
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

Precise Control of Page Cache for Containers

Kun WANG, Song WU , Shengbang LI, Zhuo HUANG, Hao FAN, Chen YU, Hai JIN

National Engineering Research Center for Big Data Technology and System
Services Computing Technology and System Lab, Cluster and Grid Computing Lab

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

© Higher Education Press 2022

Abstract Container-based virtualization is becoming in-
creasingly popular in cloud computing due to its efficiency
and flexibility. Resource isolation is a fundamental property
of containers. Existing works have indicated weak resource
isolation could cause significant performance degradation for
containerized applications and enhanced resource isolation.
However, current studies have almost not discussed the isola-
tion problems of page cache which is a key resource for con-
tainers. Containers leverage memory cgroup to control page
cache usage. Unfortunately, existing policy introduces two
major problems in a container-based environment. First, con-
tainers can utilize more memory than limited by their cgroup,
effectively breaking memory isolation. Second, the OS ker-
nel has to evict page cache to make space for newly-arrived
memory requests, slowing down containerized applications.
This paper performs an empirical study of these problems and
demonstrates the performance impacts on containerized ap-
plications. Then we propose pCache (precise control of page
cache) to address the problems by dividing page cache into
private and shared and controlling both kinds of page cache
separately and precisely. To do so, pCache leverages two new
technologies: fair account (f-account) and evict on demand
(EoD). F-account splits the shared page cache charging based
on per-container share to prevent containers from using mem-
ory for free, enhancing memory isolation. And EoD reduces
unnecessary page cache evictions to avoid the performance
impacts. The evaluation results demonstrate that our system
can effectively enhance memory isolation for containers and
achieve substantial performance improvement over the origi-

Received month dd, yyyy; accepted month dd, yyyy

E-mail: wusong@hust.edu.cn

nal page cache management policy.

Keywords page cache, memory cgroup, container isola-
tion, cloud computing

1 Introduction

An important recent trend in cloud computing is the rise of
container-based virtualization, such as Docker [1], because
of its high performance, low footprint, simplicity of design,
and natural support for the micro-service [2,3] and serverless
computing [4, 5]. Because containers share the underlying
operating system (OS) kernel, it is critical the kernel provides
isolation for containers. Typically, containers attain isolation
through various kernel isolation primitives, such as control
groups (cgroups) and namespaces [6] in the Linux kernel.

Resource isolation, which is realized by allocating, me-
tering and enforcing resource usage, is a fundamental prop-
erty of containers. Recent studies have indicated weak re-
source isolation could cause significant performance degra-
dation for containerized applications and aimed to enhance
resource isolation [7–10]. For example, Khalid et al. [9]
demonstrated containers can use more CPU than their re-
spective cgroups allocate when sending or receiving network
traffic, causing co-located containers to suffer an almost 6×
slowdown. To address this problem, the authors propose to
allocate container CPU resources in a fine-grained manner
by monitoring, charging and enforcing CPU usage for pro-
cessing network traffic. However, existing works have almost
not discussed the isolation problems of page cache which is
a key resource for containers. Page cache is a memory cache
of files on the disk used to accelerate access to files, and it is

2
Kun WANG et al.: Precise Control of Page Cache for containers

charged to the memory limit of containers.
In this paper, we show containers suffer from two major

problems when working with page cache. First, contain-
ers can utilize more memory than limited by their respective
cgroup, effectively breaking memory isolation. Page cache is
charged on the basis of the first touch approach, which refers
to that memory cgroup charges a page to the container that
first brings the page into physical memory. And a page is
uncharged from the container only if the page is fully un-
mapped with the physical memory. This accounting approach
introduces unfairness between containers, which means that
only the first container pays for the page cache and non-first
containers can use the page cache for free. Even worse, one
container can repeatedly accumulate the "free page cache",
exhausting system memory and breaking memory isolation.
Second, the operating system (OS) kernel has to evict page
cache to make space for newly-arrived memory requests, sig-
nificantly slowing down containers. Because page cache is a
part of memory limit, when one container reaches its mem-
ory limit, the OS kernel evicts page cache to avoid OOM (out
of memory). As a result, the containers sharing the evicted
page cache would suffer from significant performance im-
pacts, including latency of memory requests and page cache
miss. A typical scenario where these two problems often oc-
cur in a real cloud system is that different containers access
many same library files and share plenty of page cache.

We perform an empirical study to demonstrate that these
problems can cause performance degradation for container-
ized applications. Experimental results show that one con-
tainer can break the memory limit and use page cache for
free, exhausting system memory and starving other contain-
ers. In addition, the page cache eviction can slow down mem-
ory requests of containers by 65.7%. Compared to the case
of running one container, the page cache miss rates of run-
ning 4 and 8 concurrent containers fluctuate more sharply.
The average cache miss rate increases to 8.8× and 10.2×, re-
spectively. These results clearly show that the current OS
kernel cannot provide precise management of page cache for
containers, which causes isolation issues and significant per-
formance degradation, suggesting the necessity of optimizing
page cache management for containers.

We design and implement a system named pCache
(precise control of page cache) to address the problems. The
key idea is to divide the page cache of containers into pri-
vate and shared, then control both kinds of page cache sep-
arately and precisely. To this end, we propose fair account
(f-account) and evict on demand (EoD). F-account splits the
shared page cache charging for containers based on their

shares to guarantee fairness, and it evicts the private page
cache when containers exit to prevent containers from us-
ing memory for free. However, splitting page cache charg-
ing will introduce possible information leakage and security
problems. For instance, attackers can conduct a side-channel
attack by inferring the memory usage of other containers
from the change of their charged share. To address this chal-
lenge, we charge the per-container share lazily and randomly,
preventing attackers from inferring the real-time memory us-
age. In addition, we observe that only uncharging page cache
is necessary to release space for containers’ new memory re-
quests. And evicting page cache, which causes performance
impacts, is unnecessary if the system memory is sufficient.
Inspired by that, EoD is proposed to evict page cache on de-
mand to reduce unnecessary evictions.

In summary, our major contributions are as follows:

• First, we perform an empirical study to show two prob-
lems: 1) the current page cache charging policy intro-
duces unfairness and breaks memory isolation, and 2)
page cache eviction slows down containers. Then we
reveal the reasons for these problems and the impacts on
containerized applications.
• Next, we propose pCache to address these problems by

dividing page cache into private and shared for contain-
ers and controlling both kinds of page cache separately
and precisely. To account for page cache fairly and pre-
vent containers from using memory for free, pCache
splits the shared page cache charging based on the shares
of containers and evicts private page cache when con-
tainers exit. In addition, pCache reduces unnecessary
page cache eviction to avoid performance impacts.
• Last, we implement and evaluate pCache in Linux ker-

nel 5.4.2. Experimental results show that pCache can
account for page cache fairly, enhance memory isola-
tion effectively, and achieve substantial performance im-
provement over the original page cache management
policy for various applications.

The rest of this paper is organized as follows: Section 2
introduces the background of this work. Section 3 analyzes
the problems and their impacts. Section 4 presents the design
and implementation of pCache. Section 5 discusses evalua-
tion results and Section 6 reviews the related work. Section 7
concludes this paper.

Front. Comput. Sci.
3

2 Background

Containers, popularized by Docker [1], are quickly adopted
in cloud computing. A container is essentially a group of
processes running on the host, where multiple containers
share the same underlying host OS kernel. Docker containers
mainly rely on three kernel primitives: seccomp, namespaces
and cgroups, to realize isolation. As Docker is the most pop-
ular container system, this research describes these mecha-
nisms in the context of Docker and Linux. Other container
systems including LXC [11] and Rkt [12] adopt similar tech-
nologies.

Seccomp checks system call to protect the OS kernel
against untrusted containers [13]. It allows containers to
specify which system calls they can invoke and which ar-
gument values such system calls can use. Namespaces al-
low containers to have their own isolated views of the host
system. A namespace wraps a global system resource in an
abstraction that makes it appear to processes within the cor-
responding container. Changes to the global system resource
are visible to processes that are members of the namespace.
Cgroups enable resource isolation for containers. Processes
belonging to the same container are assigned to one control
group, which has the ability to account for and enforce re-
source consumption of this container. Such that guarantees
and fair shares are preserved for other containers.

