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Recently, Mobile Cloud Computing (MCC) which utilizes cloud to enhance mobile device’s performance, is
becoming more and more popular. A typical approach of MCC is to offload some computation-intensive
tasks onto cloud servers to execute and fetch results back. However, this schema suffers greatly from the
long-distance network transmission latency and server boot-up latency, leading to high-delay response,
which is unacceptable for most real-time applications. Mobile Edge Computing (MEC) or Mobile Fog
Computing (MFC) can drastically reduce transmission latency by offloading the tasks onto the edge servers
without transferring to remote data centers. However, traditional virtual machines (VM) or containers
used in MCC are too heavyweight for resource-constrained environment of edge or fog servers. In this
paper, we argue that enhanced unikernel can be used as task runtime in MEC or MFC to efficiently support
mobile code offloading. To achieve this goal, we put forward the concept of Rich-Unikernel which aims
to support various applications in one unikernel while avoiding their time-consuming recompilation.
Following the design of Rich-Unikernel, we implement a not only lightweight but also flexible runtime
for offloaded codes, called Android Unikernel, by integrating basic Android system libraries into OSv
unikernel. Our experiment shows, compared with VM and container, Android Unikernel introduces much
less boot-up delay, memory footprint, image size and energy consumption.
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1. Introduction called code offloading [2], which splits mobile application into

small tasks, transfers the computation-intensive tasks to cloud to

Over the last decades, mobile device processors are becoming
more and more powerful, but the increasing speed of performance
requirements of mobile applications (such as augmented real-
ity, image processing, 3D games, Al applications) is much faster
than the increasing speed of processors’ performance, so that
many computation-intensive applications may not be performed
efficiently on mobile devices themselves. To solve this problem,
Mobile Cloud Computing [1] comes into being, which uses cloud
infrastructure to enhance the performance of mobile devices. In
this field, a well-known approach is computation offloading, also
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execute, and then fetches results back, thus improving execution
speed of applications and reducing energy consumption of mobile
devices. Nevertheless, most of the existing related works [3-7]
mainly focus on the implementation of offloading frameworks. It
is difficult to response to mobile requests in time, due to the long-
distance transmission delay of network, which may results in even
worse user experience than local execution, especially when the
network environment is poor.

MEC [8,9] and MFC [10], which suggest processing data at the
edge of network, are potential to address the issues of network
transmission delay, bandwidth cost, as well as data safety and
privacy. By offloading tasks onto nearby edge servers instead of
remote data centers, network latency can be reduced sharply.


https://doi.org/10.1016/j.future.2018.04.069
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.04.069&domain=pdf
mailto:wusong@hust.edu.cn
mailto:meicorl@hust.edu.cn
mailto:hjin@hust.edu.cn
mailto:dqwang@hust.edu.cn
https://doi.org/10.1016/j.future.2018.04.069

S. Wu et al. / Future Generation Computer Systems 86 (2018) 694-703 695

However, unlike traditional cloud infrastructure which is gen-
erally made up of resource-abundant data centers, MEC and MFC,
emphasizing on real-time computation or in-situ data processing,
are mainly based on resource-constrained edge devices such as
WiFi access points, home gateways, femtocells, and cellular base
stations. Therefore, it places higher requirements on designing
the runtime in such devices or edge servers. The most important
requirements are less resource overhead (e.g. memory footprint,
disk usage and energy consumption), faster boot speed, and easier
on-demand deployment. Given the long boot-up delay and heavy
resource cost of virtual machine, it is not advisable any more to
use VM in MFC and MEC scenarios. As for container [11], although
it costs much little resource than virtual machine, it is still not
fast enough to startup to provide just-in-time service. Besides, the
isolation and security of container are often criticized by industry
and academia [12].

