

FITDOC: Fast Virtual Machines Checkpointing
with Delta Memory Compression

Yunjie Du, Xuanhua Shi, Hai Jin, Song Wu
Services Computing Technology and System Lab

Cluster and Grid Computing Lab
School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, 430074, Chia
xhshi@hust.edu.cn

Abstract—Virtualization provides the function of saving the
whole execution environment status of the running virtual
machine (VM), which makes checkpointing flexible and
practical for HPC servers or data center servers. However, the
system-level checkpointing needs to save a large number of
data to the disk. Moreover, the overhead grows linearly with
the increasing size of virtual machine memory, which leads to
disk I/O consumption disaster along with poor system
scalability. To target this, we propose a novel fast VMs
checkpointing approach, named Fast Incremental
checkpoinTing with Delta memOry Compression (FITDOC). By
studying the run-time memory characteristics of different
workloads, FITDOC counts the dirty pages in a fine-
granularity manner (the number of 8 bytes), instead of the
conventional method (the number of pages). FITDOC utilizes
dirty page logging mechanism to record the dirty pages;
accordingly, a delta memory compression mechanism is
implemented to eliminate redundant memory data in
checkpointing files. To locate the dirty data in dirty pages,
FITDOC utilize two mechanisms: by analyzing the distribution
characteristics of dirty pages in dirty bitmap, we propose a fast
dirty bitmap scanning method to locate the dirty pages, and
take a multi-threading data comparison mechanism to locate
the real dirty data in one page. The experimental results show
that compared with Xen’s default system-level checkpointing
algorithm, FITDOC can reduce 70.54% of checkpointing time
on average with 1GB memory size and achieve better
improvement for VMs with larger memory configurations.
FITDOC can reduce 52.88% of the checkpointing data size on
average compared with Remus’s incremental solution which is
in page granularity. Compared with default dirty bitmap
scanning method in Xen, the scanning time of FITDOC is
decreased by 91.13% on average.

Keywords-checkpointing; memory compression; dirty page; dirty
bitmap

I. INTRODUCTION
More and more clusters and data centers use

virtualization technology [1, 2] to run multiple OS instances
concurrently on a single physical machine. The virtualization
technology has brought lots of advantages, such as
enhancing resources utilization ratio [3], facilitating
management, reducing costs and energy consumption [4],
improving service performance and availability [5, 6].

As an important feature of virtualization, checkpointing
[7-11] is able to record the whole system state of a VM into a

file for later restoration and ensure that the VM continues to
run after completion. The file is generally saved in a shared
file system for recovery on other physical machine. Just like
migration, checkpointing is transparent to the OS and upper
applications in VM. It provides great benefits for system
maintenance, fault-tolerant, testing and debugging in modern
clusters and data centers.

During checkpointing, the virtual machine monitor
(VMM) stores the whole system-level state of a VM to non-
volatile storage, including the state of VCPU, memory and
all emulated devices. The memory state is stored in page
granularity and usually equals to the memory size of the
target VM. With the increasing growth of VM’s memory
configuration, checkpointing becomes more and more of a
concern, which takes a long time and seriously affects the
VM’s QoS. For latency-sensitive applications, the long
downtime even causes services failure [12].

In this paper, a novel checkpointing approach is proposed,
named Fast Incremental checkpoinTing with Delta memOry
Compression (FITDOC), to improve VM checkpointing
performance. FITDOC utilizes the data distribution
characteristics of the run-time memory in a fine-granularity
manner, uses dirty page logging mechanism to record the
dirty pages and introduces delta memory compression to
eliminate redundant memory data in checkpointing files. To
locate the dirty data in dirty pages, FITDOC utilizes two
mechanisms: by analyzing the distribution characteristics of
dirty pages in dirty bitmap, we propose a fast dirty bitmap
scanning method to locate the dirty pages, and take a multi-
threading data comparison mechanism to locate the real dirty
data in one page. We carry out the implementation and
evaluation of FITDOC based on Xen-4.0.1.

We summarize the main contributions of this paper as
follows:

� We quantitatively analyze the data distribution
characteristics of dirty pages and variation
characteristics of dirty page numbers with time and
memory size under different types of workloads,
and checkpoint the dirty pages in a fine-granularity
manner (the number of 8 bytes), instead of the
conventional method (the number of pages) to
reduce the size of the checkpointing files.

