
Characterizing and Optimizing Kernel Resource Isolation for Containers

Kun Wanga, Song Wua,∗, Kun Suob, Yijie Liua, Hang Huanga, Zhuo Huanga, Hai Jina

aNational Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
bCollege of Computing and Software Engineering, Kennesaw State University, Kennesaw, GA 30144, USA

Abstract

Container-based virtualization has become increasingly popular as a lightweight alternative to hypervisor-based virtualization in
cloud computing. Isolation is a fundamental property for consistent and reliable performance for cloud environment. However,
the isolation between containers is much weaker than virtual machines as containers on the same host share one underlying host
kernel. Existing works have mainly focused on the isolation problems at physical resources (e.g. CPU) level and almost not
discussed with kernel resources (e.g. lock). In this paper, we perform a study to quantify kernel resource isolation for containers
with a new microbenchmark, KRIBench. Then we describe kernel resource isolation issues and identify several kernel resources
competition behind the poor isolation. Furthermore, we design and implement Valve, a general and flexible system that reduces
kernel resources competition through limiting usage of system calls. Valve adopts Pareto-based container identification to locate
misbehaving containers and supply-demand model to manage usage of system calls. The evaluation results demonstrate that our
system can effectively enhance the kernel resource isolation for containers with negligible performance overhead.

Keywords: container, isolation, kernel resource, system call, performance interference, cloud computing

1. Introduction

1.1. Motivation
In recent years, due to its high performance, low footprint,

simplicity of design and natural support for the micro-service
and serverless computing [1], container-based virtualization,
such as Docker [2], is becoming increasingly popular in cloud
computing and a lightweight alternative to conventional hypervisor-
based virtualization. Unlike traditional virtualization, container-
based virtualization shares the same underlying host Operat-
ing System (OS) without Virtual Machine Monitor (VMM) and
Guest OS. This fundamental difference helps containers elim-
inate most of the overhead that virtual machines (VM) suf-
fer from. Recent studies [3, 4, 5] have shown that containers
achieved near-native performance on CPU, memory and I/O in
various workloads.

Isolation is a fundamental property of containers. Unlike
VMs, which attain isolation through VMM and Guest OS, con-
tainers are isolated from each other through various kernel iso-
lation primitives, such as Linux namespaces [6], control groups
(cgroups) [7] and seccomp [8]. Namespaces provide containers
with separate views of the file systems, IPC, PID, etc. Cgroups
enable resource isolation by allocating, metering and enforc-
ing resource usage, such as CPU, memory, and disk. Seccomp
checks system call to protect the OS kernel against untrusted
containers. However, these isolation primitives cannot achieve
as strong isolation [4, 9, 10] as VMs.

∗Corresponding author
Email address: wusong@hust.edu.cn (Song Wu)

Weak isolation is a key vulnerability that prevents contain-
ers from being widely accepted in cloud computing. Com-
pared to VMs, it may introduce serious problems such as un-
stable performance [11, 12], system crash [13, 14] and secu-
rity issue [15, 16]. To address the problem, researchers fo-
cus on wrapping each container within a dedicated OS ker-
nel [17, 18, 19, 20]. However, these dedicated kernels incur ad-
ditional significant performance overhead for containerized ap-
plications and services [19]. Another trend to enhance isolation
is to optimize existing kernel isolation primitives [21, 22, 12]
for a specific issue. While these works reserve high efficiency
and flexibility of containers, they only realize partial isolation.
For example, existing kernel isolation primitives and their op-
timizations do not isolate kernel resources such as file descrip-
tors, locks and semaphores.

Meanwhile, there is an urgent need to enhance kernel re-
source isolation for containers. As multiple containers access
the shared kernel concurrently through system calls, it may in-
troduce serious kernel resource competition and significantly
decrease the overall system performance. Specifically, as exist-
ing kernel isolation primitives cannot guarantee the reasonable
allocation of kernel resources, one (misbehaving) container can
maliciously occupy all the kernel resources decreasing the per-
formance of other (well-behaved) containers. Although real-
world applications generally do not occupy so many kernel re-
sources, some malicious operations (e.g.looping system calls)
can cause serious kernel resource competition easily. There-
fore, the problem is realistic and urgent to be addressed.

However, isolating all kernel resources has lots of challenges.

Preprint submitted to Future Generation Computer Systems March 6, 2023

First, as kernel resources are diverse and their design perspec-
tives as well as details are completely different, isolating all
kernel resources requires substantial kernel modifications and
engineering effort. Second, there lacks precise and quantitative
analysis of varying kernel resources, hence it is challenging to
isolate kernel resources comprehensively.

1.2. Contributions
Characterization. This paper studies the research question

of the necessity to enhance kernel resource isolation for con-
tainerized applications. As the system call interface is the main
gateway for containers to access underlying kernel resources
and system calls are simpler to observe and measure than ker-
nel resources, this work investigates kernel resource isolation
through system call control and management. Specifically, we
introduce KRIBench (Kernel Resource Isolation Benchmark), a
microbenchmark suite that is used to quantify kernel resource
isolation. KRIBench includes 14 system calls which are col-
lected from several representative containerized applications.
We measure the performance degradation of a well-behaved
container when deployed with a misbehaving container, which
stresses it by looping the 14 system calls. The kernel resource
isolation is quantified by such performance degradation, details
of which can be found in Section 2.1.

Our study finds that all containerized applications’ perfor-
mance is highly degraded when co-locating with misbehaving
containers. Many of the slowdowns are substantial: 62% of
the slowdowns are by at least 40% and 37% of them are by
at least 50%. In the worst scenario, the open system call can
even cause 100% performance degradation. We further drill
down on the above isolation issues and reveal that the major
root cause is competition for kernel resources. These kernel
resources fall into two categories: consumable resource and
exclusive resource. One container can exhaust consumable re-
source, such as index node (inode) and file descriptor (fd), and
significantly slow down other containers. Exclusive resource,
such as locks and semaphores, can be preempted maliciously by
one container that results in performance degradation of other
containers on the same host kernel.

Optimization. Based on the above characterization, we de-
sign Valve to enhance kernel resource isolation for containers.
The key idea is to precisely control the kernel resource com-
petition and effectively manage usage of system calls for dif-
ferent containers. First, Valve identifies misbehaving contain-
ers using a model named Pareto-based Container Identifica-
tion, which monitors the system call usage of containers and
employs Pareto distribution to compute an optimal threshold
that separates the well-behaved and misbehaving containers.
After identifying misbehaving containers, we propose supply-
demand model in Valve to manage usage of system calls. This
model employs supply-driven resource allocation for misbehav-
ing containers to limit usage of system calls and enhance isola-
tion. In contrast, well-behaved containers invoke system calls
on a demand-driven (best-effort) basis to ensure good perfor-
mance.

Evaluation. We evaluate Valve in terms of container identi-
fication accuracy, isolation improvement and performance over-

head through a range of benchmarks. Our results show that
the accuracy of misbehaving container identification can reach
98.9%, which demonstrates the effectiveness of Pareto-based
Container Identification. In addition, Valve can significantly
improve kernel resource isolation (by a maximum of 98% and
an average of 37.7%) with negligible overall performance over-
head (by a maximum of 2.5% and an average of 1.3%).

1.3. Organization

The rest of this paper is organized as follows: Section 2
introduces the kernel resource isolation issues and root causes
we explored. Section 3 and Section 4 present the design and
implementation of Valve that we proposed to enhance kernel
resource isolation for containers. Section 5 discusses evalua-
tion results and Section 6 reviews the related work. Section 7
concludes this paper.