Unikernel [13], which fits all the demands above, seems to be
a perfect choice. Unfortunately, to use unikernel as runtime to
handle mobile offloading requests in MEC or MFC, we still need
to overcome several challenges, such as time-consuming recom-
pilation, slow customization, and mobile code supporting (elabo-
rated in Section 2). In this paper, we introduce a new enhanced
unikernel runtime to support efficient mobile code offloading in
MEC or MFC. We firstly put forward the concept of Rich-Unikernel,
aiming to support various mobile applications in one unikernel
while avoiding their time-consuming recompilation. Following the
design of Rich-Unikernel, we implement Android Unikernel based
on OSv unikernel [ 14]. Our Android Unikernel is a lightweight and
flexible runtime that enables to run offloaded mobile codes in
the form of unikernel on resource-constrained devices in MEC or
MEFC. There are two important components in Android Unikernel,
DynamicLinker and Libdroid. DynamicLinker is mainly in charge of
linking offloaded application codes into unikernel dynamically, so
we do not have to generate an unikernel for each application at
compile-time. Libdroid is a set of Android libraries used to support
offloaded mobile codes in the form of LibOS (Library Operating
System) [13,15,16] in Android Unikernel. With the advantages of
Android Unikernel, our experimental results show that runtime
boot-up delay can be significantly reduced from more than 1 minin
the case of VM and seconds in the case of container (Rattrap[17]) to
less than a second, while saving memory footprint, disk usage and
energy consumption. Moreover, when deployed to edge servers,
the average offloading response latency can be sharply reduced. In
summary, this paper makes the following contributions:

e We propose the idea of Rich-Unikernel which is an enhanced
unikernel for the scenarios with changing applications. Un-
like conventional unikernel customized and compiled for
each application, Rich-Unikernel provides a more general
runtime for similar applications by integrating basic and
common system libraries.

e We design a new runtime, Android Unikernel, following
the idea of Rich-Unikernel, for efficient mobile offloading
in MEC and MFC. Compared with traditional runtime like
Android VM or Android container, our proposed runtime
is more lightweight in bootup time, memory footprint, im-
age size and energy consumption, so that it can be used
in resource-constrained environment and for just-in-time
services.

e We refactor a part of Android system libraries that are nec-
essary for offloaded mobile codes and integrate them with
OSv to generate Android Unikernel so as to support Android
applications’ code offloading. As far as we know, it is the first
effort to try unikernel in offloading field.

e We propose a method to rapidly unikernelize an application
by dynamically linking application code to Android Uniker-
nel instead of recompiling and repackaging application code
with system libraries as traditional unikernel does. It signif-
icantly decreases the building time of unikernels and makes
just-in-time mobile offloading services possible.

The rest of this paper is organized as follows. Section 2 presents
the background of mobile code offloading and unikernel along
with some related work, what follows is our motivations. Sec-
tion 3 describes the concept of Rich-Unikernel and the design and
architecture of our Android Unikernel based edge runtime. The
implementation of Android Unikernel is described in Section 4. In
Section 5, we evaluate our Android Unikernel based runtime and
compare its performance and resource overhead to traditional VM-
based runtime and container-based runtime. Finally, we conclude
this paper, talk about some limitations of our approach and de-
scribe our future work in Section 6.

2. Background and motivation
2.1. Mobile code offloading

Code offloading is a commonly used approach in the field of
MCC, which derives from the initial notion of cyber foraging [18].
The basic idea of code offloading is to offload the computation-
intensive tasks (such as a method or a process) inside a mobile
application to the cloud to execute, as shown in Fig. 1. This architec-
ture contains a client and a server. The client represents for mobile
devices which offload computational codes to cloud on demand,
and the cloud server is in charge of emulating mobile runtime
environment and handling offloading requests within it.

Many researchers have made great contributions to this field
and proposed many excellent offloading frameworks. MAUI [3]
is the first pioneer in this field, which offloads manually anno-
tated mobile computation-intensive methods to cloud so as to
improve applications’ performance and save energy of mobile de-
vices. CloneCloud [4] and COMET [6], which can be regarded as the
improved version of MAUI, enable thread-level offloading without
manual annotation. Advancing on previous work, ThinkAir [5]
focuses on the elasticity and scalability, and it enables parallelizing
method-level offloading. And to coordinate task offloading among
mobile devices and get offloading results quickly at the same
time, [19] proposes an agent-based MCC framework to enable the
device to receive offloading results faster by making offloading
decision on the agent. Besides these offloading frameworks, many
other research works focus more on offloading decisions, such
as [20], in which offloading decision is formulated as an NP-hard
0-1 nonlinear integer programming problem with time deadline
and transmission error rate constraints, making offloading more
efficiency and energy-saving. All of these works have contributed
greatly to the research of computation offloading.