� We analyze the distribution characteristics of dirty
pages of VMs and propose a quick scanning

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

2014 IEEE 17th International Conference on Computational Science and Engineering

978-1-4799-7981-3/14 $31.00 © 2014 IEEE

DOI 10.1109/CSE.2014.82

291

method of VM’s dirty bitmap to locate the dirty
pages, which effectively decreases the scanning
time.

� We have designed and implemented a novel
checkpointing approach with Xen-4.0.1 which
introduces dirty page logging mechanism and delta
memory compression into checkpointing to
eliminate redundant memory data, which greatly
reduces total checkpointing time.

The rest of this paper is organized as follows: Section II
presents the background and quantitative analysis of run-
time memory. The design and implementation of our system
is described in section III. In section IV we present and
analyze the experimental results. We introduce the related
work in section V. Finally, section VI concludes our research
and outlines the future work.

II. BACKGROUND AND ANALYSIS
To study the run-time memory characteristics of the VM

checkpointing, we select several representative applications
as the workloads of target VM:

1) underload: An idle Linux Server.
2) dbench: dbench 4.0 [13] is an open source

benchmark generating I/O workloads to file system.
3) kernel compile (K-Compile for short): Linux

Kernel Compile [14] is a balanced workload that
stresses mainly CPU and memory, but doing a fair
amount of disk I/O as well. We compile Linux
kernel version 2.6.31.8 with default configuration.

4) NPB: NAS Parallel Benchmarks (NPB) [15] is a

collection of computationally intensive parallel
applications performing various scientific
computations. We chose the programming model
OpenMP and application LU.B.

5) Hadoop: Hadoop [16] is an open-source
implementation of the MapReduce distributed data
analysis tool, an emerging framework often used in
cloud computing environments. We use a single
node that hosts the JobTracker and the TaskTracker
to execute the well-known wordcount tasks.

6) TPC-W: TPC Benchmark W (TPC-W) [17] is a
transactional web server and database performance
benchmark. The workload is performed in a
controlled internet commerce environment that
simulates the activities of a business oriented
transactional web server.

A. System-level Checkpointing Time
We conduct some experiments on a server-class machine

to test the time to save a VM with different memory sizes
and workloads respectively through NFS. The result is
shown in Figure 1. In Figure 1, the X-axis represents the
memory size of the target VM and the Y-axis represents the
whole system-level checkpointing time.

As can be seen from Figure 1, the VM checkpointing
time increases linearly with the increasing memory size, and
almost has nothing to do with the workload within the VM.
This is because the whole system-level checkpointing needs
to record all the pages, regardless of whether the page is used
or not.

TABLE I. THE STATISTICS OF VARIATION IN BYTE GRANULARITY

 underload Dbench K-Compile NPB-LU.B Hadoop tpcw

zero pages 1303 220807 2001 2389 13239 4157
[0] 261342 239183 234930 131122 94927 251882

(0,1] 23 40 93 16 900 176
(1,2] 22 289 65 26 1126 317
(2,4] 18 384 531 23 1606 573
(4,8] 59 588 253 54 1627 646
(8,16] 60 570 237 58 1316 558
(16,32] 76 1000 398 71 1024 426
(32,64] 41 887 415 43 593 383
(64,128] 37 1921 334 44 553 385
(128,256] 33 4821 200 55 859 446
(256,512] 85 5514 425 93 1119 515
(512,1024] 26 5080 903 208 2903 567
(1024,2048] 1 691 4258 1654 12432 1367
(2048,4096] 1 854 18186 128357 139486 3579
dirty pages 482 22639 26298 130702 165544 9938
total pages 261824 261822 261228 261824 260471 261820
dirty bytes 67660 11475425 78848380 450396692 536244749 12407963

8B dirty bytes 40888 4043960 68428456 108190080 416419512 3745856
bytes of dirty pages 1974272 92729344 107716608 535355392 678068224 40706048
bytes of total pages 1072431104 1072422912 1069989888 1072431104 1066889216 1072414720

dirty page rate 0.18% 8.65% 10.07% 49.92% 63.62% 3.80%
dirty bytes / bytes of dirty pages 3.43% 12.38% 73.20% 84.13% 80.03% 30.48%
dirty bytes / bytes of total pages 0.01% 1.07% 7.37% 42.00% 50.92% 1.16%

8B dirty bytes / dirty bytes 60.43% 35.24% 86.78% 24.02% 77.65% 30.19%

292292292292292292292292292292292

Figure 1. Time to save VMs with different memory sizes and workloads

In the case of a fixed bandwidth and disk I/O speeds, the
checkpointing time Tc can be expressed as:

mc SR
ST ∝= (1)

where S represents the total state size, Sm represents the
memory size and R represents the data transmission rate.
Therefore, the key to reduce checkpointing time is to reduce
the memory state data.