2. Characteristic Study

In this section, we first describe KRIBench and the method-
ology we use to drive our analysis and illustrate the weak iso-
lation of container-based virtualization. Then, we analyze the
container performance degradation and reveal that such the is-
sue is attributed to abuse of consumable resource and exclusive
resource.

2.1. Isolation Measurements

KRIBench. System call interface is the main gateway for
containers to access underlying shared kernel resources. So
our experiments focus on exploring kernel resource isolation
through system calls. Inspired from analysis of Linux’s perfor-
mance [23], we only study system calls that are frequently exer-
cised in container environments as these system calls are most
likely to impact the performance of containerized applications
and services.

To determine which system calls should be analyzed, we
select a set of representative containerized applications whose
images are mostly downloaded on DockerHub. Table 1 lists
the applications and the workloads we select. These container-
ized applications include several database applications, such as
Couchbase, a NoSQL database, PostgreSQL, a relational database,
and Redis, a key-value store. In addition, we also selected three
popular web server application, Nginx, Httpd and Tomcat, and
two message systems, RabbitMQ and NATS. Also, we vary the
workload sizes to take different usage scenarios into account.

In order to measure CPU time and the execution frequency
of each system call invoked by the workloads, we adopt strace
for such metrics. As listed in Table 2, those system calls which
consume the most time across all workloads are selected into
KRIBench. For each benchmark, we launch a loop process that
constantly executes the system call to simulate misbehaving
containers and interfere with well-behaved containers.

Methodology. We used Docker 18.06 on Ubuntu 16.04 to
deploy two containers on a server, which was equipped with
a 20-core Intel Xeon E5-2650 CPU, 128GB memory and 2TB
HDD storage. Similar to cloud production environment, the

2

Table 1: Representative applications and workloads used to choose system calls and test isolation, and each applicaiton’s performance metric collected in the test.
Application Workload Main performance metric

Couchbase, MongoDB, Memcached, Aerospike, Cassandra YCSB with 5K, 10K and 50K operations operations per second
PostgreSQL pgbench with 1K, 2K and 5K transactions transactions per second
Redis redis-benchmark with 10K, 50K and 100K requests requests per second
MySQL, MariaDB mysqllap with 50K, 100K and 500K queries average response time
InfluxDB influx-stress with 1K, 5K, 25K requests requests per second
Nginx, Httpd, Tomcat ApacheBench with 10K, 25K and 50K requests requests per second
RabbitMQ rabbitmq-perf-test with 1, 10, 50 producers and consumers average sending/receiving rate
NATS nats-bench with 1K, 2k and 5k messages messages per second

Table 2: Description of KRIBench tests.
Test Description

open, close Loops constantly opening or closing new files. To reduce the impact of competition for physical resources (e.g.
disk space), these new files are empty.

read, write, stat Loops reading 1 byte from, writing 1 byte to or returning information of a file.
fork Loops creating new child processes. We killed the child process as soon as it was created, to release physical

resources it occupied.
mmap, munmap, mprotect Loops mapping 1 page from a file into memeory, or unmapping 1 page into a file, or changing access protections

for a memroy page.
sendto, recvfrom Testing process loops sending or receiving a message to or from an assisting process with TCP connection.

Two processes run on different machines to reduce impact of assisting process. And the message size is 1 byte.
select, poll, epoll Loops performing select, poll or epoll on a socket file descriptor which is ready on.

container execution platform was configured with multi-tenants.
In order to explore interference from OS kernel other than phys-
ical resources, cgroups, namespaces and seccomp were enabled
to isolate containers. Each container was set as non-privileged,
configured with limited hardware resources, and pinned to spe-
cific cores. The container was deployed with Docker’s default
seccomp profile, which allows 358 system calls to the kernel.
We assumed that the host environment was trusted, but misbe-
having containers can maliciously compete for shared resources,
slowing down other well-behaved containers.

The primary goal is to evaluate whether one container can
be affected by other misbehaving containers and what the im-
pact would be. The workflow consists of two steps: First, one
of the representative workloads ran alone inside one container
as well-behaved, while the other remained idle and introduced
non-interference between two containers. The performance met-
ric listed in Table 1 of the well-behaved container was collected
and used as a baseline (denoted as per f ormancebaseline). Sec-
ond, the same workload ran inside a well-behaved container
while a misbehaving container ran simultaneously on the same
host. The process in the misbehaving container repeatedly ex-
ecuted system calls in KRIBench to produce stress and perfor-
mance interference. Then, the performance metric of the well-
behaving container (denoted as per f ormancemisbehaving) was col-
lected again. The isolation (denoted as ISO, smaller is better),
which was quantified by the difference of the performance met-
rics collected from the above two steps, is denoted as follows:

IS O =
(
1 −

per f ormancemisbehaving

per f ormancebaseline

)
× 100% (1)

Results. Fig. 1 illustrates the kernel resource isolation of
each test across all workloads. The darker the red color is, the
worse the isolation would be. As shown in the results, 97% of

%kernel resource isolation (ISO) of docker container

Figure 1: Results of kernel resource isolation for containers(lower is better).

tests incur significant performance degradation. More specifi-
cally, 62% of the results encounter slow down by at least 40%,
and 37% of them are reduced by at least 50%. For exam-
ple, Nginx’s performance is degraded by 67% when suffering
from select stress in misbehaving container. When looping
open system call in misbehaving container, as shown in 1st

row of Fig. 1, well-behaved containers cannot even start up.
These results strongly suggest that the kernel resource isolation
of container-based virtualization is vulnerable and containers
would suffer from unstable performance. In what follows, we
further analyze and explain root causes behind the performance
degradation.

2.2. Root Causes

The isolation issues mentioned above are mainly caused by
concurrent accesses to shared kernel resources. Generally, con-
tainerized applications need to access kernel resources to com-

3

Table 3: Root causes of Linux container’s kernel resource isolation issues.
System calls Root causes Description Slowdown

Consumable resource: when this kind of resource is used up, other containers will be failed to request the resource.

open
fd

Firstly, allocates a file descriptor to an opened file, consuming fd
resources. 100%

inode
Secondly, allocates an index node to a new file, consuming inode
resources. 100%

mmap
vitual memory

area
Alocates memory space, consuming viual memory area resources. 29.3%

epoll epoll user watch Inits epoll, consuming user watch resources. 42.1%

Exclusive resource: concurrent use of shared exclusive resource causes waiting time.
close, read,
write, stat

mutex lock

(or down write)a

Acquires a mutex lock (or read/write semaphore)a to execute file
operations. 60.69%

fork write lock irq Acquires a reader-writer lock to update task list. 54.92%
mmap, mprotect,

munmap
down write Acquires a reader-writer semaphore to access memory. 38.05%

sendto lock sock nested Acquires a spinlock to use socket. 47.12%

recvfrom
begin current

label crit section
Enters critical section to execute apparmor profile. 52.69%

select, poll rcu read lock Acquires a reader-writer lock to search fd list. 33.64%

epoll
spin lock irqsave

(or write lock irq)a Acquires a spinlock(or read/write lock)a to search events. 19.84%

a To observe whether the root causes change as kernel version is updated, we analyzed two generations of Linux kernel, 4.4.15 and 5.6.0. The contents in brackets
are based on Linux kernel 5.6.0 and others are based on Linux kernel 4.4.15.

plete system calls. When multiple containers access shared ker-
nel resources concurrently, it will introduce intensifying com-
petition and overall system performance will significantly de-
crease due to poor isolation. Table 3 presents the root causes
of each KRIBench test and the maximal slowdown of container
application workloads. Based on our observation, kernel re-
sources can be classified into two categories: consumable re-
source and exclusive resource. Consumable resource is shared
among containers on one host. If it is exhausted by one con-
tainer, other containers fail to request, and dramatic performance
slowdown might happen. Exclusive resource can only be used
by a single container each time, which would further prolong
the waiting time and increase the overall system overhead.

