructure, resources such as CPU,

memory and I/O are organized as virtual machines (VMs).

When deploying a service, the system allocates proper re-

sources into a new VM, then the service with its execution

environment can be installed and configured into the VM, this

VM running the service is managed as a virtual appliance [6].

However, with the increasing number of users and their

requirements, deploying and managing services based on

a virtualization infrastructure is a remarkable task. Tens or

even hundreds of virtual appliances will run at the same

time. Since manually creating VMs, installing software onto

them and configuring the environment is time-consuming and

error-prone, a system that automatically deploys virtual ap-

pliance based services according to given user requests is

necessary.

In this paper we propose a service oriented multi-VM fast

deployment system (SO-MVDS) which allows administra-

tors to design and create virtual machines with specific ser-

vices running in them. This system works with a template-

based mechanism, and employs an automatic deployment

strategy to improve the deployment efficiency. Administra-

tors only need to choose the service template and a few

optional deployment parameters, and then the system will

deploy the corresponding VMs in a few minutes. The sys-



2 Front. Comput. Sci.

tem also maintains a template repository, and provides ap-

proaches for optimizing the preparation of service deploy-

ment.

Section 2 presents an overview of SO-MVDS. Sections 3

to 5 give the designation in detail. We present quantitative

evaluation in Section 6. Section 7 describes related work and

discusses the difference to our work. Finally in Section 8, we

conclude the paper.

2 Architecture overview

This section provides an overview of SO-MVDS. Specifics of

its implementation are detailed in Section 3. We begin with

the consideration of the mechanism, followed by the high-

level design issues that have driven our work. The final part

of this section presents the design architecture of the system.

2.1 Consideration

Users of our system are service developers or service

providers who need to deploy their services onto the virtu-

alization infrastructure. Most service deployment tasks re-

quire one or more groups of VMs. Each group has similar

content from a template. Figure 1 illustrates a scenario of

task deployment. In the case of web application deployment,

the task includes several services which can be grouped ac-

cording to their different requirements. Each group needs the

same software environment. To meet this demand, the admin-

istrator will choose the proper environment for each service

and specify needed resources. Then the system automatically

creates VMs on computing nodes with enough resources, de-

ploys services into the VMs that have the right environment,

and returns the execution results.

Fig. 1 A service oriented VM deployment scenario

SO-MVDS is based on the Xen virtual platform [4], and

proposes a template based virtualized service deployment

mechanism. The goal of this system is to construct task envi-

ronments for users in a short time and automatically provide

VMs to services on demand. To support fast deployment of

multiple service groups, SO-MVDS follows several design

requirements:

• Template-Based Like other VM management tools,

our system also uses a template-based mechanism.

There are two kinds of templates in our system: the ba-

sic template and the incremental template. A template

is an image file, and all templates are created by ad-

ministrators. Basic templates hold the common operat-

ing systems, and incremental templates hold frequently-

used software packages based on the operating system.

A basic template may have multi-level incremental tem-

plates. All templates are located in the template repos-

itory. The basic templates are shared by nodes through

network file systems (NFS), which provides conve-

nience for administrators to manage the templates. The

templates in the repository are static. After deployment

they will become running VMs.

• Flexibility SO-MVDS maintains a software environ-

ment repository, and allows administrators to choose

the environment templates they require. It offers a

friendly graphical interface. Users can customize vir-

tual appliances’ physical resource allocation, such as

memory and CPU, and choose the deployment strategy.

The system also supports the recall of multiple services

that stop and save the active services from the system.

Once a service is deployed, the system will create a spe-

cific virtual appliance. When this service is recalled,

the image of its virtual appliance will be saved as a

new template, so next time the service can be easily re-

deployed by starting the VM based on this template.

• Transparency In this system the entire deployment

process is transparent to users. After users submit the

services with related parameters, the system can auto-

matically create VMs and deploy services in a few min-

utes. They need not be concerned with how VMs are

created on physical machines and how services are de-

ployed into the VMs. We make the virtualization infras-

tructure look like a normal service container, users de-

ploy the services onto it even do not feel the service is

running in a VM. Some strategies are provided to sup-

port automatic deployment of services.

2.2 Architecture

From a hierarchical viewpoint, SO-MVDS can be divided

into three layers as shown in Fig. 2. They are user inter-

face layer, deployment strategy service layer, and deployment

control service layer. In this layered architecture, each layer

has its own services and interfaces invoked by its upper layer.

The layers are flexible and independent of each other. This



Wei GAO et al. Effectively deploying services on virtualization infrastructure 3

makes the system easy for implementation and maintenance.