B. Data Distribution Characteristics Study of Dirty Pages
Traditional checkpointing method saves memory state in

pages, but how many bytes become dirty in a page over a
period of time is another matter of concern. To measure this
in the context of our benchmarks, we have run them while
continuously taking 5 checkpoints with 3 minute intervals
for 1GB VMs. Then we select one checkpoint and analyze
the variation characteristics in byte granularity. The result is
shown in Table I. In Table I, the variables are explained as
follows:

zero pages: count of the pages that full of zero.
[0]: count of the pages that change nothing compared

with previous checkpointing.
(x, y): count of the pages whose dirty bytes are in this

range compared with previous checkpointing.
dirty pages: count of the pages whose dirty bytes are in

(0, 4096).
total pages: count of the total pages, which is usually

about 262144 (1GB/4KB) for 1GB VM.
dirty bytes: the total amount of changed bytes compared

with previous checkpointing.
From statistics in Table I, we can get the following

viewpoints: 1) Most of the memory pages have changed
nothing, which follows the incremental checkpointing
discussions in [25][26]; 2) There are many dirty pages which
only change few bytes. The average dirtiness rates of dirty
pages under our six workloads are 3.43%, 12.38%, 73.20%,
84.13%, 80.03%, and 30.48%, respectively; 3) As for the
whole system-level checkpointing, the actual dirty bytes are
only 0.01%, 1.07%, 7.37%, 42.00%, 50.92%, and 1.16%,
respectively, of the total bytes of memory pages. So if we
only save the state of dirty bytes, we will largely reduce the
amount of data to be transferred, thus reducing the
checkpointing time to a large extent.

As described above, there are many dirty pages that only
change a few of bytes. So how the dirty bytes distribute in
dirty pages is also a concern. In x86_64 computer, we can
conduct 8 bytes data once. As shown in Table I, there are
many dirty bytes changed in 8 bytes unit. The average 8B
dirtiness rates of dirty bytes under our six workloads are
60.43%, 35.24%, 86.78%, 24.02%, 77.65%, and 30.19%,
respectively.

III. SYSTEM DESIGN AND IMPLEMENTATION
This section describes the design and implementation of

FITDOC. To shorten additional compression time, we
employ multi-threading technique to parallelize the
compression tasks. Furthermore, we propose a quick
scanning method of VM’s dirty bitmap aiming at finding out
the dirty pages. To demonstrate the feasibility of FITDOC,
we implement a prototype based on Xen-4.0.1.

The framework of FITDOC is shown in Figure 2. During
VM running, we enable the log dirty mode and record dirty
pages through dirty bitmap. When we make a checkpoint,
FITDOC needs to go through the following steps: 1) suspend
the VM and the VM stops running; 2) get dirty bitmap from
Xen address space through hypercall; 3) fast scan VM’s dirty
bitmap to find out dirty pages; 4) compress the dirty pages
using delta memory compression and multi-threading
technology, and then transfer the compressed data to NFS
server; 5) resume the VM and make it continue to run in the
consistent state before checkpointing. p g

Figure 2. Framework of FITDOC

A. Dirty Page Logging Mechanism
Dirty page logging mechanism can record dirty pages

using dirty bitmap and is firstly applied in live migration.
The dirty bitmap in Xen address space maps the entire virtual
address space of the VM in sequence and each bit
corresponds to one of the VM’s pages. At the beginning, all
bits of dirty bitmap are set to 0, and all entries of the shadow
page table are marked as read-only. When the guest
operating system in VM performs a write memory operation,
the VM will trap and give over the control rights to the
VMM. Then the VMM will set the corresponding bit in dirty
bitmap to 1 to mark the page as a dirty page, and give the
corresponding entry in the shadow page table writable
permission. Thus the VM will not trap when performing
write operations on this page again. Log dirty mode can lead
the VM to trap and will introduce some overhead, but this

293293293293293293293293293293293

overhead can be almost negligible because trap occurs only
when the target page is write at the first time, as detailed in
section IV.