Unfortunately, in traditional Mobile Cloud Computing, all of
the offloading frameworks face a performance bottleneck. Since
they mainly focus on implementation details of offloading, both
network transmission latency and cloud-side overhead are rarely
considered. In order to decrease the network latency, Mobile Edge
Computing [8,9] and Mobile Fog Computing [ 10] are proposed. By
offloading mobile codes to adjacent edge servers instead of remote
data centers, network transmission latency can be significantly
reduced [7], thus greatly improving the QoS (Quality of Service).
Based on MFC and MEC, many studies in offloading have been con-
ducted to guarantee the performance of computation offloading,
such as [21-25]. These works, though sharply reduce network la-
tency, place huge burden to edge servers. Since the server runtime
is mainly based on traditional VM with a full Android-x86 system
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Fig. 1. Basic offloading architecture.

running in it, which is too heavyweight for resource-constrained
edge servers. Besides, the boot time of VM is too long to provide
just-in-time service on demand, so we have to startup servers
in advance if we want to guarantee the quality of service (QoS),
which, in turn, further increases the resource overhead and energy
consumption.

To further reduce the runtime overhead, many lightweight vir-
tualization technologies (such as Container [11]) have been intro-
duced in MFC and MEC. Rattrap [17] uses LXC (Linux Container) to
serve as offloading cloud server runtime, greatly reduces overhead
at cloud side, compared to VM. ParaDrop [26] introduces a specific
edge computing framework, which uses LXC to do resource isola-
tion work and enables third-party softwares to be installed directly
on the gateway, thus introducing less overhead at edge.

2.2. Library operating system: Unikernel

Unikernel is a highly-specialized single-address-space im-
mutable disk image, constructed by linking an application only
with its necessary libraries at compile-time through library operat-
ing systems, of which all the services, from device drivers to sched-
ulers to network stack, are implemented in the form of libraries
that can be linked directly with applications [13]. Compared to
VM and container, unikernel has the advantages of small, fast and
secure. As illustrated in [27], Unikernel is suitable for IoT (Internet
of Things) edge, due to its small footprint and flexibility. [28]
implements unikernel-based elastic CDNs for video streaming in
distribution networks, significantly improving the performance of
video delivery. [29] implements a NFV platform with MirageOS
unikernels, which does not rely on current cloud orchestration or
SDN. In this paper, we try to use unikernel as server runtime to
handle mobile code offloading requests in MFC and MEC scenarios,
while saving resources at edge servers.

Fig. 2 shows the difference among container, VM and unikernel.
Container performs much better than VM in resource overhead
and bootup speed, since it shares kernel with host OS at the cost
of less isolation and less security. On the contrary, VM is good at
isolation and security but too heavyweight. Imagining that you
just want to run a very simple application, but you have to run
a whole operating system and pay for its huge cost, even though
most of system functions are not used. Unikernel eliminates the
redundancy and complexity of virtual machine and container by
specializing an application into a standalone image along with its
necessary system libraries, combining the advantages of virtual
machine and container while eliminating their disadvantages.

As Fig. 3 shows, when building an application into an unikernel,
only the necessary system libraries and kernel functions used by
the application are compiled into the unikernel. Therefore, uniker-
nel image is very small. It usually takes only about KB to MB disk
space. Besides, both application codes and kernel codes run in the
same address space without any system call and context switching.
Therefore, codes in unikernel can run in the most efficient way.

To summarize, unikernel has a lot of advantages over virtual
machine and container. Firstly, small image size. Its image is one
to two orders of magnitude smaller than virtual machine im-
age and container image. Secondly, fast boot. Unikernel can boot
in milliseconds due to it small image. Thirdly, small footprints.
Unikernels are often orders of magnitude smaller than traditional
OS deployments. Fourthly, improved security. Unikernel reduces
the amount of code deployed, which reduces the attack surface.
Finally, easy to deploy. Since everything an application needs have
been packaged into the image, it can be boot up directly on any
kind of hypervisor or even bare metal without any additional
configuration. All of the above advantages make us believe that
unikernel is a potential candidate to be used as server runtime in
MFC and MEC.

2.3. Motivation

Despite the advantages of unikernel, there still exists some chal-
lenges when using unikernel in MEC or MFC as server runtime for
mobile code offloading. Firstly, unikernel is immutable disk image
specialized for a particular application (as shown in Fig. 3), which
means that we have to generate an unikernel for each application.
However, offloading scenarios often meet various applications, so
immutable unikernel is improper in code offloading scenarios, and
we need a new kind of unikernel each of which can serve a series
of applications. That is, we need to strengthen unikernel’s versa-
tility properly. Secondly, since the building process costs seconds
of time, it is inadvisable to compile offloaded application codes
into unikernel after offloading requests arrive. We must find a
method to unikernelize an application as soon as possible. Finally,
we need an Android LibOS to convert Android application codes
into unikernel, but existing LibOS used to create unikernel are
mainly based on traditional Linux, which does not provide support
for Android features. So our last challenge is to make unikernel
enable offloaded Android application codes.