Page cache is a critical component of the current operat-
ing system (e.g., Linux), and it is usually used to accelerate
access to files on disk [14]. When first reading or writing
data on disk, the OS kernel stores the data in memory, which
acts as a cache. This cache is shared among all processes, so
any process can reuse it without accessing the disk. Specif-
ically, when the OS kernel initiates a read request (for ex-
ample, a process invokes a read system call), it will first
check whether the requested data is cached in memory. If yes
(cache hit), the data is read directly from page cache with-
out accessing the disk. If there is no requested data in page
cache (cache miss), the OS kernel will first read the requested
data from the disk and then caches the data into page cache
so that later requests can hit the cache. When the OS ker-
nel initiates a write request (for example, a process invokes a
write system call), it writes data directly to page cache and
marks the written page as dirty. Then, a kernel thread period-
ically and asynchronously writes dirty pages back to the disk
to ensure the consistency between page cache and disk. How-
ever, when system memory is insufficient, page cache may be

evicted and written back synchronously, which is based on a
least recently used (LRU) policy [15].

Containers work with page cache. As efficiently access-
ing data on disk is critical for the performance of containers,
containers normally use page cache to accelerate the access-
ing. Containers adopt memory cgroup to account for and
limit consumption of page cache. Firstly, memory cgroup
accounts for page cache as the memory consumption for con-
tainers, such that the allocation of page cache can be limited
by memory cgroup. However, page cache is shared among
containers and accounted for on the basis of the first touch
approach. Specifically, memory cgroup charges a page to
the container that first brings the page into physical mem-
ory. And the page is uncharged from the container only if the
page is fully un-mapped with the physical memory. In other
words, the page will not be uncharged, even if the container
has not actively used it. As a result, this accounting approach
may introduce unfairness and break the memory isolation be-
tween containers (the details are described as Problem 1 in
Section 3).

The first touch approach is only a page cache charging pol-
icy of memory cgroup. It can account for the page cache con-
sumption of one container and then charge such consumption
to the container’s memory usage. In fact, the first touch ap-
proach can not help accelerate the access speed of containers.
So, we can determine that the first touch approach introduces
unfairness in different application scenarios. As reading data
from page cache is much faster than disk, Sharing page cache
between containers can greatly accelerate the access speed of
containers. For each container, if they only read the data they
need from the disk, it will solve the unfairness of containers.
However, such an approach will make page cache useless, de-
celerating the access speed of containers significantly. So, it
is necessary to analyze and address the unfairness problem.

Secondly, when a container reaches its memory limit,
which is configured by memory cgroup at startup, the cur-
rent policy either tries to evict page cache to make space for
new memory requests or invokes an OOM (out of memory)
routine to kill the bulkiest process in the container. This page
cache eviction is synchronous. Thus it delays the memory re-
quests. In addition, Due to this eviction, the containers that
are sharing this page cache suffer from cache miss and have
to access data from the disk, resulting in a significant impact
on the performance of the containerized applications (the de-
tails are described as Problem 2 in Section 3). This motivates
us to analyze the problems and their impacts on containerized
applications.

4
Kun WANG et al.: Precise Control of Page Cache for containers

Container1

memcg1

Container2

memcg2

1GB

first use charge to use for free

Memory

(page cache)

Containers

Charged

memory: 1GB

Charged

memory: 0GB

memcg1

Container2

memcg2

1GB

charge to use for free

Charged

memory: 1GB

Charged

memory: 0GB

Container1

memcg3

use for free

Charged

memory: 0.5GB

Step 1: Container1 reads a 1GB file. Then

container2 reads the same file.
Step 2: Container1 is restarted and reads a new 0.5GB file.

memcg1

Container2

memcg2

1GB

charge to use for free

Charged

memory: 1GB

Charged

memory: 0GB

memcg3

use for free

Charged

memory: 0.5GB

Step 3: Restart container1 again.

0.5GB

charge to

0.5GB

Container1

memcg4

Charged

memory: 0GB

charge to

Fig. 1 An example of containers using memory for free. When container 1 is restarted, the kernel creates a new memory cgroup for the container which is
charged with zero memory.

3 Analysis of Problems and Impacts

Here we analyze the problems of containers working with
page cache and demonstrate the impacts the containerized ap-
plications.

Problem 1: Containers can utilize more memory than lim-
ited by their respective cgroup, effectively breaking memory
isolation. Page cache is charged to containers based on the
first touch approach and uncharged only if the physical mem-
ory is released. There are two disadvantages of this account-
ing policy. First, it introduces unfairness between containers.
The first container that brings page cache into physical mem-
ory undertakes all charges of the shared page cache. And
the non-first containers are not charged at all and use page
cache for free. This is obviously unfair. Second, the current
policy cannot provide hardened memory limitation for con-
tainers. Because one container can use page cache without
charging, it is charged less than its actual usage, breaking the
memory limitation. As a result, one container can exhaust
system memory and starve other containers by repeatedly ac-
cumulating the "free page cache". This problem may cause
performance degradation for the cloud platform.

An example of this problem is shown in Fig. 1. The work-
flow consists of three steps. In step 1, container 1 first tra-
verses a 1GB file. Now, the file is cached in memory (page
cache), and this page cache is charged to memcg1 (memory
cgroup1), which is created for container 1. Then container
2 reads the same file from the page cache without access-
ing the disk. But the OS kernel does not charge to container
2. Therefore, container 1, whose charged memory is 1GB,
is suffering from unfairness caused by the accounting policy
based on the first touch approach. In step 2, container 1 is
restarted and reads a new 0.5GB file. The kernel creates a
new memory cgroup (memcg3) for container 1. At this time,
the page cache of the 1GB file is still charged to memcg1, and
the charged memory of container 1 changes to 0.5GB, which

is the newly-read file. In this situation, container 1 uses the
page cache of the 1GB file for free. In step 3, we restart con-
tainer 1 again. Similarly, container 1 can use the page cache
of the 0.5GB file for free. As a result, we can exhaust the
system memory by repeating step 2 and step 3, even though
container 1 has a memory limit. The root cause of this issue
is that page cache is uncharged from memory cgroup only if
the physical memory is released.

Problem 2: OS kernel has to evict page cache for newly-
arrived memory requests, significantly slowing down con-
tainers. Because page cache is counted to the memory limit
for containers, when a container reaches its memory limit,
new memory requests from the container will cause the evic-
tion of page cache. This eviction delays the new memory
requests and leads to a high cache miss rate for containers
that are accessing the shared page cache, severely degrading
the performance of the containerized applications.

Even worse, the page cache is constantly buffered into or
evicted from memory by containers, resulting in performance
fluctuations for containers. Fig. 2 shows an example. First,
container 1 reads a file that is not buffered in page cache.
Now, page cache miss happens, and the file is buffered into
memory by container 1. Thus, container 2 hits the page cache
when reading the same file later. Then if container 1 reaches
its memory limit, the OS kernel will evict the page cache to
make space for new memory requests. At this time, container
2 re-accesses the file, suffering from a page cache miss. Sim-
ilarly, container 2 then brings the file into page cache, and
the accessing from container 1 hits the page cache. However,
container 2 may also reach its memory limit and evict the
page cache, which will cause cache miss too. As a result, the
two containers constantly buffer or evict the page cache due
to memory limit, causing increases and fluctuations of cache
miss rate.

We further demonstrated the impact of this problem on the
performance of containerized applications through a set of
experiments. We ran containers on a Linux host, which was

Front. Comput. Sci.
5

Container1

memcg1

Container2

memcg2

cache

miss

cache

hit

Memory

(page cache)

Containers
Container1

memcg1

over

limit

Container2

memcg2

cache

miss
evictbuffer buffer

Container1

memcg1

cache

hit

Container2

memcg2

over

limit
evict

Fig. 2 An example of containers suffering from cache miss problem. If container 1 reaches its memory limit, the kernel evicts the page cache to make space
for new memory requests, causing page cache miss for container 2.