Fig. 2 Architecture of SO-MVDS

2.2.1 User interface

To make this system easy to use, a friendly user interface is

necessary. It should be easy for users to customize and create

virtual machines. Users can find the organization of the tem-

plates, the running status of the virtual machines and the exe-

cution process of services from the user interface. Certainly,

only authorized users (e.g., administrators) are allowed to use

it. It presents five functional options:

• template list: shows detailed information of the tem-

plates,

• deploy: edit some parameters and perform service de-

ployment,

• recall: remove some deployed services,

• VM list: list the VM information on each node,

• service list: give the information of all maintained ser-

vices.

2.2.2 Strategy service

In order to deploy services as fast as possible, it is desirable

to manage all the templates in a uniform way. Moreover, a

user probably wants to re-deploy a service more than once.

So, the deployed services must be properly managed. De-

ployment strategy is another factor to affect the deployment

efficiency, making multiple services batches to be deployed

automatically in a short time.

The deployment strategy service layer serves as a middle-

ware between the user interface and control service layer. It

is usually located in an independent server and responds to

the operations of the user interface layer. The main services

provided by this layer include template management, tem-

plate scheduling, VM deployment, and service deployment

services. Template management is responsible for the defi-

nition and storage of the templates, as well as the relation-

ship between the templates and the users. Template schedul-

ing refers to template preparation and disposal strategies. VM

deployment service is responsible for the strategies and tech-

nologies for VM deployment such as incremental and con-

current mechanisms. Service deployment service helps users

to install services into the created VM and manage deployed

services. The specific functions are provided by the control

service.

2.2.3 Control service

The deployment control service layer lies on the computing

nodes of the virtualization infrastructure. It receives instruc-

tions from the deployment strategy service layer and carries

out the actual deployment process. There are three modules

presented to control different objects. Firstly, physical re-

sources of each node should be organized to help build a VM.

It is performed by the information collection module. Then,

the VM creation module controls the VM Monitor to start up

a VM on one of the nodes. Finally, through the agent program

running in the VM, the service is installed and activated by

the agent control module. Here the agent is pre-installed into

the VM and exists in the templates.

3 Template management

A template is a disk image with a pre-installed operating

system with or without certain application software. Users

can choose proper templates according to their requirements.

We put all the templates into a repository and maintain them

in a template database. As the number of applications, in-

crease the number of templates increases sharply. We will

next present some approaches to solve the problems of tem-

plate management.

3.1 Incremental mechanism

For each raw image or template, it takes several gigabytes

to hold the operating system and the applications. For ex-

ample, Red Hat Enterprise Linux 5 needs 2.5–3.5 GB disk

space and Windows Server 2003 may occupy over 2 GB disk

space. Moreover, application software generally needs disk

space from tens to hundreds of megabytes, and we should

preserve another several gigabytes for user data. Therefore, a

complete VM image probably has a minimum size of at least

5 GB.

The incremental mechanism uses the copy on write (COW)



4 Front. Comput. Sci.

idea. We choose some most popular templates such as OS

images as basic image files, and then backup these files in a

COW format as incremental image files. The application soft-

ware can then be installed into the incremental image file, for

sharing data in the basic image. An image file will be set to

read-only authority if it is a basic image. All the write opera-

tions take effect only on incremental image files. Note that an

incremental image file can be the basic file of another image

so as to share disk data as much as possible. Each incremental

image can be run as a VM. Figure 3 presents the structure of

multi-level incremental image tree. Templates are shared as

root or branch root. When users pick a template to start a vir-

tual machine, the system creates a new incremental image of

the template as the VM’s disk image which is the leaf of the

template tree. The incremental image file is very small, and it

is easy to create and transfer. Consequently, it reducesspace

consumption, and the time of VM deployment is much less

than cloning the whole raw image file.

Fig. 3 Multi-level incremental image file structure

3.2 Template sharing model

Because of users’ different requirements and the variety of

software, it is important to organize templates. The problem

is how to describe the templates exactly so that a user can

easily find them according to his requirements. We introduce

a user specifying mechanism and propose a template shar-

ing model (TSM) which allows VM users to maintain the

index of templates. There are three entities in this model:

template, label, and user. Template is a template image files

whose metadata includes the identity and other properties of

the template. Label is the character string defined by user and

it provides a semantic description of the template; in other

words, a label is a personal classification, which represents

a user’s interest to a group of templates. User is the opera-

tion subject which fetches templates belonging to his/her in-

terested Labels, browses information of those templates, and

picks a favorite one.

The relationships between user, template and label are

shown in Fig. 4. Users create the templates and labels, and

then assign the labels to templates. Each user has different

interests, so may pay attention to different labels. Users with

similar interests may exchange shared templates. In Fig. 4,

user means administrator or other authorized user.