2.2.1. Consumable Resource
Similar as physical resources (e.g. CPU, memory), there

is a fixed total amount of consumable resources in the kernel,
which are not isolated by existing cgroups mechanism. Un-
fair sharing of consumable resources can cause serious isola-
tion problems. Specifically, one misbehaving container could
greatly occupy a large amount of consumable resources, signif-
icantly slowing down or even suspending other well-behaved
containers. For example, open system call can exhaust inode
and fd resource, which are both limited in the OS kernel. Each
file has an inode, which the filesystem uses to identify the file.
An inode contains metadata about a file and is stored on disk.
Therefore, the total amount of inode depends on the size of disk.
Similarly, a fd identifies an opened file and its total amount de-
pends on system memory size.

As depicted in Fig. 2, file operation such as open consumes

Figure 2: An example of consumable resource: competition for fd and inode
causes isolation issues.

inode and fd in the kernel. However, when one misbehaving
container competitively and continuously executes open sys-
tem call, the host inode or fd resource will be quickly exhausted.
In this case, other containers on the same host would fail to re-
quest for inode or fd resource, and cannot perform file oper-
ations anymore. As a consequence, the performance of well-
behaved containers will be inevitably degraded.

It is possible to set inode and fd limits per user or process
with existing kernel primitives (e.g. Linux ulimit). These
limits can prevent inode and fd resources being exhausted, but
cannot be used to deal with container isolation. The reasons are
as follows: (1) We can set the maximum resources usage for a
user, not for a container, so containers created by the same user
will still share the available resources. (2) Generally, there are
a group of processes running in a single container, so set limits
per process is obviously not suitable for container isolation.

We further detailedly analyzed the performance interference
of inode and fd competition. In this experiment, we used Linux
kernel, and set inode and fd limits to the maximums with ulimit.

4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

100

200

300

400

500

600

Th
ro

ug
hp

ut
 o

f o
pe

ni
ng

 fi
le

s(
op

s/
s)

Time (s)

 open 0 files
 open 5000 files
 open 10000 files
 loop opening files

(a) Results of inode competition

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 o

f o
pe

ni
ng

 fi
le

s(
op

s/
s)

Time (s)

 open 0 files
 open 5000 files
 open 10000 files
 loop opening files

(b) Results of fd competition

Figure 3: Experimental results of inode and fd competition analysis.

We ran filebench [24] benchmark, which is widely used to
evaluate the performance of file system operations, including
copying files, creating files or opening files in well-behaved
container. We collected the throughput of opening files every
5 seconds. In the misbehaving container, we opened a different
number of files to vary degrees of resource competition.

Fig. 3(a) shows the performance of the well-behaved con-
tainer under different degrees of inode competition. When we
opened 0 files in the misbehaving container (no resource com-
petition), the performance dropped sharply from 25 seconds.
This suggests that the host inode resource is exhausted by the
well-behaved container in 25 seconds. As the number of opened
files increased (competition increases), the throughput dropped
earlier, and the average throughput was degraded. This indi-
cates the poor isolation of containers and the inode competition
would severely impact the overall performance. Similar results
of fd competition analysis can be observed from Fig. 3(b).

2.2.2. Exclusive Resource
Different from consumable resource, exclusive resource can

only be used by a single container each time, which might be
more dangerously used by misbehaving containers. For in-
stance, current operating systems (e.g. Linux) normally deploy
a unified task list to provide reliable and centralized processes
management. Task list is both updated and searched in host ker-
nel. When the list is updated, it is essential that no other threads
concurrently write to or read from the list. Writing shared re-
source demands mutual exclusion. When the list is searched or
read, it is also important that no tasks write to the list. There-
fore, task list is protected by a reader-writer spin lock. One or
more readers can concurrently hold the reader lock. The writer
lock, conversely, can be held by at most one writer with no con-
current readers [25]. Due to the shared host, multiple containers
share a single task list lock.

As shown in Fig. 4, the shared lock introduces serious com-
petition and one container, which is creating a child process by
invoking system call fork, would hold the lock to update task
list. When one misbehaving container maliciously keeps fork-
ing, the well-behaved containers have to wait for task list lock
to update the list. Therefore, performance of well-behaved con-
tainers will be greatly reduced due to such exclusive resource
competition.

Here we used concrete examples to demonstrate the perfor-
mance interference of task list lock competition. In this experi-

Figure 4: An example of exclusive resource: competition for task list lock
causes isolation issues.

Figure 5: Architecture of hierarchical task list.

ment, we compared the performance degradation of two cases:
(1) with task list lock competition, and (2) without such compe-
tition. In order to completely eliminate the competition of task
list lock, we designed and implemented a hierarchical task list,
which makes containers running on the same host no longer
share the task list lock. As shown in Fig. 5, the hierarchical
task list has a two-level hierarchy, where a public task list is
distributed across containers while every container used a pri-
vate task list.

The public task list serves for two purposes. First, it is used
to manage host processes that do not belong to any containers.
Therefore, our hierarchical task list design has no impact on
these host processes. Second, the init process of each con-
tainer is organized into the public task list. In this way, host
kernel would not lose control of processes running in contain-
ers. The private task list in each container is designed to manage
processes running in the same container. As the init process
of a container is placed into list head, host kernel can manage
all processes in the container through init process organized
into the public task list. When one container updates the task
list, it only needs to hold its own private task list lock without
suffering from lock waiting caused by contention of the public
task list lock.

Same experiments were performed on native task list and
hierarchical task list. We created child processes by system call
fork in a well-behaved container. Then, we collected the com-
pletion time of the program to calculate the number of opera-
tions executed per second. We also ran Nginx as a macrobench-
mark in the well-behaved container. In the misbehaving con-
tainer, we looped many process creation instructions to stress
the well-behaved container. In addition, to mitigate the impact
of competition for resources other than the lock, we released
the resources by killing the child process once it was created.

Fig. 6 illustrates the performance comparison between two
task lists. As shown in Fig. 6(a), the throughput of fork de-
grades by 63.41% due to the misbehaving container when they
run with native task list. In comparison, the performance degra-

5

0

2000

4000

6000

8000

10000

12000

Pr
oc

es
s c

re
at

io
n

th
ro

ug
hp

ut
(o

ps
/s) no stress stress

Native task list Hierarchical task list

(a) Results of fork

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Th
ro

ug
hp

ut
 (r

eq
ue

sts
s/s

)

 no stress stress

Hierarchical task listNative task list

(b) Results of Nginx

Figure 6: The performance comparison between native task list and hierarchical
task list.

dation of hierarchical task list is negligible (4.78%). Such per-
formance improvement is due to the fact that we eliminate task
list lock competition using hierarchical task list. Similar results
of Nginx can also be observed from Fig. 6(b). The performance
degradation of the two cases is 41.08% and 4.52%, respectively.
The above results clearly suggest that the poor isolation among
containers and the task list lock competition could introduce
significant performance degradation.

2.3. Observation
To summarize, we have made the following observations:
Observation 1: Competition for kernel resource can cause

significant performance degradation and isolation issues. Our
study shows that well-behaved containers can be slowed down
by misbehaving containers due to competition for kernel re-
sources, which suggests necessity of kernel resource isolation.

Observation 2: Kernel resources that cause isolation is-
sues fall into two categories: consumable resource and exclu-
sive resource. Consumable resource can be exhausted and ex-
clusive resource can be preempted, so other containers may be
affected when they request these resources. This sheds light on
our solution and corresponding optimization.