To use unikernel as edge runtime for mobile code offloading, we
must address the above three challenges. In next section, we will
explain in detail how we address these issues.

3. System design
3.1. Overview

To use unikernel as our edge server runtime, we take a series
of measures to overcome the three challenges mentioned in moti-
vation. For the first challenge, we devise Rich-Unikernel, a kind of
more general purpose unikernel than conventional unikernel, so
that it does not need to be customized for each application. And
for the second challenge, we propose a method to immediately
unikernelize an application by pre-building an Android Unikernel
and dynamically linking the application into Android Unikernel
at runtime, where Android Unikernel is the instantiation of Rich-
Unikernel in the mobile offloading scenario. By this way, we can
eliminate the time-consuming compiling process after an offload-
ing request arrives, thus greatly reducing the response latency.
Finally, for the last challenge, we port a part of essential Android
libraries to pre-built Android Unikernel to support offloaded An-
droid application codes.
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Through above solutions, we finally achieve the goal of using
unikernel as runtime to handle various mobile offloading requests
on edge servers. We design our Android Unikernel based edge com-
puting platform for Android code offloading in MFC or MEC. Fig. 4
shows the overview of system architecture. Since there are already
many brilliant offloading frameworks (mentioned in Section 2), we
do not intend to talk too much about it. Our work mainly focus on
server runtime in edge devices. The runtime contains three parts:

Image Warehouse, Dispatcher and virtual servers (running Android
Unikernels). The Image Warehouse is where pre-built Android
Unikernels are stored. The Dispatcher is in charge of handling
mobile offloading requests, and starting up a virtual server for each
request. And the servers are virtual machines running Android
Unikernels fetched from Image Warehouse. Besides basic system
libraries and a JVM runtime provided by LibOS, Android Uniker-
nel contains two important parts, DynamicLinker and Libdroid.
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DynamicLinker is used to quickly unikernelize offloaded codes
without on-line compilation. Libdroid is responsible for providing
Android system call to JVM so that JVM can interpret those byte-
codes which invoke Android APIs.

In what follows, we will further explain the methods or compo-
nents used in Android Unikernel. We firstly explain the notion of
Rich-Unikernel, then we will explain how to unikernelize applica-
tions based on our pre-built Android Unikernels, and how to ensure
Android application codes to run correctly in Android Unikernel.

3.2. Rich-Unikernel

We define Rich-Unikernel as a kind of unikernel that is more
general than conventional unikernel. Conventional unikernel is
immutable and customized for each application. That is, once the
application changes, we have to recompile and reconstruct the
application into a new unikernel, even if the change is very small.
However, Rich-Unikernel is not specialized for a particular appli-
cation and it can be regarded as a base unikernel for a series of ap-
plications. All of the system libraries needed by these applications
have already been packaged into the base unikernel, so it is able to
run different applications (one application at a time).

Fig. 5 shows the difference between conventional unikernel
build-process and our Rich-Unikernel based build-process. In our
method, Rich-Unikernel is compiled offline and constructed by
LibOS. This process is similar to conventional unikernel build-
process (shown in Fig. 3), what different are the libraries. For
Rich-Unikernel, it contains the common libraries used by a series
of applications, while conventional unikernel only contains the
libraries used by a particular application. Besides, Rich-Unikernel
does not contain application codes at first, and it just has a tool
called Application Loader which is able to load application codes
into unikernel at runtime. When a Rich-Unikernel boots up, Appli-
cation Loader starts automatically and waits for offloading request.
Once an offloading request arrives, Application Loader links its
corresponding offloaded codes into base unikernel online, thus
the application is unikernelized without any compilation. Finally,
it uninstalls the application automatically after its running. By
this way, we do not have to recompile application codes and its
system libraries. Instead, we can pre-build some Rich-Unikernels
and dynamically change a Rich-Unikernel into the unikernel corre-
sponding to a particular application when a request arrives, which
significantly reduces response latency of our system.