Fig. 4 Relationships of entities in TSM

TSM provides a flexible template indexing and fetching

mechanism that helps users to match their needs to virtual

computing environments. The labels assigned to a template

can be resource capacities (CPU speed, memory capacity,

etc.), software environments (OS version, network setup, pro-

gram configuration, etc.) and/or other relative specifications

of the template. Each template is connected to many labels,

and accessible by each label assigned to it. A user can browse

templates in the repository and filter out irrelevant ones by la-

bels. In this way, users can easily find a group of templates

that satisfy his requirements, and pick one from a limited

number of candidates of their own interest.

3.3 Version and lifecycle control

As more and more new versions of software are released,

users often want to use updated versions or work in a steady

environment. So, we should provide not only different ap-

plications’ templates, but also different versions of them. For

users who want a specific version of application, each version

of that application is an individual template. They can choose

what they want. For those who are not sensitive to software

versions, we consider all templates with different versions as

a series and choose one of them according to a strategy. The

strategy we implement is to choose the most recently used

template. Otherwise, the one with the newest version will be



Wei GAO et al. Effectively deploying services on virtualization infrastructure 5

chosen.

To reduce deployment preparation time and avoid the over

stored templates, two data lifecycle mechanisms should be

imposed by the TSM model.

Template pre-copying means that the TSM creates many

copies of hot templates and sends them to the proper server

nodes in order to enhance efficiency. The number of copies of

each template is determined by its practical usage frequency.

The higher a template’s popularity or importance degree, the

more copies are distributed across the physical network.

Template disposal will be executed when there are low-

value templates (or their versions) which have not been ac-

tivated by any user after a specific cool down time. These

cold templates, including their copies, should be discarded

for clearing garbage templates and reclaiming storage space

4 VM deployment

The process of deploying a service onto virtualization infras-

tructure has two main steps: VM deployment and service de-

ployment. When a user submits a service deployment task,

VMs designed to run the services are created, and then each

service is installed into its host VM. This section presents

the VM deployment details in SO-MVDS and the strategy

we employ to spread VMs across physical nodes. Service de-

ployment is discussed in Section 5.

4.1 VM creation

Figure 5 illustrates how VMs are created on physical ma-

chines. Though users can appoint certain nodes to deploy vir-

tual appliances on, most users do not care which hosts are

running their services. According to the physical resources

parameters given from user, the system should find a comput-

ing node with sufficient resources to support the VM running.

SO-MVDS collects resource usage details of every comput-

ing node using the information collection module, and then

matches VMs to nodes for deployment based on the VM dis-

tribution strategy. The result of the VM matching is a VM

deployment sequence, which records a list of VMs and their

host node pairs. Following the deployment sequence, the VM

deployment module sends every VM’s parameters to its host

node, and informs the template schedule module to pre-copy

the templates chosen by user. Then the VM creation module

located on each node will respectively launch the assigned

VM.

Each VM maps to an image and a configuration file, they

need to be prepared well before the VM is created. The im-

age file contains the VM’s disk image which is incrementally

generated from a specified template. A VM will boot from

the operating system installed in the image file. To speed up

the VM boot time, the VM’s memory data can also be saved

into the image file, or a run-time checkpoint, and then the VM

can load the memory and directly come into a running state.

The configuration file is automatically made in XML format

by the VM creation module. It records necessary information

such as VM name, OS kernel, memory, CPU, and network

setup. Some parameters are open to the user. Users can edit

these configurations as the service’s requirement, or leave it

to the default setup. The other parameters are maintained by

the system, including the address of the image file. Finally the

configuration file is sent to the VM Monitor to start a VM.

It is reasonable that the system concurrently deploys VMs

to reduce the total deployment time. Yet the efficiency of it

meets the bottleneck for Xen, the virtualization platform we

build our system on must create VMs one by one for manage-

able and security considerations. So SO-MVDS just simul-

taneously executes the deployments on different computing

Fig. 5 Process of VM creation



6 Front. Comput. Sci.

nodes. Suppose a VM deployment task needs to launch VMs

on N hosts and n j is the number of VMs needed to start on

the jth node. Then the total time spent on deploying VMs can

be described by the following equation:

TVM = Tc + Ts +max

⎛⎜⎜⎜⎜⎜⎝t
∣∣∣∣∣t =

nj∑

i=1

ti j, j ∈ N

⎞⎟⎟⎟⎟⎟⎠ (1)

where Tc is the time for calculating resource usage, Ts is the

time for process VM distribution strategy, and ti j is the time

for deploying the ith VM on node j. Since the total time is rel-

ative to the final node that finishes VM deployments, spread-

ing VMs across more nodes, thus reducing n j, is a consider-

able way to improve efficiency.