1 2 3 4 5 6

10

15

20

25

30

35

To
ta

l t
im

e
of

 S
ys

be
nc

h
m

em
or

y
te

st
(s

)

Memory limit for containers (GB)

 Memory-total-size=1G
 Memory-total-size=2G

Fig. 3 The performance impact of page cache eviction. When reaching
memory limit, containers must wait for kernel to evict page cache to request
new memory, significantly decreasing the performance.

equipped with 20 CPU cores, 128GB memory and 2TB HDD
storage. To demonstrate the performance impact on memory
requests, we ran two containers. In each container, we ran a
Webserver workload using Filebench benchmark [16]. And
the Webserver workload was set with the default configura-
tion of Filebench. In this case, containers would share the
page cache, and only one container paid for the page cache.
Then we used Sysbench benchmark to measure the perfor-
mance of memory allocation for the payer. To demonstrate
the cache miss problem, we ran Webserver into various num-
bers of containers on the same host. Moreover, we used a tool
named cachestat that is included in perf-tools to test the page
cache miss rate of the whole system.

Fig. 3 shows the performance of the memory test from
Sysbench with various memory limits. We set the total size
of allocated memory (denoted as memory-total-size in Fig. 3)
to 1GB and 2GB, respectively. In the case of 1GB memory-
total-size, the memory test is completed faster as the memory
limit increases. For instance, when the memory limit is set
to 6GB, the completed time is 10.03s. But when the memory
limit is set to 1GB, the completed time is 16.62s, which is
65.7% slower than that of the 6GB memory limit. This is be-
cause the shared page cache occupies the memory limit, and

the memory test has to evict the page cache before requesting
memory, decreasing the performance. In addition, the avail-
able memory becomes less with the decrease of the memory
limit, so the kernel needs to evict more page cache, leading
to more performance degradation. Results of 2GB memory-
total-size are much similar to the above.

For the cache miss problem, we compared the cache miss
rate of three cases: (1) run 1 Webserver container, (2) co-run
4 Webserver containers, and (3) co-run 8 Webserver contain-
ers. As shown in Fig. 4(a), in the case of 1 container, at the
beginning of the container (first 5 seconds), cache miss hap-
pens due to the first access to the files. And in the subse-
quent process, the cache miss rate is almost 0. The average
page cache miss rate is 2.33%. This suggests that page cache
works well for one container. However, As shown in Fig. 4(b)
and Fig. 4(c), for 4 and 8 concurrent containers, in the whole
process of containers running, the cache miss rate increases
and fluctuates sharply. The average page cache miss rate is
20.58% and 23.84%, which are 8.8× and 10.2× against the
result of 1 container case, respectively. These results demon-
strate the significance of addressing the cache miss problem.

4 pCache Design & Implementation

In this section, we present pCache, a system for optimiz-
ing page cache management for containers. The key idea
of pCache is to leverage two new technologies: f-account
and EoD, to provide precise control of page cache for con-
tainers. Specifically, f-account accounts for the shared page
cache fairly and prevents containers from using memory for
free to address problem 1. EoD is used to address problem 2
by reducing unnecessary evictions. Hereafter, we first sum-
marize the overview of pCache and then describe f-account
and EoD in detail.

4.1 pCache Overview

pCache is designed with the following goals:

6
Kun WANG et al.: Precise Control of Page Cache for containers

0 10 20 30 40 50 60
0

10

20

30

40

50

60

AveragePa
ge

 c
ac

he
 m

iss
 r

at
e

(%
)

time (s)

(a) 1 container.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Average

Pa
ge

 c
ac

he
 m

iss
 r

at
e

(%
)

time (s)

(b) 4 concurrent containers

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Average

Pa
ge

 c
ac

he
 m

iss
 r

at
e

(%
)

time (s)

(c) 8 concurrent containers

Fig. 4 When sharing page cache among containers, page cache miss rate increases and fluctuates as the number of concurrent containers increases.

Fig. 5 pCache architecture showing f-account in charge of preventing containers from using memory for free and EoD used to reduce unnecessary page
cache evictions.

• Prevent containers from using memory for free: Page
cache is charged to the first container that brings it into
physical memory and uncharged only if the physical
memory is released, thus causing containers can utilize
more memory than limited by their respective cgroup,
effectively breaking memory isolation. pCache aims to
prevent containers from using memory for free by fairly
accounting page cache.
• Avoid performance impacts of page cache eviction:

While containers reach the memory limit, the kernel will
evict page cache to make space for new memory re-
quests, resulting in latency of memory requests, as well
as increases and fluctuations of page cache miss rate.
pCache tries to avoid these performance impacts by re-
ducing unnecessary evictions.

To achieve the above goals, a straightforward idea is to re-
fer to the management mechanism of CPU cache. For the
sharing mechanism, the most popular method is using Intel
Cache Allocation Technology (CAT) to control CPU cache
allocation [17, 18]. CAT is a hardware technology and im-
plements way partition for L3 cache [19]. Referring to it,
pCache controls page cache charging based on partition. Be-
cause CAT is designed based on cache way partition and can-
not be used for page cache charging, we implement pCache in
software and build it as a Linux kernel component. For dirty

data eviction, there are many replacement algorithms, such
as LRU [20]. Our system uses similar algorithms to evict
dirty data. Before such algorithms are executed, pCache will
check whether the page cache eviction is necessary to reduce
unnecessary eviction, improving performance. To avoid dis-
ruptive changes to the kernel, the design of pCache is simple
and straightforward.

As shown in Fig. 5, pCache divides the page cache of con-
tainers into private and shared, then controls both kinds of
page cache separately and precisely. Specifically, pCache is
made up of two components: f-account (fair account) and
EoD (evict on demand). In order to address problem 1,
f-account splits the charging of shared page cache to con-
tainers that are sharing the page cache, based on the per-
container share. However, with the splitting policy, contain-
ers can infer memory usage from the change of their ac-
counted share, leading to security problems, such as side-
channel attacks [21]. To address this challenge, f-account
updates the per-container charge randomly and lazily (de-
noted as "Lazy charge" in Fig. 5) to reduce the leakage of
real-time information. For private page cache, when con-
tainers exit, f-account evicts page cache (denoted as "Fast
uncharge" in Fig. 5 to prevent containers from using page
cache for free. In addition, we observe that only uncharg-
ing page cache is necessary to make space for containers’

Front. Comput. Sci.
7

Fig. 6 Container state transition. Over-Account, Under-Account and Fair-
Account refer to that the charged page cache is greater than, less than and
equal to the calculated share, respectively.

newly-arrived memory requests, and evicting, which causes
the performance impacts, is needless. Based on that, EoD
is designed to address problem 2 by uncharging page cache
from one container when reaching its memory limit but lazily
evicting page cache based on the memory pressure of the
whole system. As a result, unnecessary evictions would be
avoided, reducing performance impacts.

pCache acts as a middleware between containers and page
cache and works as follows: When containers access shared
page cache or container exit, f-account counts the total num-
ber of accesses and re-calculates the per-container share. If
the share of containers is changed, pCache charges their share
to the corresponding memory cgroups after a period, which is
randomly generated for security. And when containers exit,
their private page cache will be evicted to prevent them from
using memory for free. Moreover, when containers reach the
memory limit, the OS kernel uncharges page cache as usual
and re-calculates per-container share. The shared page cache
will not be evicted and will remain in memory to serve other
containers if the system memory is sufficient. Otherwise,
pCache evicts the page cache with EoD. Other page cache
operations except the above are as usual.

4.2 Fair Account

To address problem 1, we introduce f-account to guarantee
fairness and isolation between containers. For shared page
cache, f-account splits the page cache charging for contain-
ers, rather than charging to the first user only. For private page
cache, f-account evicts page cache when containers exit. In
what follows, we describe f-account in detail.

F-account splits the page cache charging based on the
per-container share of the page cache. To calculate the per-
container share precisely, f-account records the access count
of containers to the shared page cache and recalculates the
per-container share when increasing or decreasing the ac-
cess count. Take the Linux kernel as an example, f-account
counts the number of accesses at a page-grained level be-

cause the physical page is the basic unit to complete page
cache access. After obtaining the per-container share, we
define three states for containers: Over-Account, Under-
Account and Fair-Account, which refer to that the charged
page cache is greater than, less than and equal to the cal-
culated share, respectively. State transition is illustrated as
Fig. 6. Fair-Account is the ideal state for containers. There-
fore, if one container is in the Over-Account state, we un-
charge the over-charged page cache to transform the con-
tainer state into Fair-Account. Conversely, if one container
is in the Under-Account state, we charge the miss-accounted
page cache. Such that page cache charging is split among
containers that are sharing it, guaranteeing the fairness be-
tween containers.