B. Fast Scanning Dirty Bitmap
As described above, in order to find out the dirty pages,

we need to scan the dirty bitmap firstly. In Xen environment,
32-bit VM has a 4GB virtual address space, i.e., a total of
1M (4GB/4KB) = 1048576 pages. Each page corresponds to
one bit of the dirty bitmap in sequence, so we need 1048576
bits = 32 pages (1048576/8/4086) to save dirty bitmap, and
thus each page saving dirty bitmap corresponds to a 128MB
(4GB/32) virtual address space. Traditional method scans the
dirty bitmap bit by bit to find out the bits whose value is 1
and then records the corresponding PFNs (page frame
number), which usually takes several tens of milliseconds. It
is worth noting that the VM is in stopped state during
scanning, which would have a more serious impact on the
performance.

Figure 3 illustrates the addressing mode in dirty bitmap,
i.e., how PFN corresponds to its dirty bit. As shown in
Figure 3, Xen uses four-level page table to index dirty
bitmap. L4 ~ L3 entries store the MFNs (machine frame
number) of the next level page table, and the L2 entries store
the MFNs of the dirty bitmap pages. The L1 refers to the
base address of the dirty bitmap page. Xen separates a PFN
into four parts to index L4 ~ L1 respectively, 41 ~ 33 bits for
L4, 32 ~ 24 bits for L3, 23 ~ 15 bit for L2 and low 14 ~ 0
bits for indexing the dirty bit where the PFN corresponds.
Most important of all, whether the address in L2 entry is
valid is an important basis for judging whether there are dirty
pages distributed in the dirty bitmap page which corresponds
to a 128MB virtual address space.

Figure 3. Addressing mode in dirty bitmap

In order to get dirty bitmap, Xen needs to scan 0 ~ 31 L2
entries in sequence to get the base address of dirty bitmap
pages. If the address stored in the L2 entry is valid, then we
can get a valid dirty bitmap page from the Xen address space;
otherwise, we make a zero page to act as the dirty bitmap
page. Finally, 32 valid or zero dirty bitmap pages compose a
continuous dirty bitmap which maps the entire 4GB virtual
address space. Traditional method scans the dirty bitmap bit
by bit, which does not effectively take advantage of the

characteristics of zero pages, and thus takes up a lot of
redundant time.

How dirty pages distribute in the 4GB virtual address
space is also a matter of concern. We record dirty pages for
317856 times with 1 second interval for a 512MB VM
running kernel compilation to test the distribution of dirty
pages using log dirty mode. Result shows that there are only
2 checkpoints where dirty pages distributed in the high
3.5GB (PFN>131072) space and that dirty pages of all the
remaining checkpoints only distributed in the low 512MB
(PFN�131072) space. That is to say, there are almost no
dirty pages in the high 3.5GB space, and thus the
corresponding dirty bitmap pages of high 3.5GB space are
almost all zero pages. We also test other workloads, and the
result is also the same. However, traditional method still
scans these continuous zero pages bit by bit.

Taking advantage of above dirty pages distribution
characteristics, we can speed up scanning dirty bitmap using
flags. FITDOC sets up two level flags, L1 flags and L2 flags,
in Xen address space for the entire 4GB VM virtual address
space, as illustrated in Figure 4. Each L1 flag corresponds to
a dirty bitmap page and thus corresponds to a 128MB virtual
address space in sequence. Therefore, we require a total of
32 (4GB/128MB) L1 flags. In addition, because there are
almost no dirty pages in the high 3.5GB space, we set up a
L2 flag for this space. The two level flags are initialized to 0. g p g

Figure 4. The mapping diagram from 4GB virtual address space to two
level flags

The fast scanning method contains two stages: 1) setting
the flags; 2) judging the flags. The former is located in Xen
space. When application in Domain0 calls for dirty bitmap
from Xen space through hypercall, we set the values of two
level flags according to the validity of addresses in L2 entries,
and then return the dirty bitmap together with the two level
flags to the upper layer application. The latter is located in

294294294294294294294294294294294

Domain0. After the application get the dirty bitmap and two
level flags from Xen space, we first judge the values of flags
in sequence and then decide whether or not to scan the
corresponding parts in dirty bitmap, and thus save a lot of
time.