4.2 VM distribution strategy

We design a strategy to choose a proper destination host for

the virtual appliance. The principle is to meet each user’s re-

quirements as well as to balance workloads across the whole

host network. The strategy is described as the algorithms as

follows.

Before describing the algorithms, we illustrate some sym-

bols and variables. P is a set of VM requirements, and each

element of P contains the attributes of a VM such as name,

CPU and memory. H is a set of host resource information.

The information of each host includes the CPU used, memory

resources, and so on. Dis the result set containing all the VM

deployment sequences. N is the required deployment num-

ber. TCPU and TMem are the marginal values of the host which

ranges between 0.7 and 0.8. Variable d is the result returned

from the ChooseDestination algorithm and it represents the

host id.

Algorithm 1 presents the basic GetDeploySequence algo-

rithm which consists of two phases. The first phase (lines 1–

7) computes the free CPU and memory of each host. In the

second phase (lines 8–16), we invoke the ChooseDestination

algorithm which returns the destination host id for each VM

deployment. Then we add the VM and host id to set D. Fi-

nally we return the ultimate collection Dwhich contains the

entire deployment sequence at line 17.

Algorithm 2 describes the procedure of finding the proper

host for each VM. It is designed to be called by Algorithm 1.

This algorithm considers both memory size and CPU usage

as resources that hosts should have to be selected for running

the VM. First, this algorithm descends the set H by order

of the freeMem and freeCPU. By choosing the host with the

most free resources first, the VM will take priority of being

deployed onto a host with a light load. Then it compares re-

peatedly the VM’s required CPU usage (V .CPU) and memory

size (V .Mem) with every host’s freeCPU and freeMem until

a host with enough resources is found. Finally the host id (or

−1 if no host fulfills the requirement) is returned.

Algorithm 1: GetDeploySecquenc (P, N,H)

1: D= {}, i = 0

2: while i < number of hosts ∈ H do

3: get used CPU and memory of H(i)

4: H(i). freeCPU = total CPU*Tcpu –usedCPU

5: H(i). freeMem = total Mem*Tmem–usedMem

6: i = i + 1

7: end while

8: n = 0

9: while n < N do

10: d = ChooseDestination(P(n), H)

11: if d > −1 then

12: add P(n).name, H(d) to D

13: else return D

14: end if

15: n = n + 1

16: end while

17: return D

Algorithm 2: ChooseDestination (V,H)

1: Sort H by order of freeMem and freeCPU

2: i = 0

3: while H(i).freeMem > V .Mem do

4: if H(i).freeCPU > V .CPU then

5: H(i).freeCPU = H(i).freeCPU – V .CPU

6: H(i).freeMem = H(i).freeMem – V .mem

7: return i

8: else

9: i = i + 1

10: end if

11: end while

12: return−1

5 Service deployment

Though the service can be manually installed into a dedicated

VM once it is created, an automatic approach is preferred

for enhancing the efficiency of service deployment. In this

section we propose the designation of a service deployment

mechanism over VMs.

The main goal of the service deployment mechanism is

to encapsulate the operations toward VMs and physical ma-

chines, for users deploying their services onto a virtualization

infrastructure and thus make it as easy as using a physical ma-

chine. Users need only submit service packages with optional

parameters, and then get the addresses of deployed services

as results. We define a service deployment request as a set D



Wei GAO et al. Effectively deploying services on virtualization infrastructure 7

= (S , C, R, P) where S is the package of service execution

files, C is the VM template with the container that the service

is deploying in, R is the service’s requirements of physical

resources, and P records other needed parameters. We also

define a service group deployment task as a collection of D:

TASK = {D1,D2, · · · ,Dn}. One of the benefits that the virtu-

alization technology brings to the service computing system

is, because the VMs isolate the execution environments of

services from each other, many different service platforms or

containers can be supported on a virtualization infrastructure.

SO-MVDS is designed to have the ability to deploy services

onto different types of containers.

As Fig. 6 shows, when a task is submitted to SO-MVDS,

there are three sub-modules working in the service deploy-

ment module.

Fig. 6 Process of service deployment

• Service Building This operation analyzes every request

set D in the deployment task, and controls the service

deploying process based on the information gathered

from agents. Towards different types of services, each

type needs a particular builder to generate the access

point of the deploying service (SAP). Normally, a ser-

vice can be invoked from a URL that is composed of

three parts: IP address of host server, service container

name and service name. The service’s IP address is the

VM’s IP assigned by the user or chosen from the IP

pool that is maintained by the system. The container

name can be extracted from the template’s labels, and

some containers may need to appoint the network port

number and IP address. The service name exists in its

description file that needs to be parsed. Users also can

put the service name in the parameters for convenience.