Algorithm 1 shows the methods of calculating the per-
container share and container state transition. When the cur-
rent process accesses page cache, we test whether the pro-
cess is from host or from a container. If the process is
from a container and hits the page cache, pCache guaran-
tees fairness by finding unfair charging and transforming the
container state. First, we update num_containers and
total_access_count. These two variables refer to the
number of containers that are sharing the page cache and the
total access count of all containers to the page cache. They
are used to determine the fair share of each container. Then
if the page is not charged to the current memory cgroup, un-
fairness happens and we we update the number of accesses
(unfair_access_count) that lead to the unfairness. Us-
ing the above three variables, we calculate the number of
pages that should be re-charged (miss_charge_pages)
to guarantee fairness. Last, we transform the container state
by uncharging page cache from the original containers and
charging the page cache to the current container. In addition,
when containers exit, we will recalculate the share, which is
similar to the above process. Normally unfairness will not
happen if the current process is from host or it does not hit
the page cache, so pCache charges page cache as usual in
this case.

Unfortunately, the above splitting policy causes possible
security problems. Once splitting the page cache charg-
ing among containers, one container can infer the page
cache consumption of others by observing the changes of its
charged share. In other words, the splitting policy causes ad-
ditional information leakage. The attacker can leverage this
to conduct a side-channel attack that aims to gather informa-
tion from a system by measuring indirect effects of the sys-
tem. For instance, similar to the typical timing attack, the
attacker can attempt to extract secrets by analyzing the page

8
Kun WANG et al.: Precise Control of Page Cache for containers

Algorithm 1 Calculate the per-container share and split page cache charging for containers
1: /*total_access_count: the access count of all containers to page cache;
2: un f air_access_count: the access count leading to unfairness;
3: num_containers: the number of containers sharing the page cache;
4: miss_charge_pages: the number of pages missing charge;
5: nrpages: the number of pages for the total page cache*/
6: function Split_Page_Cache(nrpages)
7: if current process in one container then
8: if access file and page cache in memory then
9: total_access_count ++

10: if current memory cgroup is different from the memory cgroup the page cache charged to then
11: un f air_access_count ++
12: end if
13: re-calculate num_containers
14: miss_charge_pages = un f air_access_count

(num_containers+total_access_count) × nrpages
15: uncharge miss_charge_pages pages from their original memory cgroups (containers)
16: charge miss_charge_pages pages to current memory cgroup (container)
17: change the state of the corresponding containers
18: end if
19: end if
20: end function

cache a system uses to execute cryptographic algorithms.
Therefore, the main challenge here is how to split the shared
page cache accounting securely.

In order to address the above challenge, we propose to
charge the per-container share lazily instead of in real-time.
With the lazy charge, containers cannot observe their real-
time accounted share, preventing attackers from inferring the
real-time page cache consumption. Thus, the possible secu-
rity problems can be avoided. Now we need to decide when
to charge the per-container share. On the one hand, there
is a tradeoff between the effectiveness of the splitting policy
and the security of the system. If we set the charge period
too short, the real-time page cache consumption might be in-
ferred, reducing the system security. But setting a too long
period will lead to the invalidation of the splitting policy and
cannot guarantee fairness. On the other hand, using a con-
stant period cannot avoid the security problem completely.
That is because once attackers obtain the constant period,
they can infer how much page cache other containers con-
sume at a certain point in time (at the beginning of the pe-
riod), leading to possible side-channel attacks.

Inspired by the typical randomization-based defense
schemes [22], we charge the per-container share based on pe-
riod which is generated randomly. As Algorithm 2 shows,
first we determine the period (period_t) randomly using
the existing random function. Then we only charge the per-
container share in two cases. The first one is when the per-
container share has not been charged for period_t time.

Algorithm 2 charge per-container share lazily
1: /*period_t: the charge period*/
2: function Lazy_Charge()
3: period_t = random()
4: if one container requests memory then
5: charge per-container share
6: else if have waited for period_t time then
7: charge per-container share
8: end if
9: end function

Because the period is generated randomly, attackers can not
infer when other containers use the page cache. Although
they obtain the page cache usage of other containers, they can
not conduct attacks successfully. The second one is when one
container requests memory. In order to prevent containers
from using memory for free, we must charge the accurate us-
age and fair share of page cache before one container requests
memory. As a result, this random method can guarantee the
system security and enhance memory isolation.

In addition, as shown in the example in Fig 1, one con-
tainer can repeatedly accumulate its private page cache by
restarting, such that the container can use memory for free
and exhaust system memory. To address this problem, we
propose fast uncharge, which evicts the private page cache of
one container when it exits. Due to the eviction, containers
have to reload the page cache and pay for it when re-accessing
it after restarting. Because fast uncharge is designed for pri-

Front. Comput. Sci.
9

vate page cache, there are no impacts on other containers.
There are two sources of overhead associated with f-

account. The first one is the calculation of the per-container
share. As the calculation is done along with the page cache
accessing routines, it does not need additional synchroniza-
tion or locking. So, the calculation is simple and lightweight.
The second one is charging (uncharging) pages to (from)
memory cgroup. This operation may be more expensive
because it needs to look up the corresponding pages and
cgroups. But this occurs less frequently due to the lazy
charge. As a result, we do not anticipate the overheads to
affect the overall performance.

4.3 Evict on Demand

When containers reach their memory limit, the kernel will
uncharge and evict page cache to make space for new mem-
ory requests, resulting in impacts on the performance of con-
tainerized applications, including latency of memory requests
and page cache miss. In fact, the root cause of there being no
available memory for containers is the memory limit, not the
system memory pressure. So, only uncharging is necessary,
and evicting (the root cause of the cache miss problem) is
needless. Based on that, we propose to evict page cache on
demand (EoD) and reduce the unnecessary eviction to reduce
the performance impacts. Suppose one container reaches its
memory limit and its new memory requests are arriving. In
that case, EoD first uncharges page cache as usual except la-
beling the page cache with "uncharged", and then we recal-
culate the per-container share to ensure fairness. Last, EoD
evicts page cache in two cases: 1) no containers share the
page cache, and 2) the system memory is insufficient.

As shown in Algorithm 3, we monitor whether the above
two cases happen through the number of containers that
are sharing the page cache (num_containers) and the
available memory of the system (avai_mem). For the
first case, when EoD uncharges page cache and labels the
page cache with "uncharged", we check whether there are
containers accessing the page cache by checking whether
num_containers is zero. If no containers access the page
cache, evicting the page cache will not hurt the performance
of any containers. So at this time, we can evict all uncharged
pages of the page cache. For the second case, we use the
memory watermark [23] in the kernel to monitor the system
memory pressure. Specifically, if the available memory is
below the high watermark of memory (high), we determine
the system memory is insufficient. To avoid the occurrence of
"Out of Memory", we must start to evict the uncharged page

Algorithm 3 Evict page cache on demand
1: /*num_containers: the number of
containers sharing the page cache;

2: avai_mem: the available system
memory;

3: high: the high memory watermark
configured in the OS kernel*/

4: function Evict_on_Demand()
5: get num_containers and avai_mem
6: if num_containers == 0 then
7: evict all uncharged pages of the page cache
8: else if avai_mem ≤ high then
9: repeat

10: evict uncharged pages
11: avai_mem ++
12: if avai_mem ≥ high × 125% then
13: break loop
14: end if
15: until there is no uncharged pages
16: end if
17: end function

cache. If the available memory is more than 1.25×high, we
determine there is enough memory in the system. To reduce
the performance impacts of page cache eviction, we stop it.
We set the threshold to 1.25×high by referring to the default
settings of the high and low watermarks in the kernel. Obvi-
ously, when there is no uncharged page cache in the system,
we will stop the eviction too.