Although Rich-Unikernel breaks the original principle of
unikernel such as immutable runtime and specialization for each
application, and introduces a little bigger size of image, we think
the design of Rich-Unikernel is valuable for the scenarios with

changing applications like mobile code offloading where a general
lightweight server runtime is needed and its response latency is of
importance.

3.3. Unikernelization

In this section, we describe how to unikernelize an application
by dynamically linking application to a pre-built Rich-Unikernel.
There exists many LibOS projects (such as OSv [14]), in which
application module is independent from other kernel modules, so
the fastest way to convert an application into its corresponding
unikernel is to replace the application module without changing
the other kernel modules, thus saving the time of recompiling
these modules.

So the problem becomes how to change the application module
while eliminating unnecessary recompiling works. Since our basic
LibOS contains a JVM runtime, we come up with Java Reflection,’
through which we can dynamically load applications at runtime.
However, before this operation, we must do a bytecode conversion
work in advance. Because the offloaded codes are transferred in
the forms of apk file or dex file, where dex is the format of Android
bytecode, this kind of bytecode always runs in Dalvik or ART (both
Dalvik and ART are Android version of the JVM but structurally
different from JVM), and JVM cannot load classes from these byte-
codes directly.

Therefore, we provide a tool named DynamicLinker, which is an
implementation of Application Loader. Fig. 6 shows the sketch map
of workflow in DynamicLinker. Firstly, it converts Android byte-
code (.dex) to Java bytecode (.jar) by using dex2jar,> before loading
Java classes into JVM. After the bytecode conversion process, we
can dynamically load the Java classes specified by the offloading
requests, and reconstruct the object instance according to the
Json string in request parameters. Finally, we get the specified
method that needs to be executed, and then invoke it through Java
Reflection. Thus we achieve the goal of dynamically loading and
running offloaded Android codes in pre-built Android Unikernels.

Although the bytecode conversion process is an extra step com-
pared to VM-based runtime and container-based runtime (where a
full Android operating system is prepared), it is still significant. On
one hand, this process is very fast, almost done in a few millisec-
onds. On the other hand, if we do not convert Android bytecodes
into Java bytecodes, we have to provide a Dalvik or ART VM in
Android Unikernel to run these codes. However, as we mentioned

1 https://docs.oracle.com/javase/tutorial/reflect/.
2 https://github.com/pxb1988/dex2jar.
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before, both Dalvik and ART are actually JVM for Android, and
they have a lot of functions in the same way as JVM. So it is too
redundant to add Dalvik or ART to Android Unikernel where JVM
already exists.

3.4. Libdroid: Extended Android libraries

Android Unikernel can load and verify Java classes from An-
droid bytecodes through DynamicLinker. However, the offloaded
codes may involve some classes and APIs of Android OS, such as
Bitmap and Logger, and JVM in Android Unikernel cannot correctly
interpret this part of bytecodes. That is, there should be an Android
library to support such offloaded codes in Android Unikernel.

To address the above issue, we port a series of necessary
Android system libraries to Android Unikernel as an individual
module called Libdroid. As shown in Fig. 7(a), Android system con-
tains four layers: Application, Framework, Libraries and Linux ker-
nel. Application layer mainly includes some Android applications,
framework layer mainly contains Android APIs for developing An-
droid applications, library layer is made up of all kinds of system
libraries and native C++ libraries, and kernel layer is based on Linux
kernel, including all kinds of Android hardware drivers. As shown
in Fig. 7(b), our refactoring work mainly focuses on the framework
layer and system library layer. The API layer of Libdroid corre-
sponds to the framework layer in Android system, including those
components which may be used by offloaded codes. These APIs
are mainly data structure relevant APIs, such as Bitmap, Bundle,
Matrix. And the library layer mainly contains low-level C++ native
libraries that are needed by upper APIs. Other system libraries,
such as libc, are already included by LibOS. We can reuse these
libraries by properly modifying them, so we do not have to port
this part of codes. As for the kernel layer, most Android drivers for
hardware devices, like Camera, USB, WIFI, Bluetooth and all kinds
of sensors, are useless in offloading scenarios. Since there is no such
device on the server side and codes that can be offloaded must not
depend on these devices. Particularly, Binder, which is the Android
interprocess communication mechanism, is also unnecessary for
Libdroid, because current unikernels do not support multiprocess
and all the offloaded codes run in a single process without any
interprocess communication. Therefore, we do not care the drivers
in kernel layer. As a result, Libdroid only contains needed API
frameworks and their low-level C++ implementations, leading to
its small size. Therefore, we can implement our Android Unikernel
without vastly increasing its image size.