• Service-VM Mapping Because a service is running in

a dedicated VM, it is important to record the bounding

information of the service and its host VM. Here the

system assigns a UUID to every VM, and records these

along with the service information into a service-VM

mapping table. At the same time, this sub-module picks

the container template C and resource requirements R

of every service into a list and sends these parameters

to the VM Deployment Module to deploy VMs. If the

VMs have been created and are running, the deploy-

ment module can find a service’s mapping VM by com-

paring the VM’s UUID through via agents.

• Service Installation Once VMs are launched, this sub-

module communicates all agent control modules and

locates the VM mapping to every service. The agent

senses and examines the running state of the service

along with its environment and reports to the service

deployment module. For arranging the deployment op-

erations, we classify the service state as (1) VM un-

available (no agent response); (2) VM ready; (3) con-

tainer ready; and (4) service available. The guest OS

configuration will not start until after it receives the

VM ready state from the agent. Before the service is in-

stalled into the VM, its relative parameters in P are sent

to the Agent to configure the guest OS of the host VM,

for example, network setup and registration of environ-

ment variables. When the container is ready, the ser-

vice package S is transferred to the VM and deployed

by the container. When the service deployment task is

finished, a user can invokes services through the SAPs

returned by the system.

6 Evaluation

In this section we describe experiments for quantitative eval-

uation of the system. We perform two sets of experiments.

First, we evaluate the VM deployment time with different

strategies. Then we evaluate the I/O performance of the VM

with incremental image file in different environments. De-

ployment time is the total time from the point when the de-

ployment is started by the request, to the point when the VM

is running on the server.

6.1 Experimental setup

All experiments are performed on a cluster of 9 computers

each equipped with an Intel Xeon 4 core 2.33 GHz CPU. The

front-end node in the cluster is has 4 GB of memory and 160

GB storage. The remaining 8 nodes have 8 GB of memory

and 30 GB storage each. The cluster system is in the VM-

based environment and Xen-3.1.0 with the 2.6.16 kernel is

used on all computing nodes. The Xen domain0 hosts Red



8 Front. Comput. Sci.

Hat Enterprise 5 with 2 GB memory. All user domains are

run a single virtual CPU with 512 MB memory. The guest OS

in DomU which is used to evaluate the deployment time uses

Windows XP and RedHat9 templates. The application envi-

ronments include Windows 2003 Server and Fedora Core 7.

All basic templates are shared via NFS.

6.2 Deployment time evaluation

In this section, we compare the VM deployment time of our

incremental method with that of the traditional clone method.

Tests are conducted on eight different nodes. We use a Win-

dows XP template with a size of 1.5 GB and a RedHat9 tem-

plate with a size of 2.3 GB, and all VMs are created using

these as a basis. The clone strategy clones the template each

time the system deploys a new VM. In contrast, under the

incremental strategy, we create a new incremental image file

based on the template we choose each time. Each incremental

image file has an index pointing to the basic file and it only

records the updated data, so it is small and can be created

very fast.

Figure 7 compares the deployment time with varying VM

numbers under different strategies. We find there is a large

difference in deployment time between the clone and the in-

cremental strategies. As the number of VMs grows, the de-

ployment time with clone strategy increases rapidly, but the

deployment time with incremental strategy increases much

more slowly. Figure 7 shows a reduction in deployment time

of up to 80% or 90% using our incremental strategy when ten

VMs are deployed, which is an encouraging improvement.

The reason is that our basic templates located in the clus-

ter NFS can be accessed by each node and the incremental

method only needs one basic template each time. Unlike the

clone method, it need not copy the basic template, which is

the main reason for the reduction in deployment time.

Fig. 7 Deployment time of different strategies

Figure 7 convinces us that the deployment time of the clone

strategy is proportional to image size. It will increase obvi-

ously as the image size grows. Testing different templates of

Windows XP and RedHat9 we find that the deployment time

is very different between these two templates. The growth of

the deployment time based on RedHat9 is about 40%. There-

fore, the image size is the decisive factor of the deployment

time with the clone one.

Intuitively, deployment time will increase with a larger

template even using the incremental strategy. However, Fig.

8 tells us that there is no direct relationship between deploy-

ment time and image size by using the incremental strategy

in our system. We can see that the deployment time based on

the RedHat9 template is slightly less than the Windows XP

template, while the size of RedHat9 template is larger than

the Windows XP template. Therefore, our system can deploy

various applications appropriately with nearly the same time

no matter how large the basic template is.