5 Evaluation

In this section, we present the experimental evaluation of
pCache. Our evaluation answers the following questions:

• Are the f-account and EoD effective for addressing the
isolation issues and performance impacts, respectively?
(Section 2)
• How about the overall performance improvement of

pCache against the original page cache design in shared
environments? (Section 3)
• What is the performance overhead of our system? (Sec-

tion 4)

5.1 Experimental Settings

We implemented pCache on the Linux 5.4.2 kernel. We used
Docker 20.10.5 and Ubuntu 16.04 to deploy containers on a
server, which was equipped with a 20-core Intel Xeon E5-
2650 CPU, 128GB memory and 2TB HDD storage. Sim-

10
Kun WANG et al.: Precise Control of Page Cache for containers

1:1 1:2 1:3 1:4 1:5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ha

rg
ed

 p
ag

e
ca

ch
e

(G
B)

Ratio of access frequency

 Container 1 Container 2

(a) Original design

1:1 1:2 1:3 1:4 1:5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ha

rg
ed

 p
ag

e
ca

ch
e

(G
B)

Ratio of access frequency

 Container 1 Container 2

(b) pCache

Fig. 7 Charged page cache of containers under various ratios of page cache
access frequency (pCache versus original Linux kernel design).

1 2 3 4 5 6

10

15

20

25

30

35

To
ta

l t
im

e
of

 S
ys

be
nc

h
m

em
or

y
te

st
 (s

)

Memory limit for containers (GB)

 Original design
 EoD

(a) Request 1GB memory

1 2 3 4 5 6

10

15

20

25

30

35

To
ta

l t
im

e
of

 S
ys

be
nc

h
m

em
or

y
te

st
 (s

)

Memory limit for containers (GB)

 Original design
 EoD

(b) Request 2GB memory

Fig. 8 Performance of memory requests for requesting 1GB and 2GB
memory under various memory limit for containers.

ilar to the cloud production environment, cgroups, names-
paces and seccomp were enabled to isolate containers. Each
container was set as non-privileged, configured with limited
hardware resources, and pinned to specific cores. The ex-
perimental settings and benchmark details of the individual
evaluation were slightly different and further discussed in the
respective sections.

5.2 Effectiveness of f-account and EoD

Effectiveness of f-account. We first demonstrate the effec-
tiveness of f-account on guaranteeing fairness between con-
tainers and preventing containers from using memory for
free. In this experiment, we ran two containers, which were
denoted as container 1 and container 2. Container 1 first
read a 1GB file. Then we varied the access frequencies of
container 2 to the same file and observed their charged page
cache. Results are shown in Fig. 7. The X-axis represents the
ratio of access frequency between container 1 and container
2. And the Y-axis represents the amount of charged page
cache for two containers. As shown in Fig. 7(a), for the origi-
nal page cache design, no matter how many times container 2
accesses, all page cache is only charged to container 1, due to
the first touch accounting policy. And as shown in Fig. 7(b),
our design charges page cache to both containers based on

the ratios of access frequency between them because of our
splitting policy. These results clearly suggest that f-account
can guarantee fair page cache accounting between contain-
ers. In addition, we read a new 2GB file in container 1 (pri-
vate page cache for container 1) and restarted container 1.
Then we observed that the page cache of this 2Gb file was
evicted, and container 1 could not use it for free. The above
results demonstrate that f-account can guarantee fairness be-
tween containers and prevent containers from using memory
for free effectively.

Effectiveness of EoD. EoD is designed to reduce the per-
formance impacts of page cache eviction, including latency
of memory requests and page cache miss. To evaluate its
effectiveness, we repeated the experiments described in Sec-
tion 3, which were used to demonstrate the performance im-
pacts. And we evaluated the performance gain of EoD against
the original page cache design. As shown in Fig. 8, we sepa-
rately measured the performance of requesting 1GB memory
and 2GB memory with various memory limits. Compared
to the original page cache design, EoD improves the perfor-
mance of memory requests by 43.1% and 45.5% for request-
ing 1GB memory and 2GB memory, respectively. And for
both cases, the memory requests are slowed down slightly
(negligibly) as the memory limit decreases. This is because
EoD reduces the synchronous page cache eviction that delays
memory requests. As shown in Fig. 9, we measured the page
cache miss rate of system with various numbers of contain-
ers to demonstrate the effectiveness of EoD. Compared to the
results of 1 container (Fig. 9(a)), the page cache miss rate of
4 containers (Fig. 9(b)) and 8 containers (Fig. 9(c)) fluctuate
slightly, and the average page cache miss rate increases little
(from 2.35% to 2.98% and 4.15%, respectively). Compared
to the results of the original page cache design (Fig. 2), our
design achieves 6.9× and 5.7× performance improvement for
4 containers and 8 containers, respectively. All the above ex-
perimental results clearly indicate that EoD can reduce the
unnecessary page cache eviction and improve performance
effectively.

5.3 Overall Performance

To evaluate the effectiveness of pCache in more realistic sce-
narios, we ran Webserver, Fileserver, Varmail and Webproxy
in containers using Filebench. All workloads were config-
ured with the default configuration of Filebench. First, we
ran same workloads with various number of containers for the
4 workloads separately. Then we mixed the 4 workloads in
containers. Fig. 10 and Fig. 11 show the relative throughput

Front. Comput. Sci.
11

0 10 20 30 40 50 60
0

10

20

30

40

AveragePa
ge

 c
ac

he
 m

iss
 r

at
e

(%
)

time (s)

(a) 1 container

0 10 20 30 40 50 60
0

10

20

30

40

AveragePa
ge

 c
ac

he
 m

iss
 r

at
e

(%
)

time (s)

(b) 4 concurrent containers

0 10 20 30 40 50 60
0

10

20

30

40

Average

Pa
ge

 c
ac

he
 m

iss
 r

at
e

(%
)

time (s)

(c) 8 concurrent containers

Fig. 9 The system page cache miss rate for pCache (lower is better). Compared to original Linux kernel design (Figure 4), our system has lower and stabler
page cache miss rate.

2 containers

4 containers

8 containers0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 th
ro

ug
hp

ut Original design pCache

(a) Webserver

2 containers

4 containers

8 containers0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 th
ro

ug
hp

ut Original design pCache

(b) Fileserver

2 containers

4 containers

8 containers0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 th
ro

ug
hp

ut Original design pCache

(c) Varmail

2 containers

4 containers

8 containers0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 th
ro

ug
hp

ut Original design pCache

(d) Webproxy

Fig. 10 Normalized throughput of Webserver, Fileserver, Varmail and
Webproxy when running the same workloads in various number of contain-
ers (higher is better).

of workloads normalized to the original page cache design.

Fig.10 shows the results of running same workloads in
containers. For Webserver workload, pCache achieves 36%,
107% and 113% higher throughput in comparison to the orig-
inal page cache design for 2 containers, 4 containers and 8
containers, respectively. The performance improvement is
because that pCache can enhance memory isolation and re-
duce performance impacts for containers. Moreover, pCache
shows higher performance improvement for 4 containers and
8 containers compared to that of 2 containers. The reason
is that there are more unnecessary page cache evictions for
more containers, and our system can effectively reduce such

Webserver
Fileserver

Varmail
Webproxy0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 Original design pCache

(a) 4 concurrent containers

Webserver
Fileserver

Varmail
Webproxy0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

 Original design pCache

(b) 8 concurrent containers

Fig. 11 Normalized throughput of Webserver, Fileserver, Varmail and
Webproxy when mixing workloads in various number of containers (higher
is better).

needless evictions. The results of Fileserver, Varmail and
Webproxy are much similar to the above.

Fig. 11 shows the results of mixing the 4 different work-
loads in containers. When 4 containers are running 4 dif-
ferent workloads, the performance of Webserver, Fileserver,
Varmail and Webproxy is improved by 66%, 48%, 57% and
64%, respectively. And when 8 containers are running 4 dif-
ferent workloads (2 containers for each workload), the per-
formance of Webserver, Fileserver, Varmail and Webproxy is
improved by 41%, 49%, 42% and 67%, respectively. The per-
formance is a little lower compared to that of running same
workloads in containers. This is because there is less shared
page cache when running different workloads. But these re-
sults still clearly indicate the effectiveness of our design.

To further demonstrate the performance improvement of
our system, we conducted some experiments with two real
applications: Nginx and MySQL. Similarly, we ran same and
different workloads with various number of containers. As
shown in Figure 12, the results are much similar to that of
Filebench. This clearly suggests pCache can address the page
cache problems and can be used in realistic scenarios.

