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Abstract—Virtualization provides the function of saving the 
whole execution environment status of the running virtual 
machine (VM), which makes checkpointing flexible and 
practical for HPC servers or data center servers. However, the 
system-level checkpointing needs to save a large number of 
data to the disk. Moreover, the overhead grows linearly with 
the increasing size of virtual machine memory, which leads to 
disk I/O consumption disaster along with poor system 
scalability. To target this, we propose a novel fast VMs 
checkpointing approach, named Fast Incremental 
checkpoinTing with Delta memOry Compression (FITDOC). By 
studying the run-time memory characteristics of different 
workloads, FITDOC counts the dirty pages in a fine-
granularity manner (the number of 8 bytes), instead of the 
conventional method (the number of pages). FITDOC utilizes 
dirty page logging mechanism to record the dirty pages; 
accordingly, a delta memory compression mechanism is 
implemented to eliminate redundant memory data in 
checkpointing files. To locate the dirty data in dirty pages, 
FITDOC utilize two mechanisms: by analyzing the distribution 
characteristics of dirty pages in dirty bitmap, we propose a fast 
dirty bitmap scanning method to locate the dirty pages, and 
take a multi-threading data comparison mechanism to locate 
the real dirty data in one page. The experimental results show 
that compared with Xen’s default system-level checkpointing 
algorithm, FITDOC can reduce 70.54% of checkpointing time 
on average with 1GB memory size and achieve better 
improvement for VMs with larger memory configurations. 
FITDOC can reduce 52.88% of the checkpointing data size on 
average compared with Remus’s incremental solution which is 
in page granularity. Compared with default dirty bitmap 
scanning method in Xen, the scanning time of FITDOC is 
decreased by 91.13% on average. 

Keywords-checkpointing; memory compression; dirty page; dirty 
bitmap 

I. INTRODUCTION 
More and more clusters and data centers use 

virtualization technology [1, 2] to run multiple OS instances 
concurrently on a single physical machine. The virtualization 
technology has brought lots of advantages, such as 
enhancing resources utilization ratio [3], facilitating 
management, reducing costs and energy consumption [4], 
improving service performance and availability [5, 6]. 

As an important feature of virtualization, checkpointing 
[7-11] is able to record the whole system state of a VM into a 

file for later restoration and ensure that the VM continues to 
run after completion. The file is generally saved in a shared 
file system for recovery on other physical machine. Just like 
migration, checkpointing is transparent to the OS and upper 
applications in VM. It provides great benefits for system 
maintenance, fault-tolerant, testing and debugging in modern 
clusters and data centers. 

During checkpointing, the virtual machine monitor 
(VMM) stores the whole system-level state of a VM to non-
volatile storage, including the state of VCPU, memory and 
all emulated devices. The memory state is stored in page 
granularity and usually equals to the memory size of the 
target VM. With the increasing growth of VM’s memory 
configuration, checkpointing becomes more and more of a 
concern, which takes a long time and seriously affects the 
VM’s QoS. For latency-sensitive applications, the long 
downtime even causes services failure [12]. 

In this paper, a novel checkpointing approach is proposed, 
named Fast Incremental checkpoinTing with Delta memOry 
Compression (FITDOC), to improve VM checkpointing 
performance. FITDOC utilizes the data distribution 
characteristics of the run-time memory in a fine-granularity 
manner, uses dirty page logging mechanism to record the 
dirty pages and introduces delta memory compression to 
eliminate redundant memory data in checkpointing files. To 
locate the dirty data in dirty pages, FITDOC utilizes two 
mechanisms: by analyzing the distribution characteristics of 
dirty pages in dirty bitmap, we propose a fast dirty bitmap 
scanning method to locate the dirty pages, and take a multi-
threading data comparison mechanism to locate the real dirty 
data in one page. We carry out the implementation and 
evaluation of FITDOC based on Xen-4.0.1. 

We summarize the main contributions of this paper as 
follows: 

� We quantitatively analyze the data distribution 
characteristics of dirty pages and variation 
characteristics of dirty page numbers with time and 
memory size under different types of workloads, 
and checkpoint the dirty pages in a fine-granularity 
manner (the number of 8 bytes), instead of the 
conventional method (the number of pages) to 
reduce the size of the checkpointing files. 