3. Design

Based on the above observations, we design Valve for con-
tainers to reduce kernel resources competition and enhance ker-
nel resources isolation. In this section, we first provide a system
overview and then describe two key techniques of our design in
detail.

3.1. Overview
Key idea. Normally, it is extremely difficult to a general de-

sign to reduce competition of kernel resources. There are two
reasons: First, kernel resources are diverse and their design per-
spectives and details are completely different. So a dedicated
design (e.g. the hierarchical task list described in Section 2.2.2)
works only for one kernel resource not for others. Second, with
updates of kernel version, the resource involved in one system
call might change. For instance, the cause of write system
call, as shown in Table 3, is mutex lock in Linux kernel 4.4.15
and down write in Linux kernel 5.6, respectively. To address
the above challenges, we propose to limit usage of system calls
for misbehaving containers in Valve. Based on the fact that the

Figure 7: Overview of Valve.

amount of kernel resources used by a container mainly depends
on the times or rate of system calls called by the container, it
is effective to control usage of system calls. This approach has
two major advantages: First, it has great generality, which can
be applied to all system calls and kernel resources without sys-
tem modification. Second, it provides high flexibility for end
users to enable or disable any system calls and kernel resources
limit on purpose.

Architecture. Fig. 7 provides an overview of the interac-
tion between the various components in Valve. Resource infor-
mation center is designed to measure the kernel statistics and
account for the status of system calls for each container. The
status includes current usage, historical usage, maximal usage,
etc. When one container requests kernel resource through a
system call, container identifier intercepts this system call and
checks whether the container is misbehaving or well-behaved
based on the status of the system call. Resource manager guar-
antees resource fair shares among containers. It limits usage
of system calls for misbehaving containers to enforce isolation
and satisfies the system calls needs of well-behaved containers
to reduce the performance overhead.

Challenges. Here Valve faces two main challenges: First,
as there are a large amount of containers running on a same
host, how to effectively and accurately check whether one con-
tainer is misbehaving or not? Second, after we locate misbe-
having containers, how to limit resource usage of them and re-
duce the impact on well-behaved containers? To address the
first challenge, Valve proposes a key technique called Pareto-
based container identification. We assume system calls’ usage
of containers forms a Pareto distribution [26] with a high alpha
number. In other words, most containers are well-behaved and
have a small amount of usage of system calls. However, a few
containers (e.g., <5%) are misbehaving and invoke too many
system calls. Based on Pareto distribution, Valve monitors the
system calls’ usage distribution of current containers running
on one host and computes a roughly optimal threshold that sep-
arates the well-behaved and misbehaving ranges. To address
the second challenge, Valve provides a supply-demand model
to manage resources. In this model, supply-driven resource al-
location is employed for misbehaving containers to limit usage
of system calls and enhance isolation. In contrast, well-behaved
containers invoke system calls on a demand-driven (best-effort)

6

Table 4: Maximum increase ratio of system calls with various containerized applications.
System calls close read write stat fork mmap munmap mprotect send recv select poll epoll

Increase ratio 31% 32% 34% 33% 28% 31% 30% 25% 30% 29% 27% 29% 32%

(a) System call usage distribution
and inflection point (IP).

(b) Classify containers into well-
behaved, doubtful and misbehaving

Figure 8: System call usage CDF.

basis to ensure good performance.

3.2. Pareto-based Container Identification

Identification. As our idea is to limit the usage of system
calls for misbehaving containers, they must be identified first
before further limit actions. The major characteristic of misbe-
having containers is that they consume a large amount of ker-
nel resources and invoke too many system calls. Therefore, we
check whether a container is misbehaving according to its usage
of system calls. A simple threshold-based method is effective.
Specifically, a container is classified as well-behaved, if its sys-
tem call usage is less than a threshold value. Otherwise, it is
considered misbehaving.

However, the main challenge here is how to find an opti-
mal threshold to separate the well-behaved and misbehaving
ranges. If we set the threshold too low, there might exist too
many limited containers, including those that are supposed to
be well-behaved, which incurs unnecessary performance loss.
On the other hand, setting a too high threshold will make some
misbehaving containers treated as well-behaved, which reduces
the limitation scope and fails to enhance the isolation.

Based on the fact that there are far more well-behaved con-
tainers than misbehaving containers in actual cloud environ-
ment, we assume that system calls’ usage of containers forms
a Pareto distribution with a high alpha number. As an exam-
ple shown in Fig. 8(a), 95% of containers likely invoke a small
amount of system calls, but the other 5% of containers invoke
too many system calls. Such a Pareto distribution clearly con-
trasts the well-behaved and misbehaving regions.

To separate the two regions, we need to find the best in-
flection point (IP) for maximizing the isolation enhancement.
There are different methods to find an optimal IP. We pick a
value where the slope of the CDF is one (likely being misbe-
having) as our IP. This method has been proven effectiveness in
addressing diverse problems [27]. Unlike LinnOS [27] which
reports the IP based on the measured latency, we report our IP
by counting the number of system calls. The reasons are as
follows. First, we can not identify containers based on latency

or actual execution time because the performance of both mis-
behaving containers and well-behaved containers may be de-
graded when misbehaving containers appear. Second, based on
the analysis in Section 2, we find that the major characteristic
of misbehaving containers is invoking a large number of system
calls. Consequently, we can locate an optimal threshold based
on Pareto distribution. For example, if the CDF’s 45-degree
slope is at y=p95 and x=100, then the threshold is set as 100.

Improving accuracy. Unfortunately, using one constant
threshold to determine whether a container is misbehaving or
not might be inaccurate. The system calls’ usage distribution of
containerized applications changes dynamically over the time.
Using the same threshold calculated 10 minutes ago inevitably
introduces unfaithful identification. In addition, the two-class
approach (well-behaved or misbehaving) based on a constant
threshold may also output different identification for highly sim-
ilar containers. For instance, two containers whose usage of
system calls are 99 and 101, will be identified as well-behaved
and misbehaving, respectively, if the threshold is set as 100.

To achieve high accuracy, we first periodically calculate
threshold according to the system calls’ usage of a container in
real time. High accuracy depends on the calculating period.But
there is a trade-off between accuracy and performance. Specif-
ically, the more frequently threshold is updated, the more accu-
rate it is for current containers. However, too frequent updat-
ing can also contribute to unnecessary performance overhead.
In our current design, the period is not changed automatically
at runtime and Valve allows users to change the period man-
ually when and if necessary. For example, if users need high
accuracy, they can reduce the period. And if users want low
overhead, they can increase the period. We discuss and evalu-
ate some possible trade-offs between accuracy and performance
in Section 5.1 to get the “best” calculating period in Valve and
demonstrate the effectiveness of the period for improving ac-
curacy. Using an analytical model (e.g. compromise program-
ming) to formulate the trade-off and determine the best period
value is under consideration and left as future work. The thresh-
old may vary with the application and the capacity (e.g. mem-
ory size and the number of cores), but the Pareto-based model
and the period, which are used to determine the best threshold
value, are neither application-dependent nor affected by the ca-
pacity.

To deploy Valve, we do not need to generate the system call
usage distribution and inflection point (IP) for different applica-
tions with different host (or container) configuration. Because
the system call usage distribution and IP are generated without
any prior knowledge of the application characteristics and host
(or container) configuration. Hence, Valve is easy to configure
and deploy. We empirically set the IP to 95% at system startup.
As the system runs, the distribution and IP are updated periodi-
cally in a live fashion.