After the library extension, what we need to do is to integrate
these libraries with LibOS so that we can package them into uniker-
nel through LibOS’s compiling system. During the execution of
offloaded codes, when JVM meets a function call to Android system
API, we change it to call the corresponding implementation in the
extended libraries inside the unikernel. So these codes can run
correctly in Android Unikernel.

3.5. Image warehouse

Since building an unikernel image needs seconds of time, in
order to ensure real-time response to mobile offloading requests,
we prepare some unikernel images in advance by the Image Ware-
house which is a repository storing pre-built Android Unikernel
images. Once an offloading request arrives, the Dispatcher can
immediately fetch an Android Unikernel from Image Warehouse
and start it up, thus saving the time of building the unikernel. And
when a server finishes handling its offloading tasks, the image used
by it will also be restored in Image Warehouse.

In case of a sudden spike in traffic occurs, Image Warehouse
is configured with the ability of auto-scaling. It can configure and
deploy copies of existing images to serve the demands. This auto-
scaling happens so quickly that an incoming connection can trigger
the creation of new server and the new server can then handle that
request immediately. When the demand dies down again, Image
Warehouse removes redundant images again so as to save limited
storage space. With this ability, we can be more elastic, raising and
lowering capacity to precisely meet demand and therefore only
spending what we actually need when we really need it.

4. Implementation

We implement the prototype of our Android Unikernel based
offloading system on a personal desktop which acts as edge
server. It is equipped with one two-core Intel(R) Core(TM) i5-
4590 3.30Ghz processor, 4 GB DRAM and 300 GB HDD, running
Ubuntu16.04 LTS.

In our implementation, we choose OSv® [14] as basic LibOS.
There are several open source LibOS projects,* such as MirageOS,
IncludOS, LING and so on. We finally choose OSv mainly because
of two reasons. Firstly, language compatibility issues. Since An-
droid is compatible with most Java APIs and our goal is to run
offloaded Android application codes in unikernel, by using OSv
which provides a JVM runtime, we can save a lot of work on han-
dling language compatibility problems that many other unikernels
may face [13,30]. Secondly, in OSv unikernel, application module
is completely detached from kernel modules, and this gives us
a chance to add or delete the application part without affecting
kernel parts, which provides the basis of dynamically linking appli-
cations and easily adding extended Android libraries to unikernel.
Based on the above two reasons, we think that OSv is the most
suitable LibOS to implement our Android Unikernel.

For the offloading framework, we choose the framework of
ThinkAir [5] and modify it according to our runtime. And the
extended Android libraries (Libdroid) are ported from Android-
x86 5.1-rc1. We consolidate OSv with these Android libraries and
modify its compiling system. When building an Android Unikernel,

3 http://osv.io/.
4 http://unikernel.org/projects/.
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Libdroid is also packaged into the disk image along with Dynami-
clinker. When an Android Unikernel boots up, the Dynamiclinker
in it runs automatically and links the application received from
dispatcher, and then runs the application codes in JVM.

Our project source code is publicly available online at https:
//github.com/cgcl-codes/Libdroid. Since our project is based on
OSv unikernel, you should firstly install OSv (see osv.io for detailed
steps), and then follow the steps to build Android Unikernel.

5. Evaluation
5.1. Experiment setup

In this section, we compare Android Unikernel based server
runtime with two other server runtimes:

e VM-based Server Runtime: This platform is the one that
ThinkAir [5] uses, which runs a full Android-x86 system in
VirtualBox. Each VM is equipped with 1 vCPU and 600 MB of
memory.

e Container-based Server Runtime: Rattrap [17], which runs
a virtual Android runtime in LXC (called Cloud Android
Container) by extending OS kernel with Android drivers on
demand.

And for the offloading workloads, we choose four typical
computation-intensive Android applications of different cate-
gories, which have been widely used in previous researches [6,22],
as our benchmark workloads.

e ChessGame: An interactive Android chess game based on
CuckooChess Engine, which ranks top 200 in Computer
Chess Rating Lists 40/40.° It represents those computational
offloading workloads with intensive network communica-
tions.

e FaceDetect: A face recognition application, based on Google
FaceDetector which is actually implemented by Java Native
Interface (JNI) written in C++. We choose this application
to represent the computation-intensive image processing
workloads along with file transfer.

e VirusScan: A virus scanning application which scans the
filesystem and checks each file with a virus database. It
represents those computation tasks with intensive I/O op-
erations.

e Linpack: The most popular benchmark for testing the
floating-point performance of computer systems, by using
gaussian elimination method to solve linear algebraic equa-
tions. Here we choose it as a delegate of purely computa-
tional workloads.