Since most of the flags are zero, we can skip the scan of
the corresponding parts in the dirty bitmap, and therefore
effectively save the scanning time. The result is shown in
section IV.

C. Delta Memory Compression
Seen from Table I, there are a lot of dirty pages which

only change a few bytes. But traditional checkpointing
method needs to save the complete 4KB page data, which
take up more time.

Delta memory compression provides an effective
solution to address this problem. To compare with previous
pages, we save the dirty pages of previous checkpoints into a
memory buffer. According to the time locality principle of
program, a previous dirty page will likely continue to be
changed later, and therefore we adopt the LRU (Least Recent
Used) page replacement algorithm. FITDOC borrows ideas
from RLE [18] data compression method and improves it.
The schematic diagram of delta memory compression is
illustrated in Figure 5. We compare the changes between
pre-page and post-page and get the dirty lines in 8B
granularity (8B/line), then use line number to mark it.

Figure 5. Schematic diagram of delta memory compression

The basic process is as follows:
First, for a target dirty page, we first judge the hit or miss

in the memory buffer. If miss, we add the target dirty page
into memory buffer according to the LRU page replacement
algorithm, and then turn into processing next dirty page;
otherwise, go to next step.

Second, we make a generalized XOR operation for the
hitting page (pre-page) and the target dirty page (post-page).
Since the dirty bytes in a page also distribute locally, as
described in section II, we make the XOR operation in 8
bytes in X86_64 computers for speed up. Then we will get a
sparse page which contains the delta information.

Finally, we record the indexes and data of non-zero units
in the sparse page, which is named compressed data and then
update the memory buffer.

Because of the independence among compression tasks
on each page, we can use multi-threading technology to

speed up memory compression. FITDOC adopts the classic
producer/consumer model: producer thread is responsible for
compressing target dirty pages and then putting the
compressed data into a memory buffer; consumer thread is
for reading compressed data from the buffer and then
transferring them to NFS server. The experiments show that
two producer threads and a consumer thread can achieve
better compression performance.

IV. PERFORMANCE EVALUATION
In this section, we evaluate FITDOC with various

workloads detailed in section II, then present and analyze
performance improvement compared with Xen’s default
whole system-level checkpointing algorithm and Remus’s
incremental solution [8]. We primarily care about the impact
on VM’s performance using dirty page logging mechanism,
the time spent on scanning dirty bitmap, the checkpointing
time, the checkpointing size and the compression overhead.

A. Experimental Environment
Our experiment platform is composed by two identical

computer servers. One server works as the storage server
providing shared storage by NFS protocol to the other server,
which acts as the physical machine running VMM. For each
server, its configuration includes eight Intel Xeon E5620
quad-core CPUs running at 2.40GHz, 16GB DDR RAM.
Two servers are connected by a Gigabit LAN. We use
CentOS 5.4 as the guest OS (DomainU) and the host OS
(Domain0). The version of VMM is Xen-4.0.1 and dom0
Linux kernel is 2.6.31.8. The unprivileged VM is configured
with 2 VCPUs and 512MB RAM except where noted
otherwise. Full-virtualized VMs are used in our tests.

B. Overhead of Log Dirty Mode
As described above, using log dirty mode would

introduce some overhead. We make experiments to test the
completion time of NPB-LU.B and kernel compile in the ON
and OFF mode respectively, and the result is illustrated in
Figure 6. Seen from the figure, the completion time in ON
mode only increases 0.52% and 0.26% compared to OFF
mode, that is, log dirty mode almost has no effect on the
performance of the VM. This is mainly because that the VM
will trap only when the target page is written at the first time,
which will introduce some overhead, but subsequent write
operations on the same target page will not lead the VM into
a trap. Due to time locality principle of program, a target
page generally tends to be written repeatedly, and therefore
the overhead introduced by the first write on the target page
can be almost negligible.

C. Scanning Time of Dirty Bitmap
Figure 7 illustrates the time to scan dirty bitmap under

several different workloads. Experimental results show that
compared with Xen’s default scanning algorithm, FITDOC
can reduce scanning time by 91.13%, 91.24%, 91.23%,
91.03%, 91.13%, 91.05%, and in average of 91.13%, which
agrees with the statistics in section II. We can reduce more
with small memory size. The substantial effect is caused by
following reasons. Firstly, by using L1 flag, FITDOC only

295295295295295295295295295295295

scans the dirty bitmap page where dirty pages distribute.
Second, there is generally almost no dirty page in the high
3.5GB space, we can usually skip to scan the dirty bitmap for
this space using L2 flag. In addition, what we can also see
from the figure is that the scanning time is almost
independent of the workload ran in the VM.