7

Second, instead of two types, we further classify containers
into three categories: well-behaved, doubtful and misbehaving.
As shown in Fig. 8(b), a container is classified as well-behaved
(green area), if its usage of system calls is less than soft thresh-
old. A container is classified as doubtful (yellow area), if its
usage of system calls is between soft threshold and hard thresh-
old. If its usage of system calls is higher than hard threshold,
the container is considered misbehaving (red area). Now we
need to set an optimal soft threshold and hard threshold based
on the threshold that we calculate with Pareto distribution (de-
fined as based threshold). We first measure the maximum usage
increase ratio of each system call using the representative con-
tainerized applications and workloads (shown in Table 1). First,
each time we run one application with various workloads that
can cover most usage scenarios of the application and collect
the system calls’ usage for each workload with a tool named
strace. Then the maximum increase ratio of each system call
is calculated with the minimum usage and the maximum usage.
For example, if minimum and maximum system call usage are
100 and 110, respectively, then the increase ratio is 10%. Last,
for each system call, we calculate the average maximum in-
crease ratio of all applications. Results in Table 4 show that the
maximum usage increasing ratio of each system call is close to
30%. Based on this results, we set soft threshold to 0.85× of
based threshold and hard threshold to 1.15× of based thresh-
old. Such that well-behaved containers will never be classified
as misbehaving.

After obtaining soft threshold and hard threshold and clas-
sifying containers into three types, we need to further deal with
doubtful containers. We determine whether a doubtful con-
tainer is well-behaved or misbehaving according to its usage
increase ratio of system calls. Specifically, if the increase ratio
is larger than 30%, the doubtful container is considered misbe-
having. Otherwise, it is well-behaved. This is effective and rea-
sonable. Because previous experimental results show that the
maximum usage increase ratio of system calls for all represen-
tative applications is about 30%. As a result, for well-behaved
containers, the increasing ratio of system calls’ usage will not
be larger than 30%.

Summary. We employ Pareto distribution to set an optimal
threshold which is used to identify whether a container is mis-
behaving. To improve accuracy, we dynamically update thresh-
old in real time and classify containers into three types: well-
behaved, doubtful and misbehaving, instead of two types. Then
we determine whether a doubtful container is misbehaving ac-
cording to its usage increase ratio of system calls. After iden-
tifying misbehaving containers, we limit their usage of system
calls with another design, named supply-demand model, which
is described in what follows.

3.3. Supply-demand Model
In this section, we propose supply-demand model to manage

the usage of system calls for containers. Our approach is able
to enhance kernel resources isolation while introducing negligi-
ble performance overhead. Specifically, in order to ensure good
performance for well-behaved containers, we use a demand-
driven management strategy to make the best effort to satisfy

Figure 9: An example of supply-demand model.

their demand for system calls. If kernel resource is exhausted,
we release those resources occupied by misbehaving containers
to meet the demand of well-behaved containers. First, we can
infer the resource that the well-behaved container needs from
the invoking system call based on the root causes in Table 3.
Then, we abort the same system call of misbehaving containers
and free up the corresponding resource occupied by misbehav-
ing containers. So we do not need to abort all system calls and
free up all resources belonging to misbehaving containers. For
example, if a well-behaved container is executing an open sys-
tem call but the kernel returns “no resources are available”, we
will abort the open system call of misbehaving containers and
delete the files belonging to misbehaving containers to release
the inode and fd resources for the well-behaved container.

For misbehaving containers, our supply-driven management
strategy provides misbehaving containers with a limited amount
of system calls. In addition, it prohibits them from compet-
ing for resources occupied by well-behaved ones, which can
effectively enhance the kernel resource isolation. Using this
method, the performance of well-behaved containers will not be
affected dramatically and the reasons are as follows. First, lim-
itation prevents kernel resources from being exhausted quickly
and avoids releasing resources for well-behaved containers fre-
quently, which may slow down well-behaved containers due to
waiting for releasing resources. Second, we set the limit to
the smaller value of the average system calls’ usage of well-
behaved containers and the remaining idle resources. There-
fore, if a well-behaved container is misidentified as misbehav-
ing, its performance will not be affected significantly. In our
design, we collect the historical system calls’ usage of well-
behaved containers into a component named resource informa-
tion center. Thus, we can calculate the average system calls’
usage of well-behaved containers with the historical data. To
ensure the accuracy, we use the data collected in the current
period (the threshold updating period).

An example is illustrated in Fig. 9. First, a well-behaved
container executes system calls and consumes part of kernel
resources (highlighted by the black area, step ①). Next, a mis-
behaving container loops substantial system calls and attempts
to exhaust kernel resources (step ②). However, Valve only al-
lows them to execute a limited amount of system calls, which
is the average system calls’ usage of well-behaved containers.
Therefore, the misbehaving containers can only consume part
of kernel resources, as highlighted by the red area, instead of ex-
hausting the overall resources. At this time, if the well-behaved
container requests resource, it can use the idle resources without
waiting for others to release (step ③). Then even if the misbe-

8

having container re-accesses the kernel resource again (step ④),
there is no idle resource that can be supplied to the container
and this access will be denied by supply-driven management
strategy. When there exist idle resources that are not more than
the average usage of well-behaved containers, kernel resource
can be exhausted by misbehaving containers(step ⑤). Then, if
well-behaved container re-accesses kernel resource again (step
⑥), the demand-driven management strategy releases the re-
source occupied by misbehaving containers and reallocates it
to well-behaved container.

4. Implementation

We used cgroups to implement a prototype of Valve. In
Linux, cgroups mechanism is stable and popular with devel-
opers to realize resource isolation. As mentioned before, with
updates of kernel version, the resource involved in one system
call might change. To check if our design is general, we imple-
ment a new cgroup subsystem called syscall cgroup based on
two generations of Linux kernel, 4.4.15 and 5.6.0.

In syscall cgroup, usage of system calls is calculated and
stored into resource information center, which is implemented
as a piece of kernel memory (4KB for one container). For con-
sumable resource, we account for the system calls times used in
each container as sage of system calls. For exclusive resource,
system calls rate is calculated based on system calls times and
how long containers have run. To improve the statistical ac-
curacy, we use a classic rate limit algorithm, named sliding

window [28], to implement the calculation.
Syscall cgroup enforces strict isolation by dropping system

calls of misbehaving containers. System calls are funneled from
user space to the appropriate endpoints in kernel space through
interfaces. We first intercept system calls at the point of system
call interface before the appropriate kernel functions execute.
After obtaining the incoming system call, container identifier
(implemented as a kernel thread) reads its usage from syscall
cgroup and checks whether this call is from a misbehaving con-
tainer. If yes and there is not enough kernel resource that can be
supplied to this call, the system call will be denied by return-
ing ENOSYS (“function not implemented”) instead of EAGAIN

(“resource temporarily unavailable”). We do not recommend
resuming the system call again immediately because frequently
triggering failed system calls could introduce overhead. Later,
if the resources are enough, the dropped system calls can be re-
sumed and executed again. Otherwise, the system call executes
normally.

Dropping system calls of misbehaving containers can ef-
fectively prevent misbehaving containers from competing for
kernel resources with well-behaved containers, enhancing iso-
lation. However, if a well-behaved container is misidentified as
misbehaving, dropping system calls of misbehaving containers
will hurt the performance of this well-behaved. But based on
our high accuracy of container identification (96.5%), the per-
formance of well-behaved containers will not be affected signif-
icantly. We argue that this is acceptable for enhancing isolation
and ensuring stable performance of the whole system.

Table 5: Effectiveness of Pareto-based container identification
NoMC 0 2 4 8 16

Theoretic IP p100 p98 p96 p92 p84
Computed IP p99.6 p97.8 p96.3 p91.4 p84.1

In this table, “NoMC” implies “Number of Misbehaving Containers”.