12
Kun WANG et al.: Precise Control of Page Cache for containers

Nginx-2
Nginx-4

MySQL-2
MySQL-40.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

N
or

m
al

iz
ed

 th
ro

ug
hp

ut Original design pCache

(a) running same workloads

4-Nginx
4-MySQL

8-Nginx
8-MySQL0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 th
ro

ug
hp

ut Original design pCache

(b) running different workloads

Fig. 12 Normalized throughput of Nginx and MySQL when running same
and different workloads in various number of containers (higher is better).
"Nginx-2" denotes running Nginx in 2 containers (same workloads). "4-
Nginx" denotes the average performance of Nginx containers when running
2 Nginx containers and 2 MySQL containers together (different workloads).

5.4 Overhead

Lastly, we evaluated the overhead of our system on micro
operations, containerized applications and memory footprint,
comparing with the original page cache design (Docker). As
Kata containers are widely used for isolation, we also com-
pared pCache with it to show the significance of our study.

Micro operations. We implemented pCache on the path
of accessing page cache, uncharging page cache and exiting
containers, so we mainly evaluated these operations. We ran
an Ubuntu container and used the time command to print out
how long it takes for executing these operations with 1GB
page cache. Fig. 13(a) shows the results. For accessing page
cache, our design only adds 0.7% additional time, which is
spent on calculating the share of page cache charging. For
uncharging page cache, pCache introduces 0.6% overhead,
which is spent on determining whether eviction is needed.
And for exiting the container, pCache incurs 1.3% perfor-
mance overhead, which is spent on evicting its private page
cache. Compared to Docker and pCache, Kata container
takes more time to execute these micro operations. For exit-
ing the container, Kata container introduces 7.34× overhead,
which is spent on exiting the per-container kernel. Overall,
the performance overhead of pCache on micro operations is
negligible.

Containerized applications. To evaluate the performance
overhead of our system on containerized applications, we
ran Webserver, Fileserver, Varmail and Webproxy in a con-
tainer. As shown in Fig. 13(b), the throughput overhead
of Webserver, Fileserver, Varmail and Webproxy is 1.5%,
1.3%, 2.1% and 1.7%, respectively. These overheads are
introduced by our precise control of page cache and do not
contribute much to the overall performance. Compared to
Kata container, the throughput of Webserver, Fileserver, Var-

mail and Webproxy in pCache is 6.58×, 5.92×, 5.99× and
5.6×, respectively. These results show our system introduces
much less overhead on containerized applications than exist-
ing popular container isolation methods.

Memory footprint. To measure the memory footprint,
we ran an Ubuntu container and a Webserver container, then
leveraged the docker stats command to collect memory us-
age of both containers. As illustrated in Fig. 13(c), the
Ubuntu container and Webserver container consume 1.5%
and 0.3% additional memory compared to the original page
cache design. The memory overhead of Webserver is much
less than Ubuntu because the Webserver container consumes
more memory. Compared to Kata container, pCache can de-
crease memory footprints by 4.23× and 4.58× for Ubuntu and
Webserver, respectively. Because Kata boot a dedicated ker-
nel for each container, introducing more overhead. Overall,
the memory footprint overhead of pCache is remarkably neg-
ligible.

5.5 Limitation and Discussion

Our results show pCache can enhance page cache isolation
and achieve performance improvement for many applica-
tions. Nevertheless, there are potential limitations in this
study. Our approach may not work well for workloads that
share lots of small files. As the physical page is the basic
memory management unit, we split the page cache charg-
ing at a page-grained level. In this case, one page can be
charged to only one container. This may introduce charging
unfairness when containers share lots of small files. As an
extreme example, if two containers share 100 files and the
size of each file is one page, all the page cache of these files
may be charged to the first container and the other container
can use the page cache for free. In the future, we plan to de-
sign a more fine-grained splitting mechanism to improve the
soundness of our study.

6 Related Work

In this section, we review the most relevant work that inspires
our work and highlight the differences between our work and
previous research. We mainly discuss research works in the
following areas.

Analyzing container isolation. There is a large body of
work focusing on analyzing the isolation of container-based
virtualization [24–32]. These researches demonstrated the

Front. Comput. Sci.
13

Access Uncharge Exit
0
1
2
3
4
5
6
7
8

N
or

m
al

iz
ed

 c
om

pl
et

ed
 ti

m
e Docker pCache Kata

(a) micro operations

Webserver Fileserver Varmail Webproxy
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

 Docker pCache Kata

(b) containerized applications

Ubuntu Webserver
0

1

2

3

4

5

N
or

m
al

iz
ed

 m
em

or
y

fo
ot

pr
in

t

 Docker pCache Kata

(c) memory footprint

Fig. 13 The performance overhead of pCache (versus original Linux kernel) for different micro operations, different containerized applications, and memory
footprint.

weak isolation of containers by comparing containers with
virtual machines through various workloads. And they show
the significance of container isolation in the cloud comput-
ing environment. However, none of the above research has
fully investigated the risks and impacts of weak page cache
isolation. In this work, we demonstrate containers can break
memory isolation by using page cache for free and reveal the
root cause as well as its impacts.

Enhancing container isolation. There are two ways to
enhance container isolation. One is dedicated to optimizing
the kernel isolation mechanisms. For view isolation, Huang
et al. [6] focused on the resources (e.g. CPU and memory)
view of containers and designed a new namespace to export
the available resources to containers. For security isolation,
Sun et al. [33] enabled containers to have autonomous control
over their security policies with a security namespace. Gao
et al. [34] explored the possible power attack by exploiting
leaked host information and proposed a power-based names-
pace to defend against the attack. For CPU isolation, Gao
et al. [35] explored several exploiting strategies to escape the
resources control by de-associating processes from their orig-
inal CPU cgroups. Khalid et al. [9] were dedicated to similar
problems and optimized cgroup to charge CPU resource for
softirq processing. Huang et al. [36] proposed efficient over-
subscription to isolate thread for containers. For I/O isola-
tion, PINE [10] was another cgroup optimization designed to
address the issue of misallocation of storage resource. Wu
et al. [37] proposed container-aware I/O stack to enhance
I/O isolation for containers. IOCost [38] provided scalable,
work-conserving and low-overhead IO control for containers
to address isolation failures in datacenter environments. For
network isolation, Gu et al. [39] proposed a container net-
work traffic control framework to provide strong isolation of
network resource isolation. However, the above optimiza-
tions were used to address specific isolation problems, which
did not include the page cache isolation. This work focuses

on page cache isolation and proposes pCache for addressing
the problem by providing each container with precise control
of page cache.

The other one trends to wrap containers within a ded-
icated OS kernel. Kata containers [40], LightVM [41],
Mavridis [42], X-Containers [43] and µKontainer [44] all
leveraged hypervisor to run containers in a light virtual ma-
chine to make containers not share a same kernel, enhanc-
ing isolation. Similarly, gVisor [30] ran containers within
a user-space kernel which is written in Go language. Al-
though some works [45, 46] have been proposed to improve
the performance, compared to native container systems (e.g.
Docker), these platforms could cause significant performance
overhead due to the individual kernels. Instead, pCache opti-
mizes the native containers and incurs negligible performance
overhead.

Optimizing memory cgroup and page cache. Several
works have been dedicated to analyzing the performance pit-
falls of memory cgroup and page cache as well as proposing
practical solutions. Huang et al. [47] studied the Linux mem-
ory management and pointed out that the page_cgroup

lock is unnecessary, which affected the concurrency of mem-
ory cgroup. Kim et al. [48] leveraged dynamic memory re-
quest throttling and cgroup to reduce memory interference
for critical applications. Zhuang et al. [49] found four per-
formance issues of memory cgroup but not addressed them.
Oh et al. [50] proposed a weight-based page cache manage-
ment scheme that reflects I/O weight of cgroups to improve
I/O proportionality. Park et al. [51] proposed weight-aware
cache to reflect the I/O weights on page cache allocation
and reclamation, achieving application-level proportional I/O
sharing. Zheng et al. [52] focused on addressing the scal-
ability issues within the page cache layer. Finer-LRU [53]
optimized the page reclamation process to reduce lock con-
tention on the sharing memory space. Unlike these works, we
optimized memory cgroup to charge page cache fairly, isolate

14
Kun WANG et al.: Precise Control of Page Cache for containers

page cache, and reduce performance impacts for containers.
And the above studies are orthogonal and complementary to
pCache.