Figure 6. The impact on VM’s performance using log dirty mode

Figure 7. Time to scan dirty bitmap

D. Checkpointing Time
An important concern is the checkpointing time and

Figure 8 illustrates it under different workloads and memory
sizes. Experimental results show that compared to Xen’s
default checkpointing algorithm, FITDOC can reduce
checkpointing time by 91.90%, 84.52%, 77.26%, 45.52%,
40.41%, 83.81%, and 70.54% on average with 1GB memory
size, and the checkpointing time increases by only a small
amount with the increasing memory size. This is mainly
because: 1) different workloads have different dirty page set
sizes. FITDOC only records the dirty pages using log dirty
mode. 2) FITDOC only transfers the dirty bytes in dirty
pages in 8B, which eliminates a large number of redundant
state data. 3) The fast method to scan VM’s dirty bitmap. 4)
The dirty page set sizes do not change much despite the
different configurations of memory size.

E. Checkpointing Size
Another important aspect is the checkpointing size and

Figure 9 illustrates the size of one checkpointing under
different workloads with 1GB memory size. Experimental
results show that compared to Xen’s system-level
checkpointing algorithm, FITDOC can reduce checkpoint
size by 99.99%, 98.93%, 92.63%, 58.00%, 49.74%, 98.84%,
and in average of 83.02%. As we known, Remus [8]

incremental solution only saves the dirty pages to eliminate
redundant memory data and speed up checkpointing. But the
dirty pages also contain lots of unchanged bytes, as detailed
in section II. Experimental results show that compared to
Remus’s incremental checkpointing solution, FITDOC can
reduce checkpoint size by 96.57%, 87.62%, 26.80%, 15.87%,
20.92%, 69.52%, and in average of 52.88%. This is because
FITDOC saves the dirty data in a fine-granularity, while
Remus works with the page granularity.

Figure 8. Checkpointing time under different workloads and memory
sizes

Figure 9. The size of one checkpointing under different workloads
compared with Remus’s incremental solution (Memory size: 1GB)

F. Compression Overhead
Compared to Xen’s default checkpointing algorithm, the

most overhead FITDOC brings is the compression overhead.
Figure 10 illustrates the compression time under different
workloads and memory sizes. Seen from Figure 10, with
1GB memory configuration, the compression time accounts
for 34.71%, 32.19%, 33.40%, 38.23%, 35.66%, 31.18%
respectively of the total checkpoint time, and in average of
34.23%. Because of the basically fixed dirty page set, the
compression time also increases by only a small amount with
the increasing memory size. Although memory compression
brings additional compression time, it eliminates a large
number of redundant state data that need to be transferred
through network, and therefore greatly shorten the
checkpointing time overall.

V. RELATED WORK
As important features of virtualization technology,

physical memory related functionalities such as
checkpointing, live migration and fault-tolerance have
received a lot of attention in academia and industry.

296296296296296296296296296296296

Figure 10. Compression time under different workloads and memory sizes

VM live migration [12, 19, 20] can migrate a running
VM from one physical machine to another without stopping
the execution of the VM. Pre-copy is the default migration
algorithm for Xen, which transfers memory pages iteratively.
But Pre-copy has to transfer too much memory data, and
then a great total migration time is brought about. Post-copy
[21] is proposed to solve this problem and ensures that each
memory page is transferred at most once. However, Post-
copy does not have the same level of reliability as Pre-copy.

To improve migration performance, Deng et al. [22]
introduce compression into migration to decrease the amount
of transferred data and achieve better effect. But the normal
compression also compresses and transfers much duplicated
data, which would affect performance. Trace-replay [23] is
also introduced into migration innovatively. The amount of
traces is much smaller than that of modified memory pages,
so trace-replay can improve migration performance
significantly. However, in multi-processor environment,
trace-replay based migration is not that suitable.