Fig. 8 Deployment time of different templates with incremental mecha-
nism

In order to show the performance of batch deployment, we

conduct a set of experiments on the Windows XP template.

Figure 9 presents the deployment time for increasing num-

bers of VMs. We see that the deployment time increases in

a n approximately linear fashion, about 11 seconds for five

VMs, rising to about 88 seconds for 40 VMs. The average

deployment time of each VM is about 2.5 seconds which is

deemed acceptable for users.

Sometimes administrators deploy many VMs for the tasks

with a short lifespan. After they finish the tasks, they should

destroy the VMs. To destroy the VMs manually one by one is

an arduous job. Our system provides the recall function and a

batch operation is offered, so it is convenient for the adminis-

trators to destroy the VMs according to their requests.



Wei GAO et al. Effectively deploying services on virtualization infrastructure 9

Fig. 9 Batch deployment time with our incremental mechanism

We also measure the deployment influence on the node’s

performance. The deployment process consumes limited re-

sources. The average CPU usage is about 5% and the memory

usage is scarcely. The deployment performs well as a whole.

The concurrent deployment with incremental mechanism

promises good scalability for our system, as well as low cost.

Equation (??) suggests that the deployments should faster on

more physical nodes in the data center. Though the costs of

template management and deployment strategy may increase

slightly as the number of hosts grows, the overall perfor-

mance can be ensured by organizing those hosts into many

second level groups for VM distribution strategy and tem-

plate replication.

6.3 I/O evaluation

We have created a few application templates stored in our

template repository. All applications are installed as incre-

mental images from the basic templates of Windows 2003

Server, Windows XP, and Fedora Core 7. These incremental

image files are stored on NFS or native disk. In this section

we compare I/O performance of the incremental image file

with NFS and local file store schemes, using the basic im-

age file RedHat 9 stored in NFS system. We deploy the same

application respectively in the two incremental image files.

Figure 10 shows the file copy speed with different mecha-

nisms. This experiment copies a file existing in the basic im-

age written to an incremental image. We can see that the file

copy speed of local scheme is much faster than NFS. The av-

erage copy speed of local vs NFS scheme is about 480 Mbps

vs 199 Mbps, respectively. That is because of the communi-

cation speed limit of NFS. The VM reads the file from the

basic image file stored on NFS, and then the data is sent back

to the incremental image file also located on NFS. The situa-

tion forms an infinite access loop, which reduces the I/O per-

formance. So, the I/O performance of local scheme is much

better than the NFS scheme. That is the reason why we take

the native scheme.

Fig. 10 File copy speed

We also conduct experiments on VMs based on raw im-

age files, which are used in other VM deployment systems

such as Xenfire [7] and virtual workspace [8]. The average

file copying speed is 476.2 Mbps, very close to the incremen-

tal images in native disk.

7 Related work

Many tools have been developed to perform VM deployment.

Xenfire [7] is a lightweight Xen-based software which can in-

stall VMs on a single physical server. Begnum, et al. [9,10]

use a configuration language to describe the design of a group

of VMs, which means that users have to specify each VM’s

detailed resource configuration and its host node. Collective

[11,12] project uses copy-on-write (COW) disks as template

organized in a hierarchy tree [13], in order to reduce stor-

age space and data to transfer. But this project has no mech-

anism to automatically deploy VMs on nodes with sufficient

resources. Similar work has been applied to virtual cluster

systems, Krsul, et al. [14], creates a VM by cloning a prede-

fined template and then applying other setups to the cloned

VM. Another proposal for virtual clusters [15] proposes a

mechanism to allocate the VM physical computing resources

requested by the user. One shortcoming of virtual cluster de-

ployment is that after the creation of a VM, they need clus-

ter installers [16,17] to help finish software installation and

configuration [18]. Similar to our incremental mechanism,

Lagar-Cavilla, et al. [19] proposes a VM clone technique

to deploy VMs by reusing data from an already deployed

VM, and only new data of the new VM are transferred. In



10 Front. Comput. Sci.

[20], the data of the image file is sent to the VM on demand,

which reduces the VM deployment time as well as incremen-

tal mechanism. Other recent works [21,22] use P2P networks

to distribute and transfer the pieces of an image file. Such ap-

proaches improve the efficiency of VM deployment on very

large datacenters, though the network cost of image indexing

will be increased.