� We analyze the distribution characteristics of dirty 
pages of VMs and propose a quick scanning 
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method of VM’s dirty bitmap to locate the dirty 
pages, which effectively decreases the scanning 
time. 

� We have designed and implemented a novel 
checkpointing approach with Xen-4.0.1 which 
introduces dirty page logging mechanism and delta 
memory compression into checkpointing to 
eliminate redundant memory data, which greatly 
reduces total checkpointing time. 

The rest of this paper is organized as follows: Section II 
presents the background and quantitative analysis of run-
time memory. The design and implementation of our system 
is described in section III. In section IV we present and 
analyze the experimental results. We introduce the related 
work in section V. Finally, section VI concludes our research 
and outlines the future work. 

II. BACKGROUND AND ANALYSIS 
To study the run-time memory characteristics of the VM 

checkpointing, we select several representative applications 
as the workloads of target VM: 

1) underload: An idle Linux Server. 
2) dbench: dbench 4.0 [13] is an open source 

benchmark generating I/O workloads to file system. 
3) kernel compile (K-Compile for short): Linux 

Kernel Compile [14] is a balanced workload that 
stresses mainly CPU and memory, but doing a fair 
amount of disk I/O as well. We compile Linux 
kernel version 2.6.31.8 with default configuration. 

4) NPB: NAS Parallel Benchmarks (NPB) [15] is a 

collection of computationally intensive parallel 
applications performing various scientific 
computations. We chose the programming model 
OpenMP and application LU.B. 

5) Hadoop: Hadoop [16] is an open-source 
implementation of the MapReduce distributed data 
analysis tool, an emerging framework often used in 
cloud computing environments. We use a single 
node that hosts the JobTracker and the TaskTracker 
to execute the well-known wordcount tasks. 

6) TPC-W: TPC Benchmark W (TPC-W) [17] is a 
transactional web server and database performance 
benchmark. The workload is performed in a 
controlled internet commerce environment that 
simulates the activities of a business oriented 
transactional web server. 

A.  System-level Checkpointing Time 
We conduct some experiments on a server-class machine 

to test the time to save a VM with different memory sizes 
and workloads respectively through NFS. The result is 
shown in Figure 1. In Figure 1, the X-axis represents the 
memory size of the target VM and the Y-axis represents the 
whole system-level checkpointing time. 

As can be seen from Figure 1, the VM checkpointing 
time increases linearly with the increasing memory size, and 
almost has nothing to do with the workload within the VM. 
This is because the whole system-level checkpointing needs 
to record all the pages, regardless of whether the page is used 
or not. 

TABLE I.  THE STATISTICS OF VARIATION IN BYTE GRANULARITY 

 underload Dbench K-Compile NPB-LU.B Hadoop tpcw 

zero pages 1303 220807 2001 2389 13239 4157 
[0] 261342 239183 234930 131122 94927 251882 

(0,1] 23 40 93 16 900 176 
(1,2] 22 289 65 26 1126 317 
(2,4] 18 384 531 23 1606 573 
(4,8] 59 588 253 54 1627 646 
(8,16] 60 570 237 58 1316 558 
(16,32] 76 1000 398 71 1024 426 
(32,64] 41 887 415 43 593 383 
(64,128] 37 1921 334 44 553 385 
(128,256] 33 4821 200 55 859 446 
(256,512] 85 5514 425 93 1119 515 
(512,1024] 26 5080 903 208 2903 567 
(1024,2048] 1 691 4258 1654 12432 1367 
(2048,4096] 1 854 18186 128357 139486 3579 
dirty pages 482 22639 26298 130702 165544 9938 
total pages 261824 261822 261228 261824 260471 261820 
dirty bytes 67660 11475425 78848380 450396692 536244749 12407963 

8B dirty bytes 40888 4043960 68428456 108190080 416419512 3745856 
bytes of dirty pages 1974272 92729344 107716608 535355392 678068224 40706048 
bytes of total pages 1072431104 1072422912 1069989888 1072431104 1066889216 1072414720 

dirty page rate 0.18% 8.65% 10.07% 49.92% 63.62% 3.80% 
dirty bytes / bytes of dirty pages 3.43% 12.38% 73.20% 84.13% 80.03% 30.48% 
dirty bytes / bytes of total pages 0.01% 1.07% 7.37% 42.00% 50.92% 1.16% 