This implementation provides high generality and flexibil-
ity. First, syscall cgroup supports all system calls as our solu-
tion does not rely on any syscall-specific features and we lever-
age stable system call interface to account for usage of system
calls. Second, users can enable or disable kernel resource isola-
tion for any system call and container based on existing cgroups
mechanism. In addition, users can also flexibly limit the rate or
the times of system calls instead of just allowing or denying
system calls (like seccomp).

5. Evaluation

In this section, we present the experimental evaluation of
Valve. Experiments were performed in Linux version 4.4.15
and 5.6.0. The results of both kernels are similar, demonstrat-
ing the generality of our design. So we mainly discuss the re-
sults based on Linux kernel 4.4.15. Our evaluation answers the
following questions:

• Is the Pareto-based approach effective for container iden-
tification and, how accurate is it? (Section 5.1)

• Dose Valve successfully enhance kernel resource isola-
tion for containers? (Section 5.2)

• What is the performance overhead of our system? (Sec-
tion 5.3)

5.1. Container Identification
Effectiveness. We first demonstrate the effectiveness of our

Pareto-based approach on identifying misbehaving containers.
For this experiment, we ran 100 containers on a host, of which
0-16 were misbehaving. Hardware is the same as described
in Section 2.1. Table 5 shows the well-behaved/misbehaving
inflection point (IP) value we computed based on Pareto dis-
tribution. In this table, the theoretic IP value depends on the
number of misbehaving containers. For example, if there are 2
misbehaving containers, the theoretic IP value should be p98.
As shown in the table, the computed IP is very close to the
theoretic value, which suggests the Pareto-based approach can
effectively identify misbehaving containers.

Accuracy. As depicted in Table 5, the computed IP val-
ues widely range from p84.1 to p97.8 for different number of
misbehaving containers, which highlights why a constant IP
(threshold) value is not accurate. We periodically update the
threshold value, but we need to select the “best” period to bal-
ance the accuracy and performance. Here we totally ran 100
containers, including Nginx containers and misbehaving con-
tainers for 24 hours. We randomly adjusted the number of mis-
behaving containers (from 0 to 16). We measured accuracy by
counting the number of containers that were identified falsely.

9

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

 Accuracy
 Performance overhead

Period (min)

A
cc

ur
ac

y
(%

)

0

2

4

6

8

10

12

14

 P
er

fo
rm

an
ce

 o
ve

rh
ea

d
(%

)

(a) Accuracy and performance vary
with period.

74.9

93.2 96.5

0

20

40

60

80

100

Pareto+UTP
+CC3Pareto+UTP

A
cu

rr
ac

y
(%

)
Pareto

(b) Accuracy improved by updat-
ing threshold periodically (UTP)
and classifying container into three
types (CC3).

Figure 10: The “best” period and accuracy improvement.

We used Apache benchmark to measure the average through-
put of all Nginx containers, then performance overhead was cal-
culated based on the average throughput of Nginx containers
that ran without misbehaving containers.

As shown in Fig. 10(a), the accuracy decreases as the pe-
riod gets longer. The performance rises to a high point when
the period is 1.5 minutes. This is because updating overhead
is significant if the period is too short. However, if the period
is too long, the accuracy is so low that isolation cannot guar-
antee the performance while leaving lots of system overhead.
Based on our experiments, 1.5 minutes is the “best” period to
achieve both high accuracy and low overhead. In addition, we
also evaluate accuracy improvement by updating threshold pe-
riodically (denoted as “UTP” in Fig. 10(b) and period is set to
1.5 min) and classifying container into three types (denoted as
“CC3” in Fig. 10(b)). Results in Fig. 10(b) illustrates that up-
dating threshold periodically can improve accuracy by 18.3%
and classifying container into three types helps to improve the
accuracy by 3.3% further.

The results show that a static period can improve the accu-
racy to 96.5%. So there is little optimization space to motivate
us to design a dynamic period. And the threshold is changed
periodically based on the period value. We detect the misbe-
having containers based on the threshold. Once the system call
usage is higher than a threshold, we can identify it as misbe-
having. However, when the threshold becomes invalid and is
not updated in time (this is decided by the period), the high
system call rate needs to appear multiple times before we take
action. This is why the accuracy we achieve is 96.5% rather
than 100%. We argue that such little accuracy loss is accept-
able and does not reduce the practicability and effectiveness of
our system.

5.2. Isolation
Next, we demonstrate the effectiveness of our design on en-

hancing the kernel resource isolation of container-based virtu-
alization. We used KRIBench, the 15 representative real world
containerized applications and Hadoop to evaluate kernel re-
source isolation for containers. Hadoop is a typical workload
on cloud computing and is used to check if our design works for
applications other than the 15 applications we analyzed before.
Testbed and methodology are the same as described in Section

% kernel resource isolation (ISO) of docker container with Valve

Figure 11: Enhanced kernel resource isolation (lower is better).

NTL HTL Valve
0.0

0.2

0.4

0.6

0.8

1.0
 no stress stress

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

(a) Fork
NTL HTL Valve

(b) Nginx
NTL HTL Valve

(c) Hadoop

Figure 12: The normalized performance comparison of native task list (NTL),
hierarchical task list (HTL) and Valve

2.1, except that we modified the source code of Docker to con-
figure our syscall cgroup for a container when it launches. To
answer the second question, we repeat the KRIBench tests on
Valve.

As shown in Fig. 11, all KRIBench tests have a lighter per-
formance impact on container applications, which suggests a
higher degree of kernel resource isolation. Overall, the ker-
nel resource isolation is improved by a maximum of 98%, and
an average of 37.7%, across all tests and workloads. More
specifically, when running open test in misbehaving container,
the average performance degradation of well-behaved container
is improved significantly, from 100% to 7.9%. The improve-
ment comes from the fact that our system can effectively reduce
consumable resource competition in kernel. When misbehav-
ing container competes for exclusive resource, the maximum
and average slowdown of well-behaved container are 19% and
8.7%, respectively. Compared to the native kernel performance
(67% and 42.2%, respectively), our design can also help iso-
late exclusive resource inside the kernel. The results of Hadoop
(the last column) reveal that the conclusions are still relevant.
All the above results clearly prove that Valve can restrict mis-
behaving containers, reduce competition of kernel resources,
improve performance degradation of well-behaved containers,
and enhance kernel resource isolation.

We further use fork as an example to demonstrate the en-
hanced isolation by comparing Valve and hierarchical task list
(described in Section 2.2.2). Methodology is same as described
in Section 2.2.2. We used fork as a microbenchmark, also Ng-
inx and Hadoop as macrobenchmarks. Fig. 12 shows the rel-
ative performance of them normalized to native task list with-
out stress. As shown in Fig. 12(a), for native task list, the

10

Launching time Memory footprint
0.0

0.5

1.0

1.5

2.0

2.5

la
un

ch
in

g
tim

e
(s

)

 Valve Native kernel gVisor Kata

0
2
4
6
8
10
12
14
16

M
em

or
y

fo
ot

pr
in

t (
M

B)

Figure 13: Launching time and memory footprint (lower is better).

throughput of fork degrades by 63.41% due to the stress. In
comparison, the performance degradation of Valve is much less
(4.97%). Such performance improvement clearly suggests that
the kernel resource isolation is enhanced. And the effectiveness
of our design is comparable with hierarchical task list (4.78%)
but is more general than hierarchical task list. As shown in Fig.
12(b) and Fig. 12(c), tests on Nginx and Hadoop show a similar
trend.