7 Conclusion

In this paper, we first perform an empirical study of contain-
ers working with page cache. Our results reveal two ma-
jor problems: 1) containers can utilize more memory than
limited by their respective cgroup, effectively breaking mem-
ory isolation, and 2) OS kernel has to evict page cache for
newly-arrived memory requests, significantly slowing down
containers. Then we demonstrate the significant performance
impacts on containerized applications. Next, we design and
implement a system named pCache to address these prob-
lems for containers by dividing page cache into private and
shared and controlling both kinds of page cache separately
and precisely. We propose f-account to account page cache
fairly and prevent containers from using memory for free.
F-account splits the shared page cache charging based on
per-container share and evicts the private page cache when
containers exit. To address the security challenge caused
by the splitting policy, we propose to update per-container
charging lazily and randomly. In addition, pCache leverages
EoD to reduce unnecessary page cache eviction to avoid ad-
ditional performance overhead. Last, experimental results
show that pCache can account for page cache fairly, enhance
page cache isolation and achieve substantial performance im-
provement over the original page cache management policy
for various applications.

References

1. Merkel D. Docker: lightweight linux containers for consistent devel-

opment and deployment. Linux Journal, 2014, 239(2):1-5

2. Zeng R, Hou X F, Zhang L, Li C, Zheng W L, Guo M Y. Perfor-

mance optimization for cloud computing systems in the microservice

era: state-of-the-art and research opportunities. Frontiers of Computer

Science, 2022, 16(6):1-13

3. Hou X F, Li C, Liu J C, Zhang L, Ren S L, Leng J W, Chen Q, Guo M

Y. AlphaR: learning-powered resource management for irregular, dy-

namic microservice graph. In: Proceeding of IEEE International Paral-

lel and Distributed Processing Symposium. 2021, 797-806

4. Suo K, Zhao Y, Chen W, Rao J. An analysis and empirical study of

container networks. In: Proceedings of IEEE Conference on Computer

Communications. 2018, 189-197

5. Zhang Y Q, Goiri Í, Chaudhry G I, Fonseca R, Elnikety S, Delimitrou

C, Bianchini R. Faster and cheaper serverless computing on harvested

resources. In: Proceedings of ACM SIGOPS 28th Symposium on Op-

erating Systems Principles. 2021, 724-739

6. Huang H, Rao J, Wu S, Jin H, Suo K, Wu X F. Adaptive resource views

for containers. In: Proceedings of International Symposium on High-

Performance Parallel and Distributed Computing. 2019, 243-254

7. Soltesz S, Pötzl H, Fiuczynski M E, Bavier A, Peterson L. Container-

based operating system virtualization: a scalable, high-performance al-

ternative to hypervisors. In: Proceedings of ACM european conference

on computer systems. 2007, 275-287

8. Laadan O, Nieh J. Operating System virtualization: practice and expe-

rience. In: proceedings of Annual Haifa Experimental Systems Con-

ference. 2010, 1-12

9. Khalid J, Rozner E, Felter W, Xu C, Rajamani K, Ferreira A, Akella

A. Iron: Isolating network-based CPU in container environments. In:

Proceedings of USENIX Symposium on Networked Systems Design

and Implementation. 2018, 313-328

10. Li Y H Z, Zhang J C, Jiang C F, Wan J, Ren Z J. PINE: Optimizing

performance isolation in container environments. IEEE Access, 2019,

7(1): 30410-30422

11. Senthil K S. Practical LXC and LXD: linux containers for virtualiza-

tion and orchestration. 1st ed. New York: Apress, 2017

12. Xie X L, Wang P, Wang Q. The performance analysis of Docker and

rkt based on Kubernetes. In: Proceedings of International Conference

on Natural Computation, Fuzzy Systems and Knowledge Discovery.

2017, 2137-2141

13. Skarlatos D, Chen Q R, Chen J Y, Xu T Y, Torrellas J. Draco: Archi-

tectural and Operating System Support for System Call Security. In:

Proceedings of IEEE/ACM International Symposium on Microarchi-

tecture. 2020, 42-57

14. Do H D, Hayot-Sasson V, Da Silva R F, Steele C, Casanova H, Glatard

T. Modeling the Linux page cache for accurate simulation of data-

intensive applications. In: Proceedings of IEEE International Confer-

ence on Cluster Computing. 2021, 398-408

15. Eklov D, Hagersten E. StatStack: Efficient modeling of LRU caches.

In: Proceedings of IEEE International Symposium on Performance

Analysis of Systems and Software. 2010, 55-65

16. Tarasov V, Zadok E, Shepler S. Filebench: A flexible framework for

file system benchmarking. The USENIX Magazine, 2016, 41(1):6–12

17. Xiang Y C, Wang X L, Huang Z H, Wang Z Y, Luo Y W, Wang Z L.

DCAPS: Dynamic cache allocation with partial sharing. In: Proceed-

ings of EuroSys Conference. 2018, 1-15

18. Xu M, Thi L, Phan X, Choi H Y, Lee I. vCAT: Dynamic cache man-

agement using CAT virtualization. In: Proceedings of IEEE Real-Time

and Embedded Technology and Applications Symposium. 2017, 211-

222

19. Sohal P, Bechtel M, Mancuso R, Yun H, Krieger O. A Closer Look at

Intel Resource Director Technology (RDT). In: Proceedings of Inter-

national Conference on Real-Time Networks and Systems. 2022, 127-

139

20. Chaudhuri M. Zero inclusion victim: Isolating core caches from inclu-

Front. Comput. Sci.
15

sive last-level cache evictions. In: Proceeding of ACM/IEEE Interna-

tional Symposium on Computer Architecture. 2021, 71-84

21. Delimitrou C, Kozyrakis C. Bolt: I know what you did last summer...

in the cloud. ACM SIGARCH Computer Architecture News, 2017,

45(1):599-613

22. Volckaert S. Randomization-based Defenses against Data-Oriented At-

tacks. In: Proceedings of ACM Workshop on Moving Target Defense.

2021, 1-2

23. Love R. Linux Kernel Development. 3rd ed. New York: Pearson Edu-

cation, 2010

24. Felter W, Ferreira A, Rajamony R, Rubio J. An updated performance

comparison of virtual machines and Linux containers. In: Proceedings

of IEEE International Symposium on Performance Analysis of Sys-

tems and Software. 2015, 171-172

25. Sharma P, Chaufournier L, Shenoy P, Tay Y. Containers and virtual ma-

chines at scale: A comparative study. In: Proceedings of International

Middleware Conference. 2016, 1-13

26. Plauth M, Feinbube L, Polze A. A performance survey of lightweight

virtualization techniques. In: Proceedings of European Conference on

Service-Oriented and Cloud Computing. 2017, 34-48

27. Matthews J N, Hu W, Hapuarachchi M, Deshane T, Dimatos D, Hamil-

ton G, McCabe M, Owens J. Quantifying the performance isolation

properties of virtualization systems. In: Proceedings of the workshop

on Experimental Computer Science. 2007, 6-14

28. Xavier M G, De Oliveira I C, Rossi F D, Passos R D D, Matteussi

K J, Rose C A D. A performance isolation analysis of disk-intensive

workloads on container-based clouds. In: Proceedings of Euromicro

International Conference on Parallel, Distributed, and Network-Based

Processing. 2015, 253-260

29. Yang N Z, Shen W B, Li J K, Yang Y T, Lu K J, Xiao J T, Zhou T

Y, Qin C G, Yu W, Ma J F, Ren K. Demons in the shared kernel: Ab-

stract resource attacks against os-level virtualization. In: Proceedings

of ACM SIGSAC Conference on Computer and Communications Se-

curity. 2021, 764-778

30. Caraza-Harter T, Swift M M. Blending containers and virtual ma-

chines: A study of firecracker and gVisor. In: Proceedings of ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution En-

vironments. 2020, 101-113

31. Sartakov V A, Vilanova L, Eyers D, Shinagawa T, Pietzuch P. CAP-

VMs: Capability-based isolation and sharing in the cloud. In: pro-

ceedings of USENIX Symposium on Operating Systems Design and

Implementation. 2022, 597-612

32. Hua Z C, Yu Y, Gu J Y, Xia Y B, Chen H B, Zang B Y. TZ-container:

Protecting container from untrusted OS with ARM TrustZone. Science

China Information Sciences. 2021, 64(9):1-16

33. Sun Y Q, Safford D, Zohar M, Pendarakis D, Gu Z S, Jaeger T. Security

namespace: making linux security frameworks available to containers.