5 http://www.computerchess.org.uk/ccrl/4040/.

Table 1
System overhead comparison.

Type Memory Image Bootup energy
footprint size consumption

Android-x86 VM 516 MB 1.4 GB 334.2]

Cloud Android Container 128 MB 1.02 GB 494]

Android Unikernel 52 MB 70 MB 15.6]

All of these four applications are installed on a HuaWei Honor V9
smartphone, which acts as the offloading client. And the server
machine is what we mentioned in Section 4. Both client and server
are under the LAN WiFi network situation. Next, we compare
Android Unikernel with the other two server runtimes in four
aspects: system overhead, boot time, performance and energy
consumption.

5.2. System overhead

For system overhead, we mainly focus on memory footprint,
disk usage and bootup energy consumption, since these are the
most limited resources at edge servers compared to data centers.
Table 1 shows the overhead of three kinds of instance (Android-x86
VM, LXC-based Android Container and our Android Unikernel).

Memory footprint is an important indicator to evaluate a sys-
tem, especially in MFC and MEC scenarios where memory resource
is not as abundant as data centers. Less memory footprint means
that we can startup more instances at the same cost of physical
resources. In Table 1, the memory footprint is actually the minimal
memory size we need to specify before starting a VM or a con-
tainer. During our test, Android-x86 VM requires at least 516 MB
memory to boot up, and LXC-based Android Container requires at
least 128 MB. However, our Android Unikernel needs only 52 MB
to boot up, which is 10% of VM'’s footprint and less than half
of container’s footprint. Therefore, our Android Unikernel based
runtime has great advantage over conventional VM-based runtime
and container-based runtime in terms of memory overhead.

As for disk usage, it is measured by image size. VM contains a
whole kernel and runs a full operating system. As a result, it costs
too much disk space. For Rattrap, since it still runs a full Android
environment in Linux Container, its disk usage is still too huge
when booting up a container instance, while Rattrap does a lot
of work to share a plenty of common system libraries between
containers. However, instead of running a full operating system,
our Android Unikernel only contains a basic Java runtime and the
ported Android libraries needed by offloaded applications, leaving
out most needless kernel codes. As aresult, it cost only about 70 MB
disk space, saving more than 90% disk space compared to Android
VM and Android container. Besides, this advantage gives us chance
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Fig. 8. Boot time comparison.

to quickly transmit and deploy unikernel images between edge
severs through network.

Bootup energy consumption is the average quantity of energy
used by each instance to bootup. We use the method in [31]
to evaluate the energy consumption of each instance. Here we
only consider the energy consumption of bootup, and the energy
consumption during applications’ execution is highly related to
application workloads, which we will describe later. From the table
we can see our Android Unikernel based runtime is competitive
in energy saving. VM costs a lot of energy mainly because of its
huge image and long bootup-duration with I/O operations to load
disk image. Container performs much better since it shares many
resources with host OS and bootup faster. Our Android Unikernel,
due to its small image and fast boot, costs the least energy.

5.3. Boot time

We have already know from Table 1 that our Android Unikernel
is much smaller than Android-x86 VM image and Android Con-
tainer, which means it can be loaded from disk in less time. As a re-
sult, it can be booted up very quickly. Fig. 8 compares average boot
time of Android Unikernel against Android Container and Android-
x86 VM, where both unikernel image and Android-x86 VM image
are booted in KVM. In this figure, the y-coordinate represents the
boot time of each instance, where the boot time is measured from
startup to the point when runtime environments finish startup and
be connected to the Dispatcher. And the x-coordinate represents
the maximal memory size that can be used by each instance, which
is specified manually through hypervisor or Cgroup (for Android
Container) before startup.

As shown in Fig. 8, in terms of boot time, Android-x86 VM is not
competitive at all, because it takes tens of seconds to startup. As for
Android container, it reduces boot time to about 2 s by introducing
0S-level virtualization, but it is still not fast enough to provide just-
in-time services. By contrast, an Android Unikernel instance takes
only less than 1 s to boot up. Besides, its startup speed is the least
affected as memory size increases from 64 MB to 2048 MB. Such
fast boot time is sufficient to ensure the real-time response to most
offloading requests in MFC and MEC scenarios.