The benefits of using VM to deploy service are discussed

in [6]. Globus virtual workspace services [8] provide func-

tions and protocols to dynamically deploy and manage exe-

cution environments. Globus can design a group of services

with their physical resources and software configurations and

implement them in VMs. Kecskemeti et al. [23] extend the

workspace service with two new services: AVS creates vir-

tual appliances for grid services and stores them in a reposi-

tory; SAS helps to define and select a service instalation site,

and deploy virtual appliances from the repository. The main

difference between the above work and our system is that,

the workspace services and AVS/SAS expose the VM to the

user, the user must create the VM before submitting the ser-

vice, while SO-MVDS attempts to hide VM operations from

the service provider. We also introduce mechanisms such as

incremental templates and our VM distribution strategy to

improve the efficiency of service deployment. As the popu-

larity of cloud computing grows, deploying VM based ser-

vices in a cloud environment has been studied. Jump-start

cloud [24] proposed a VM cloning based image distribution

and sharing scheme for saving the deployment time of cloud

services. Csorba, et al. [25] maintains replicas of VM im-

ages on different nodes in the cluster, and uses a scalable

algorithm to optimize service-node mapping. Sampaio and

Mendonca [26] employs open standards to perform VM and

service deployment over multiple heterogeneous cloud plat-

forms. SO-MVDS distinguishes itself from these cloud ser-

vice deployment approaches by its label based incremental

template sharing model. Our TSM maintains the templates

and their indexes according to user interest, while other so-

lutions assume that users already know the identities of tem-

plates required by their services.

8 Conclusions

This paper presents SO-MVDS, a service oriented Multi-VM

deployment architecture for deploying users’ service environ-

ment on-demand. In order to improve the deployment perfor-

mance, we design a template management model which helps

the administrator to manage the templates conveniently, as

well as reduce space consumption. The incremental mecha-

nism significantly reduces deployment time, as demonstrated

by our experiments. The system can automatically and trans-

parently deploy services into VMs in a short time.
In our future work we will increase the transparency and

efficiency of SO-MVDS. A virtualized service container will

be developed as an access interface level that transforms the

service deployment task across VMs into a scenario of de-

ploying services into a typical service container. A service

replication mechanism that quickly clones many replicas of a

service based on virtualization infrastructure is also planned.

Acknowledgements This work is supported by National Natural
Science Foundation of China (Grant Nos. 61073024, 60973037, and
61133008), and by the Outstanding Youth Foundation of Hubei Province
(2011CDA086), and by the research fund for the Doctoral Program of MOE
(20110142130005).

References

1. Smith J, Nair R. Virtual machines: versatile platforms for systems and
processes. San Francisco: Morgan Kaufmann Publishers, 2005

2. Wolf C, Halter E M. Virtualization from the desktop to the enterprise.
APress, 2005

3. Goldberg R P. Architecture of virtual machines. Massachusetts: Hon-
eywell Information Systems, Massachusetts and Harvard University
Cambridge, 1973, 32–38

4. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho R N A, Pratt I,
Warfield A. Xen and the art of virtualization. In: Proceedings of ACM
Symposium on Operating Systems Principles. 2003, 164–177

5. Sugerman J, Venkitachalam G, Lim B. Virtualizing I/O devices on
VMware workstation’s hosted virtual machine monitor. In: Proceed-
ings of the 2001 USENIX Annual Technical Conference. 2001

6. Sun C, He L, Wang Q, Willenborg R. Simplifying service deployment
with virtual appliances. In: Proceedings of 2008 IEEE International
Conference on Services Computing. 2008, 265–272

7. Xenfire project. http://developer.novell.com/wiki/index.php/Xenfire

8. Keahey K, Foster I, Freeman T, Zhang X. Virtual workspaces: achiev-
ing quality of service and quality of life in the grid. Scientific Program-
ming, 2005, 13(4): 265–275

9. Begnum K M, Sechrest J. The MLN manual mln version 0.80.
http://mln.sourceforge.net/doc/mln-manual.html

10. Begnum K M. Managing large networks of virtual machines. In: Pro-
ceedings of the 20th USENIX Large Installation System Administra-
tion Conference. 2006, 205–214

11. Sapuntzakis C, Brumley D, Chandra R, Zeldovich N, Chow J, Lam
M S, Rosenblum M. Virtual appliances for deploying and maintaining
software. In: Proceedings of the Seventh USENIX Large Installation
System Administration Conference. 2003, 181–194

12. Chandra R, Zeldovich N, Sapuntzakis C, Lam M S. The collective: a
cache-based system management architecture. In: Proceedings of the
Second Symposium on Networked Systems Design and Implementa-
tion. 2005, 259–272

13. Sapuntzakis C P, Chandra R, Pfaff B, Chow J, Lam M S, Rosenblum M.
Optimizing the migration of virtual computers. In: Proceedings of the
Fifth Symposium on Operating Systems Design and Implementation.
2002, 337–390

ibm
高亮

ibm
高亮



Wei GAO et al. Effectively deploying services on virtualization infrastructure 11