5.3. Performance Overheads

In this section, we evaluate the overhead of our system on
launching time, memory footprint and overall performance, com-
pared with Docker running on native kernel. As gVisor and
Kata containers are widely used methods for isolation, we also
compared Valve with these systems. In the experiments, we ex-
ecute the same operations on the above platforms.

Launching time. To evaluate the launching time, we started
a Docker container on Ubuntu 16.04 and used the time com-
mand to print out how long it takes for launching that container.
Fig. 13 depicts the time of launching a new container on vari-
ous platforms. Compared to the vanilla kernel, it takes 0.3287s
to launch a new Docker container on Valve, which only adds
0.009s additional time. The result indicates that our optimiza-
tions incur negligible overhead (2.86%), which mostly spends
on initializing per-container cgroup. In contrast, gVisor takes
1.72× time to boot a dedicated user-space kernel while Kata
container needs 7.34× time to launch a new container. The rea-
son is that the overhead of per-container kernel and hypervisor
add more than 2s to the total startup.

Memory footprint. To measure the memory footprint, we
ran an Nginx container and leveraged the docker stats com-
mand to collect memory usage of the container. As illustrated
in Fig. 13, each container running on our optimized kernel con-
sumes 1.394 MB memory, which only adds 0.02 MB (1.46%)
compared to the container running on native kernel. Contrast
that with Valve, gVisor and Kata containers introduce 10.56×
and 4.58× memory footprints on the Docker container. As our
solution builds on existing cgroups mechanism and takes ad-
vantage of the lightweight containers, the memory consumption
overhead of Valve is remarkably negligible compared to exist-
ing popular container isolation methods.

Overall performance. To evaluate the overall performance
of our system, we executed the representative applications and
workloads shown in Table 1 and Hadoop, then collected their
performance metrics. Fig. 14 illustrates the relative performance

of applications normalized to Docker running on native ker-
nel. Compared to the vanilla throughput, our system provides
significant isolation on kernel resources while only introduces
the maximum and average performance overhead by 2.5% and
1.3%, respectively. As shown in the figure, our system performs
much better than gVisor and Kata containers. For example,
compared to gVisor, the throughput of Nginx, PostgreSQL and
Redis in Valve is 10.3×, 4.1× and 12.8×, respectively. In con-
trast with Kata containers, the throughput of Nginx, PostgreSQL
and Redis in Valve is 6.9×, 5.6× and 14.3×, respectively. The
overhead in gVisor and Kata containers mainly suffers from the
per-container kernel and (or) heavy hypervisor.

6. Related works

Isolation analysis. Container-based virtualization allows
multiple lightweight container instances to run on a sharing
host OS. There are various implementations of container-based
virtualization, such as Docker [2], LXC [29], OpenVZ [30],
FreeBSD Jails [31] and Solaris Zones [32]. Generally, these
systems leverage some OS mechanisms to provide isolation be-
tween containers. Some works focusing on evaluating the per-
formance and isolation of containers [3, 4, 5, 9, 10] demonstrate
that isolation is still a concern due to the sharing of host kernel.
However, these works evaluate isolation at a coarse-grained ap-
plication level and do not analyze the root causes. In this work,
we quantify container isolation at system call level and identify
several kernel resources competition to explain the isolation is-
sues.

Kernel mechanism optimization. Several works focus on
addressing specific isolation problems by optimizing kernel mech-
anisms. Huang et al. [21] analyzed the semantic gap on re-
sources view and developed a sysfs namespace to export effec-
tive resources, including the number of cores and the amount
of memory that are available to a container. Similarly, Sun et
al. [22] proposed security namespace to enable containers to
have an autonomous control over their security policies. Gao et
al. [15] designed a power-based namespace partitioning power
consumption at a container level to defend against the syner-
gistic power attack, which can maximize power attack effects
by exploiting leaked host information. Gao et al. [16] also ex-
plored several exploiting strategies to escape the resources con-
trol by de-associating processes from their original cgroups. To
address this problem, Khalid et al. [12] optimized Linux sched-
uler to charge CPU resource for softirq processing which is one
of the strategies to escape cgroups. PINE [11] was proposed
to address the issue of misallocation of storage resource. How-
ever, even with the above optimizations, container performance
is still affected by poor kernel resource isolation. This work re-
veals several kernel resource isolation issues that are never dis-
cussed before and proposes a general system to address these
issues.

Container runtime. Various runtimes were proposed to
address isolation problems between containers. Hyper [33],
Hyper-V containers [34], Clear containers [35], Kata contain-
ers [17], VMware vSphere Integrated containers [36], LightVM

11

aerospike
cassandra

couchbase
httpd influxdb

mariadb
memcached

mongodb
mysql nats nginx

postgresql
rabbitmq redis tomcat hadoop

0.0

0.2

0.4

0.6

0.8

1.0

 Valve
 Native kernel
 gVisor
 Kata

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Figure 14: Normalized throughput of applications (higher is better).

[18], Mavridis [37] and X-Containers [19] all leverage hyper-
visor to wrap containers with a dedicated kernel. Similarly,
gVisor [20] runs containers within a user-space kernel writ-
ten in Go. However, these platforms can cause significant per-
formance overhead because of the additional kernels. Instead,
Valve is much lighter than a native OS kernel, which incurs neg-
ligible performance overhead.

Kernel isolation. Some other approaches were proposed to
enhance container isolation, assuming a threat model different
from ours where even the host kernel cannot be trusted. On the
one hand, SCONE [38] proposed to run containers inside In-
tel SGX enclaves. On the other hand, because attacks against
containers often leverage kernel exploits through system call
interface, Wan et al. [39] minimized the set of system calls for
containers and Win et al. [40] used system call interception to
ensure the isolation between a compromised host and contain-
ers. However, none of the above techniques were designed to
enhance kernel resource isolation for containers. Instead, Valve
protects the performance of well-behaved containers from be-
ing interfered by misbehaving containers.

7. Conclusion

In this paper, we first introduced KRIBench, a microbench-
mark, which is consisted of a set of representative real-world
containerized applications and can quantify kernel resource iso-
lation for containers. Next, we revealed several isolation issues
of Docker containers using KRIBench, and further identified
and analyzed two categories of kernel resources competition:
consumable resource and exclusive resource. Finally, we pro-
posed a general and flexible design, named Valve, which en-
hances kernel resource isolation containers by limiting usage of
system calls for misbehaving containers. Valve employs Pareto
distribution to identify misbehaving containers and uses supply-
demand model to enforce isolation and decrease performance
overhead. The experimental results show that our approach ef-
fectively isolates kernel resources among containers and perfor-
mance overhead is negligible compared to the native systems
and existing solutions.

References

[1] K. Suo, Y. Zhao, W. Chen, J. Rao, An analysis and empirical study of
container networks, in: Proceedings of IEEE Conference on Computer
Communications (INFOCOM), 2018, pp. 189–197.

[2] Docker, https://www.docker.com/ Accessed April 4, 2022.
[3] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance

comparison of virtual machines and Linux containers, in: Proceedings of
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), 2015, pp. 171–172.

[4] P. Sharma, L. Chaufournier, P. Shenoy, Y. Tay, Containers and virtual
machines at scale: A comparative study, in: Proceedings of International
Middleware Conference (Middleware), 2016, pp. 1–13.

[5] M. Plauth, L. Feinbube, A. Polze, A performance survey of lightweight
virtualization techniques, in: Proceedings of European Conference on
Service-Oriented and Cloud Computing (ESOCC), 2017, pp. 34–48.

[6] Linux namespaces, http://man7.org/linux/man-pages/man7/

namespaces.7.html Accessed April 4, 2022.
[7] Linux control groups, http://man7.org/linux/man-pages/man7/

cgroups.7.html Accessed April 4, 2022.
[8] D. Skarlatos, Q. Chen, J. Chen, T. Xu, J. Torrellas, Draco: Architectural

and operating system support for system call security, in: Proceedings
of IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020, pp. 42–57.