5.4. Performance
In this section, we compare the performance of the benchmark

applications in the cases of Android Unikernel and other two tra-
ditional runtimes. Fig. 9 shows the average performance of three

different runtimes when addressing different workloads. We com-
pare applications’ execution time of running locally at smartphone
(Local Execution) to the execution times of offloading execution
with three different server runtimes. When using offloading exe-
cution, the application’s execution time is divided into three parts:
Data Transfer, Runtime Preparation and Execution Duration, where
Data Transfer represents the time of transferring codes, offloading
parameters and necessary files, Runtime Preparation represents the
average boot time of VM or container, and Execution Duration is the
actual code-execution time. For ChessGame, Execution Duration is
the average time of searching each step; for FaceDetect, it is the
average time of identifying the faces in a picture; for VirusScan,
it represents the time of scanning files and checking if any virus
exists; and for Linpack, it is the average time of solving a set of
linear equations.

It is worth mentioning that only the first offloading request of
each TCP connection has to face a cold start of VM or container.
The VM or container will keep alive until the corresponding con-
nection be released. Therefore, we draw two series of histogram for
each server runtime. The first histogram (I) represents the average
performance of the first request, and the rest is represented by
the second histogram (II). From Fig. 9, we can easily gain three
observations:

e In terms of response performance, our Android Unikernel
based runtime is outstanding under both cold start and non-
cold start situations, with average 60% speed-up over local
execution.

e When addressing short-time computation tasks, such as
ChessGame and FaceDetect, VM may performs even worse
than local execution due to it long boot-up delay.

e Besides the boot time, Android Unikernel is also better at
Execution Duration (as marked in the pink area in the fig-
ure). As codes in unikernel run in the same address space
without overhead of context switching and system call, code
execution is more efficient.

All in all, Android Unikernel based edge runtime is more
efficient and suitable than traditional VM-based runtime and
container-based runtime to be used under MFC and MEC scenarios
to handle offloading requests.

5.5. Energy consumption of different workloads

Fig. 10 compares the energy consumption of the four bench-
mark application workloads in different runtimes. For Chessgame,
y-coordinate represents the average energy consumed to search
each step; for FaceDetect, y-coordinate represents the average en-
ergy consumption of identifying the faces in a picture; for VirusS-
can, y-coordinate is the average energy consumption to scan files
and check if any virus exists; and for Linpack, it is the average
energy consumption of solving a set linear equations.

From Fig. 10, we can easily draw a conclusion that our Android
Unikernel is more energy-efficient than the other two runtimes, es-
pecially when addressing computational tasks accompanied with
intensive 1/O operations, such as VirusScan, which has more 1/O
system calls. In VM and container, system calls are all accompanied
with system overhead. However, codes in unikernel run in the
same address space without system call and overhead of context
switching, so it costs much less energy.

6. Conclusion and future work

In this paper, we present Android Unikernel, a lightweight
runtime designed for mobile computation offloading under MFC
and MEC scenarios. By pre-building base Android Unikernel and
running offloaded mobile codes in them, the proposed runtime
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Fig. 10. Energy consumption of different workloads.

cannot only effectively reduce response latency, but also reduce
resource overhead. Our evaluation shows that our Android Uniker-
nel performs much better than traditional VM based runtime and
container-based runtime in boot time, system overhead (memory
footprint, disk usage, bootup energy consumption) and energy
consumption, which makes Android Unikernel suitable for Mobile

Fog Computing and Mobile Edge Computing in handling real-time
offloading tasks.

Although our Android Unikernel has many advantages com-
pared to virtual machine and container, limitations still exist. One
of the most obvious limitation is multi-process applications are not
allowed, which is the inherent limitation of unikernels. Therefore,
those codes that need to fork new process cannot be offloaded
and run in Android Unikernel. In the future, We plan to support
multi-process applications according to the method mentioned
in [32]. Besides, our Android Unikernel is just a specific instance
of Rich-Unikernel in the scenario of mobile code offloading. But in
our opinion, the idea of Rich-Unikernel is also applicable in other
scenarios (like Internet of Things (IoT), mobile app testing) where
a more general unikernel is needed. So our next future work is to
broaden the idea of Rich-Unikernel in more scenarios, instead of
limiting its usage to mobile code offloading.
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