In: Proceedings of USENIX Security Symposium. 2018, 1423-1439

34. Gao X, Gu Z S, Kayaalp M, Pendarakis D, Wang H. Containerleaks:

Emerging security threats of information leakages in container clouds.

In: Proceedings of IEEE/IFIP International Conference on Dependable

Systems and Networks. 2017, 237-248

35. Gao X, Gu Z S, Li Z F, Jamjoom H, Wang C. Houdini’s escape:

Breaking the resource rein of Linux control groups. In: Proceedings

of ACM SIGSAC Conference on Computer and Communications Se-

curity. 2019, 1073-1086

36. Huang H, Rao J, Wu S, Jin H, Jiang S, Che H, Wu X F. Towards ex-

ploiting CPU elasticity via efficient thread oversubscription. In: Pro-

ceedings of International Symposium on High-Performance Parallel

and Distributed Computing. 2021, 215-226

37. Wu S, Huang Z, Chen P F, Fan H, Ibrahim S, Jin H. Container-aware

I/O stack: Bridging the gap between container storage drivers and solid

state devices. In: Proceedings of ACM SIGPLAN/SIGOPS Interna-

tional Conference on Virtual Execution Environments. 2022, 18-30

38. Heo T, Schatzberg D, Newell A, Liu S, Dhakshinamurthy S, Narayanan

I, Bacik J, Mason C, Tang C Q, Skarlatos D. IOCost: Block IO control

for containers in datacenters. In: Proceedings of ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems. 2022, 595-608

39. Gu L, Guan J, Wu S, Jin H, Rao J, Suo K, Zeng D Z. CNTC: A con-

tainer aware network traffic control framework. In: Proceeding of In-

ternational Conference on Green, Pervasive, and Cloud Computing.

2019, 208-222

40. Randazzo A, Tinnirello I. Kata containers: An emerging architecture

for enabling mec services in fast and secure way. In: Proceedings of

International Conference on Internet of Things: Systems, Management

and Security. 2019, 209-214

41. Manco F, Lupu C, Schmidt F, Mendes J, Kuenzer S, Sati S, Yasukata

K, Raiciu C, Huici F. My VM is lighter (and safer) than your container.

In: Proceedings of Symposium on Operating Systems Principles. 2017,

218-233

42. Mavridis I, Karatza H. Combining containers and virtual machines to

enhance isolation and extend functionality on cloud computing. Future

Generation Computer Systems, 2019, 94:674-696

43. Shen Z M, Sun Z, Sela G E, Bagdasaryan E, Delimitrou C, Renesse R

V, Weatherspoon H. X-Containers: Breaking down barriers to improve

performance and isolation of cloud-native containers. In: Proceedings

of International Conference on Architectural Support for Programming

Languages and Operating Systems. 2019, 121-135

44. Tazaki H, Moroo A, Kuga Y, Nakamura R. How to design a library OS

for practical containers? In: Proceedings of ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments. 2021,

15-28

45. Li Z J, Cheng J, Chen Q, Guan E, Bian Z Z, Tao Y, Zha B, Wang Q,

Han W D, Guo M Y. RunD: A lightweight secure container runtime

for high-density deployment and high-concurrency startup in server-

less computing. In: Proceeding of USENIX Annual Technical Confer-

ence. 2022, 53-68

46. Lim J T, Nieh J. Optimizing nested virtualization performance using

direct virtual hardware. In: Proceedings of International Conference

on Architectural Support for Programming Languages and Operating

Systems. 2020, 557-574

47. Huang J, Qureshi M K, Schwan K. An evolutionary study of Linux

memory management for fun and profit. In: Proceedings of USENIX

16
Kun WANG et al.: Precise Control of Page Cache for containers

Annual Technical Conference. 2016, 465-478

48. Kim J, Shin P, Noh S, Ham D, Hong S. Reducing memory interfer-

ence latency of safety-critical applications via memory request throt-

tling and Linux Cgroup. In: Proceedings of IEEE International System-

on-Chip Conference. 2018, 215-220

49. Zhuang Z, Tran C, Weng J, Ramachandra H, Sridharan B. Taming

memory related performance pitfalls in linux Cgroups. In: Proceedings

of International Conference on Computing, Networking and Commu-

nications. 2017, 531-535

50. Oh K, Park J, Eom Y I. Weight-based page cache management scheme

for enhancing i/o proportionality of cgroups. In: Proceedings of IEEE

International Conference on Consumer Electronics. 2019, 1-3

51. Park J, Eom Y I. Weight-aware cache for application-level proportional

i/o sharing. IEEE Transactions on Computers, 2021, 71(10):2395-2407

52. Zheng D, Burns R, Szalay A S. Szalay. Toward millions of file system

IOPS on low-cost, commodity hardware. In: Proceedings of the In-

ternational Conference on High Performance Computing, Networking,

Storage and Analysis. 2013, 1-12

53. Bang J, Kim C, Kim S, Chen Q C, Lee C, Byun E K, Lee J, Eom H.

Finer-LRU: A scalable page management scheme for hpc manycore

architectures. In: Proceeding of IEEE International Parallel and Dis-

tributed Processing Symposium. 2021, 567-576

Kun Wang received the B.S. from Huazhong

University of Science and Technology

(HUST) in 2015. Currently he is a Ph.D.

candidate student in Service Computing

Technology and System Lab (SCTS) and

Cluster and Grid Lab (CGCL), Huazhong

University of Science and Technology

(HUST) in China. His current research in-

terests include container virtualization and kernel resource isolation.

Song Wu received the PhD degree from

Huazhong University of Science and Tech-

nology (HUST) in 2003. He is a profes-

sor of computer science at HUST in China.

He currently serves as the vice dean of the

School of Computer Science and Technol-

ogy and the vice head of Service Computing

Technology and System Lab (SCTS) and the

Cluster and Grid Computing Lab (CGCL) in HUST. His current re-

search interests include cloud resource scheduling and system virtu-

alization.

Shengbang Li received the B.S. from Shan-

dong University(SDU) in 2021. Currently

he is a M.S. candidate student in Service

Computing Technology and System Lab

(SCTS) and Cluster and Grid Lab (CGCL),

Huazhong University of Science and Tech-

nology (HUST) in China. His current re-

search interest is kernel resource isolation.

Zhuo Huang received the B.S. from

Huazhong Agricultural University (HZAU)

in 2014. Currently he is a Ph.D. candidate

student in Service Computing Technology

and System Lab (SCTS) and Cluster and

Grid Lab (CGCL), Huazhong University of

Science and Technology (HUST) in China.

His current research interests include

container virtualization, serverless computing optimization, and

storage system.

Hao Fan received the PhD degree from

Huazhong University of Science and Tech-

nology (HUST) in 2021. Currently he

is working as a post-doctor in Service

Computing Technology and System Lab

(SCTS) and Cluster and Grid Lab (CGCL),

Huazhong University of Science and Tech-

nology (HUST) in China. His current re-

search interests include container technology and storage system.

Chen Yu received the Ph.D. degree in infor-

mation science from Tohoku University in

2005. From 2005 to 2006, he was a Japan

Science and Technology Agency Postdoc-

toral Researcher with the Japan Advanced

Institute of Science and Technology, Nomi,

Japan. In 2006, he was with Japan Society

for the Promotion of Science Postdoctoral

Fellow with the Japan Advanced Institute of Science and Technol-

ogy. Since 2008, he has been with the School of Computer Sci-

ence and Technology, Huazhong University of Science and Tech-

nology, where he is currently a Professor and Special Research Fel-

low, working in the areas of wireless sensor networks, ubiquitous

computing, edge computing, and edge intelligence.

Front. Comput. Sci.
17

Hai Jin is a Chair Professor of computer

science at Huazhong University of Science

and Technology (HUST). Jin received his

PhD in computer engineering from HUST

in 1994. In 1996, he was awarded a German

Academic Exchange Service fellowship to

visit the Technical University of Chemnitz.

Jin worked at The University of Hong Kong

between 1998 and 2000. He was awarded Excellent Youth Award

from the National Science Foundation of China in 2001. Jin is a

Fellow of IEEE, Fellow of CCF, and a life member of the ACM.

He has co-authored more than 20 books and published over 900 re-

search papers. His research interests include computer architecture,

parallel and distributed computing, big data processing, data stor-

age, and system security.