[9] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, J. Owens, Quantifying the performance iso-
lation properties of virtualization systems, in: Proceedings of workshop
on Experimental Computer Science (ExpCS), 2007.

[10] M. G. Xavier, I. C. De Oliveira, F. D. Rossi, R. D. Dos Passos, K. J.
Matteussi, C. A. De Rose, A performance isolation analysis of disk-
intensive workloads on container-based clouds, in: Proceedings of In-
ternational Conference on Parallel, Distributed, and Network-Based Pro-
cessing (PDP), 2015, pp. 253–260.

[11] Y. Li, J. Zhang, C. Jiang, J. Wan, Z. Ren, PINE: Optimizing performance
isolation in container environments, IEEE Access 7 (2019) 30410–30422.

[12] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira,
A. Akella, Iron: Isolating network-based CPU in container environments,
in: Proceedings of USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2018, pp. 313–328.

[13] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Peterson, Container-
based operating system virtualization: A scalable, high-performance al-
ternative to hypervisors, in: Proceedings of European Conference on
Computer Systems (EuroSys), 2007, pp. 275–287.

[14] O. Laadan, J. Nieh, Operating system virtualization: practice and experi-
ence, in: Proceedings of Annual Haifa Experimental Systems Conference
(SYSTOR), 2010, pp. 1–12.

[15] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, H. Wang, Containerleaks:
Emerging security threats of information leakages in container clouds,
in: Proceedings of International Conference on Dependable Systems and
Networks (DSN), 2017, pp. 237–248.

[16] X. Gao, Z. Gu, Z. Li, H. Jamjoom, C. Wang, Houdini’s escape: Break-
ing the resource rein of Linux control groups, in: Proceedings of ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2019, pp. 1073–1086.

[17] Kata Containers, https://katacontainers.io/ Accessed April 4,
2022.

[18] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Ya-
sukata, C. Raiciu, F. Huici, My VM is lighter (and safer) than your con-
tainer, in: Proceedings of Symposium on Operating Systems Principles
(SOSP), 2017, pp. 218–233.

[19] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Re-

12

https://www.docker.com/
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://katacontainers.io/

nesse, H. Weatherspoon, X-Containers: Breaking down barriers to im-
prove performance and isolation of cloud-native containers, in: Proceed-
ings of International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2019, pp. 121–135.

[20] gVisor: Container runtime sandbox, https://github.com/google/
gvisor Accessed April 4, 2022.

[21] H. Huang, J. Rao, S. Wu, H. Jin, K. Suo, X. Wu, Adaptive resource views
for containers, in: Proceedings of International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), 2019, pp. 243–
254.

[22] Y. Sun, D. Safford, M. Zohar, D. Pendarakis, Z. Gu, T. Jaeger, Security
namespace: making linux security frameworks available to containers, in:
Proceedings of USENIX Security Symposium (USENIX Security), 2018,
pp. 1423–1439.

[23] X. Ren, K. Rodrigues, L. Chen, C. Vega, M. Stumm, D. Yuan, An analysis
of performance evolution of linux’s core operations, in: Proceedings of
Symposium on Operating Systems Principles (SOSP), 2019, pp. 554–569.

[24] V. Tarasov, E. Zadok, S. Shepler, Filebench: A flexible framework for file
system benchmarking, login: The USENIX Magazine 41 (2016) 6–12.

[25] R. Love, Linux Kernel Development, 3rd Edition, Pearson Education,
2010.

[26] Pareto distribution, https://en.wikipedia.org/wiki/Pareto_

distribution./ Accessed April 4, 2022.
[27] M. Hao, L. Toksoz, N. Li, E. E. Halim, H. Hoffmann, H. S. Gunawi,

Linnos: Predictability on unpredictable flash storage with a light neural
network, in: Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020, pp. 173–190.

[28] Sliding window based rate limiter, https:

//www.codementor.io/@arpi-tbhayani/

system-design-sliding-window-based-rate-limiter-157x7sburi/

Accessed April 4, 2022.
[29] LXC: Linux Containers, https://linuxcontainers.org/ Accessed

April 4, 2022.
[30] OpenVZ Containers, https://openvz.org/ Accessed April 4, 2022.
[31] P.-H. Kamp, R. N. Watson, Jails: Confining the omnipotent root, in: Pro-

ceedings of International System Administration and Networking Confer-
ence (SANE), 2000, pp. 116–127.

[32] Solaris Zones, https://en.wikipedia.org/wiki/Solaris_

Containers Accessed April 4, 2022.
[33] Hyper Containers, https://hypercontainer.io/ Accessed April 4,

2022.
[34] Hyper-V Containers, https://docs.microsoft.com/en-us/

virtualization/windowscontainers/manage-containers/

hyperv-container Accessed April 4, 2022.
[35] Intel Clear Containers, https://www.intel.com/

content/www/us/en/developer/articles/technical/

intel-clear-containers-1-the-container-landscape.html

Accessed April 4, 2022.
[36] VMware vSphere Integrated Containers, https://www.vmware.com/

products/vsphere/integrated-containers.html Accessed April
4, 2022.

[37] I. Mavridis, H. Karatza, Combining containers and virtual machines to
enhance isolation and extend functionality on cloud computing, Future
Generation Computer Systems (FGCS) 94 (2019) 674–696.

[38] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, et al., Scone: Secure
Linux containers with Intel SGX, in: Proceedings of USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2016,
pp. 689–703.

[39] Z. Wan, D. Lo, X. Xia, L. Cai, S. Li, Mining sandboxes for Linux con-
tainers, in: Proceedings of International Conference on Software Testing,
Verification and Validation (ICST), 2017, pp. 92–102.

[40] T. Y. Win, F. P. Tso, Q. Mair, H. Tianfield, PROTECT: Container process
isolation using system call interception, in: Proceedings of International
Symposium on Pervasive Systems, Algorithms and Networks & Interna-
tional Conference on Frontier of Computer Science and Technology &
International Symposium of Creative Computing (ISPAN-FCST-ISCC),
2017, pp. 191–196.

13

https://github.com/google/gvisor
https://github.com/google/gvisor
https://en.wikipedia.org/wiki/Pareto_distribution./
https://en.wikipedia.org/wiki/Pareto_distribution./
https://www.codementor.io/@arpi- tbhayani/system-design-sliding-window-based-rate-limiter-157x7sburi/
https://www.codementor.io/@arpi- tbhayani/system-design-sliding-window-based-rate-limiter-157x7sburi/
https://www.codementor.io/@arpi- tbhayani/system-design-sliding-window-based-rate-limiter-157x7sburi/
https://linuxcontainers.org/
https://openvz.org/
https://en.wikipedia.org/wiki/Solaris_Containers
https://en.wikipedia.org/wiki/Solaris_Containers
https://hypercontainer.io/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-clear-containers-1-the-container-landscape.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-clear-containers-1-the-container-landscape.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-clear-containers-1-the-container-landscape.html
https://www.vmware.com/products/vsphere/integrated-containers.html
https://www.vmware.com/products/vsphere/integrated-containers.html

	Introduction
	Motivation
	Contributions
	Organization

	Characteristic Study
	Isolation Measurements
	Root Causes
	Consumable Resource
	Exclusive Resource

	Observation

	Design
	Overview
	Pareto-based Container Identification
	Supply-demand Model

	Implementation
	Evaluation
	Container Identification
	Isolation
	Performance Overheads

	Related works
	Conclusion