14. Krsul I, Ganguly A, Zhang J, Fortes J A B, Figueiredo R J. Vmplants:
providing and managing virtual machine execution environments for
grid computing. In: Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing. 2004, 7–18

15. Foster I, Freeman T, Keahy K, Scheftner D, Sotomayer B, Zhang X.
Virtual clusters for grid communities. In: Proceeding of the 2006 In-
ternational Conference on Cluster Computing and Grid. 2006, 513–520

16. Papadopoulos P M, Katz M J, Bruno G. Npacirocks: Tools and tech-
niques for easily deploying manageable linux clusters. In: Proceedings
of the International Conference on Cluster Computing. 2001

17. Takamiya Y. Large-scale configuration management and installation of
commodity clusters. PhD thesis, Tokyo: Tokyo Institute of Technology,
2006

18. Nishimura H, Maruyama N, Matsuoka S. Virtual clusters on the fly-
fast, scalable, and flexible installation. In: Proceeding of the 2007 In-
ternational Conference on Cluster Computing and Grid. 2007: 549-556

19. Lagar-Cavilla H A, Whitney J A, Scannell A M, Patchin P, Rumble S
M, de Lara E, Brudno M, Satyanarayanan M. SnowFlock: rapid virtual
machine cloning for cloud computing. In: Proceedings of the 4th ACM
European conference on Computer systems. 2009, 1–12

20. Nicolae B, Bresnahan J, Keahey K, Antoniu G. Going back and forth:
efficient multideployment and multisnapshotting on clouds. In: Pro-
ceedings of the 20th International Symposium on High Performance
Distributed Computing. 2011, 147–158

21. Schmidt M, Fallenbeck N, Smith M, Freisleben B. Efficient distribution
of virtual machines for cloud computing. In: Proceedings of the 18th
Euromicro Conference on Parallel, Distributed, and Network-Based
Processing. 2010, 567–574

22. Wartel R, Cass T, Moreira B, Roche E, Guijarro M, Goasguen S,
Schwickerath U. Image distribution mechanisms in large scale cloud
providers. In: Proceedings of the 2nd IEEE International Conference
on Cloud Computing Technology and Science. 2010, 112–117

23. Kecskemeti G, Kacsuk P, Terstyanszky G, Kiss T, Delaitre T. Au-
tomatic service deployment using virtualization. In: Proceedings of
the 16th Euromicro Conference on Parallel, Distributed and Network-
Based Processing. 2008, 628–635

24. Wu X, Shen Z, Wu R, Lin Y. Jump-start cloud: efficient deployment
framework for large-scale cloud applications. In: Proceedings of the
7th international conference on Distributed computing and internet
technology. 2011, 112–125

25. Csorba M J, Meling H, Heegaard P E. Ant system for service deploy-
ment in private and public clouds. In: Proceeding of the 2nd Workshop
on Bio-inspired Algorithms for Distributed Systems. 2010, 19–28

26. Sampaio A, Mendonca N. Uni4cloud: an approach based on open stan-
dards for deployment and management of multi-cloud applications. In:
Proceedings of the 2nd International Workshop on Software Engineer-
ing for Cloud Computing. 2011, 15–21

Wei Gao is a PhD candidate in the

School of Computer Science and Tech-

nology at Huazhong University of Sci-

ence and Technology (HUST). His re-

search interests include computing sys-

tem virtualization, distributed parallel

computing, and cloud computing.

Hai Jin received his PhD in computer

engineering from HUST in 1994. Cur-

rently, he is a Cheung Kung Schol-

ars Chair Professor of Computer Sci-

ence and Engineering at HUST. His

research interests include cluster com-

puting, grid computing, P2P comput-

ing, and computing system virtualiza-

tion. He is now the dean of the School

of Computer Science and Technology

at HUST and a senior member of IEEE and ACM.

Song Wu received his PhD in computer

science from HUST, China in 2003.

He is a professor at SCTS/CGCL of

HUST. His research interests include

cloud computing, grid computing, and

system virtualization. He is the direc-

tor of the Parallel and Distributed Com-

puting Institute at HUST and a senior

member of the China Computer Feder-

ation.

Xuanhua Shi received his PhD in com-

puter architecture from HUST in 2005.

He is an associate professor at HUST.

His research interests include cluster

and grid computing, trusted computing,

computing system virtualization, and

cloud computing. He is a member of

ACM and the China Computer Feder-

ation.

Jinyan Yuan is a Master candidate in

the School of Computer Science and

Technology at HUST. Her research in-

terests include computing system virtu-

alization and cloud computing.