Speeding up checkpointing has already become a
research focus in many years. One of the effective methods
to accelerate checkpointing is to improve network bandwidth.
InfiniBand (IB) is indeed popular in modern clusters and data
centers. We can transfer VM’s state data through RDMA [24]
and achieve good results. However, it is expensive and
complex to manage.

For a fixed bandwidth, reducing the amount of
transferred data is a good choice. A common technique is
self-ballooning [21]: the VMM communicates with the
ballooning driver running inside the VM. There are many
unused pages in free state among the VM’s occupied
physical memory. Before the save operation, self-ballooning
releases the unused pages and returns them to VMM, thereby
reducing VM’s memory and the total amount of transferred
data. Self-ballooning can only release the unused pages, but
help nothing for those pages containing useful information.
Memory compression [11] is another effective solution to
overcome the bottleneck of network bandwidth, which is
recommended for migration to decrease the amount of
transferred data, and improve migration performance greatly.
But it must compress all the pages including unchanged
pages which account for an important proportion. Moreover,
a compression algorithm which achieves high compression
ratio generally takes long time to compress. Suppose that

compression brings too much time overhead, it will get just
the opposite to the ideal result that we have expected.

Park et al. [10] present a technique for fast and space-
efficient checkpointing of virtual machines. Modern
operating systems use the better part of the available memory
for a page cache that caches data recently read from or
written to disk. Through transparent I/O interception at the
VMM level, they track I/O requests and maintain an up-to-
date mapping of memory pages to disk blocks in a
page_to_block map. At checkpointing time, they exclude
those pages from the memory images written to disk, thereby
saving a considerable amount of disk space and time.

The study most relevant to ours is [12]. In this paper,
Zhang et al. study the characteristics of run-time memory
image data during migration, and find that there is a high
similarity among transferred pages in each iteration. They
utilize the self-similarity of run-time memory image, use
hash based fingerprints to find identical and similar memory
pages, and employ RLE to eliminate redundant memory data
during migration. But it is a big overhead to find similar
pages in each iteration and they do not study the similarity of
pages in different iteration. In [27], Zou et al. explore several
potential data-analytics placement strategies along the I/O
path and propose a flexible data analytics (FlexAnalytics)
framework. FlexAnalytics enhances the scalability and
flexibility of current I/O stack on HEC (High-End
Computing) platforms and is useful for data pre-processing,
runtime data analysis and visualization, as well as for large-
scale data transfer.

Delta memory compression has been introduced into live
migration effectively. In [18], Svard et al. study the
application of delta compression during the transfer of
memory pages in order to increase migration throughput and
thus reduce downtime, and they achieve better performance.
But they do not quantitatively analyze the changed bytes in
dirty pages. What’s more, they need to compress a page byte
by byte, which introduces more additional overhead.

VI. CONCLUSION AND FUTURE WORK
In this paper, we first study the variation characteristics

of run-time memory in byte granularity, and find that too
much redundant data has been transferred. Then the design
and specific implementation of FIDOC is in deep discussion,
which introduces dirty page logging mechanism as well as
delta memory compression into checkpointing. Furthermore,
we also propose a fast method to scan VM’s dirty bitmap
aiming at find out the dirty pages. Finally we present the
evaluation of FITDOC. Experiments demonstrates that
compared with Xen’s default system-level checkpointing
algorithm, FITDOC can reduce 70.54% of checkpointing
time on average with 1GB memory size and achieve better
improvement for VMs with larger memory configurations.
FITDOC can reduce 52.88% of the checkpointing data size
on average compared with Remus’s incremental solution
which is in page granularity. Besides, compared with default
dirty bitmap scanning method in Xen, the scanning time of
FITDOC is decreased by 91.13% on average.

A fast method for saving full-virtualized VM has been
proposed and the experimental results have verified its high

297297297297297297297297297297297

efficiency. In the future, we concentrate on how to restore a
VM quickly with compressed data involved, and we will also
extend support for para-virtualized VM intensively. Actually,
diminishing compression overhead is full of challenge which
is our main occupation in the future work.

Acknowledgement
This paper is partly supported by the NSFC under grant

No.61133008 and No.61370104, National Science and
Technology Pillar Program of China under grant
No.2012BAH14F02, MOE-Intel Special Research Fund of
Information Technology under grant MOE-INTEL-2012-01,
and Chinese Universities Scientific Fund under grant No.
2014TS008.

REFERENCES
[1] R. P. Goldberg, “Survey of virtual machine research,” IEEE

Computer, vol.7, pp.34-45, 1974.
[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP’03), 2003, pp.164-177.

[3] R. Nathuji and K. Schwan, “VirtualPower: coordinated power
management in virtualized enterprise systems,” in Proceedings of
the 21st ACM Symposium on Operating Systems Principles
(SOSP’07), 2007, pp.265-278.

[4] S. Jan, C. Lang, and F. Bellosa, “Energy management for
hypervisor-based virtual machines,” in Proceedings of the USENIX
Annual Technical Conference, 2007.

[5] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott,
“Proactive fault tolerance for HPC with Xen virtualization,” in
Proceedings of 21st ACM International Conference on
Supercomputing (ICS’07), 2007, pp.23-32.

[6] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and X. Li, “Improving
the performance of hypervisor-based fault tolerance,” in Proceedings
of International Parallel and Distributed Processing Symposium
(IPDPS’10), 2010, pp.1-10.

[7] B. Nicolae and F. Cappello, “BlobCR: efficient checkpoint-restart
for HPC applications on IaaS clouds using virtual disk image
snapshots,” in Proceedings of the 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis
(SC'11), 2011, pp.1-12.

[8] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A.
Warfield, “Remus: high availability via asynchronous virtual
machine replication,” in Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’08), 2008,
pp.161-174.

[9] B. Gerofi, Z. Vass, and Y. Ishikawa, “Utilizing Memory Content
Similarity for Improving the Performance of Replicated Virtual
Machines,” in Proceedings of the 4th IEEE International Conference
on Utility and Cloud Computing (UCC’11), 2011, pp.73-80.

[10] E. Park, B. Egger, and J. Lee, “Fast and space-efficient virtual
machine checkpointing,” in Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE’11), 2011, pp.75-86.

[11] L. Deng, H. Jin, S. Wu, X. Shi, and J. Zhou, “Fast saving and
restoring virtual machines with page compression,” in Proceedings
of the 2011 International Conference on Cloud and Service
Computing (CSC’11), 2011,pp.150-157.

[12] X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data
deduplication to accelerate live virtual machine migration”, in
Proceedings of the 2010 IEEE International Conference on Cluster
Computing (Cluster’10), 2010, pp.88-96.

[13] DBENCH, http://dbench.samba.org/.
[14] The Linux Kernel Archives, http://www.kernel.org/.
[15] NAS Parallel Benchmarks,

http://www.nas.nasa.gov/publications/npb.html.
[16] Welcome to Apache Hadoop, http://hadoop.apache.org/.
[17] TPC-W, http://www.tpc.org/tpcw/.

[18] P. Svard, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of
delta compression techniques for efficient live migration of large
virtual machines,” in Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE’11), 2011, pp.111-120.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.
Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proceedings of the second USENIX Symposium on Networked
Systems Design and Implementation (NSDI’05), 2005, pp.273-286.

[20] M. Nelson, B. Lim, and G. Hutchines, “Fast transparent migration
for virtual machines,” in Proceedings of the USENIX Annual
Technical Conference (USENIX’05), 2005, pp.391-394.

[21] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,”
in Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE’09), 2009,
pp.51-60.

[22] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive memory compression,” in Proceedings of
the IEEE International Conference on Cluster Computing
(Cluster’09), 2009, pp.1-10.

[23] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proceedings of
the 18th International Symposium on High Performance Distributed
Computing (HPDC’09), 2009, pp.101�110.

[24] W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High performance
virtual machine migration with RDMA over modern interconnects,”
in Proceedings of the IEEE International Conference on Cluster
Computing (Cluster’07), 2007, pp.11-20.

[25] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
Incremental Checkpointing for Massively Parallel Systems”, in
Proceedings of 18th ACM International Conference on
Supercomputing (ICS’04), 2004.

[26] N. Naksinehaboon, Y. Liu, C. Leangsuksun, R. Nassar, M. Paun,
and S. L. Scott, “Reliability-aware Approach: An Incremental
Checkpoint/Restart Model in HPC Environments”, in Proceedings of
the 8th IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’08), 2008.

[27] H. Zou, Y. Yu, and W. Tang, “FlexAnalytics: A Flexible Data
Analytics Framework for Big Data Applications with I/O
Performance Improvement”, Big Data Research 1 (2014), pp.4-13.

298298298298298298298298298298298