8B dirty bytes / dirty bytes 60.43% 35.24% 86.78% 24.02% 77.65% 30.19% 
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Figure 1.  Time to save VMs with different memory sizes and workloads 

In the case of a fixed bandwidth and disk I/O speeds, the 
checkpointing time Tc can be expressed as: 

mc SR
ST ∝=     (1) 

where S represents the total state size, Sm represents the 
memory size and R represents the data transmission rate. 
Therefore, the key to reduce checkpointing time is to reduce 
the memory state data. 

B.  Data Distribution Characteristics Study of Dirty Pages 
Traditional checkpointing method saves memory state in 

pages, but how many bytes become dirty in a page over a 
period of time is another matter of concern. To measure this 
in the context of our benchmarks, we have run them while 
continuously taking 5 checkpoints with 3 minute intervals 
for 1GB VMs. Then we select one checkpoint and analyze 
the variation characteristics in byte granularity. The result is 
shown in Table I. In Table I, the variables are explained as 
follows: 

zero pages: count of the pages that full of zero. 
[0]: count of the pages that change nothing compared 

with previous checkpointing. 
(x, y): count of the pages whose dirty bytes are in this 

range compared with previous checkpointing. 
dirty pages: count of the pages whose dirty bytes are in 

(0, 4096). 
total pages: count of the total pages, which is usually 

about 262144 (1GB/4KB) for 1GB VM. 
dirty bytes: the total amount of changed bytes compared 

with previous checkpointing. 
From statistics in Table I, we can get the following 

viewpoints: 1) Most of the memory pages have changed 
nothing, which follows the incremental checkpointing 
discussions in [25][26]; 2) There are many dirty pages which 
only change few bytes. The average dirtiness rates of dirty 
pages under our six workloads are 3.43%, 12.38%, 73.20%, 
84.13%, 80.03%, and 30.48%, respectively; 3) As for the 
whole system-level checkpointing, the actual dirty bytes are 
only 0.01%, 1.07%, 7.37%, 42.00%, 50.92%, and 1.16%, 
respectively, of the total bytes of memory pages. So if we 
only save the state of dirty bytes, we will largely reduce the 
amount of data to be transferred, thus reducing the 
checkpointing time to a large extent. 

As described above, there are many dirty pages that only 
change a few of bytes. So how the dirty bytes distribute in 
dirty pages is also a concern. In x86_64 computer, we can 
conduct 8 bytes data once. As shown in Table I, there are 
many dirty bytes changed in 8 bytes unit. The average 8B 
dirtiness rates of dirty bytes under our six workloads are 
60.43%, 35.24%, 86.78%, 24.02%, 77.65%, and 30.19%, 
respectively. 

III. SYSTEM DESIGN AND IMPLEMENTATION 
This section describes the design and implementation of 

FITDOC. To shorten additional compression time, we 
employ multi-threading technique to parallelize the 
compression tasks. Furthermore, we propose a quick 
scanning method of VM’s dirty bitmap aiming at finding out 
the dirty pages. To demonstrate the feasibility of FITDOC, 
we implement a prototype based on Xen-4.0.1. 

The framework of FITDOC is shown in Figure 2. During 
VM running, we enable the log dirty mode and record dirty 
pages through dirty bitmap. When we make a checkpoint, 
FITDOC needs to go through the following steps: 1) suspend 
the VM and the VM stops running; 2) get dirty bitmap from 
Xen address space through hypercall; 3) fast scan VM’s dirty 
bitmap to find out dirty pages; 4) compress the dirty pages 
using delta memory compression and multi-threading 
technology, and then transfer the compressed data to NFS 
server; 5) resume the VM and make it continue to run in the 
consistent state before checkpointing. p g

 
Figure 2. Framework of FITDOC

A.  Dirty Page Logging Mechanism 
Dirty page logging mechanism can record dirty pages 

using dirty bitmap and is firstly applied in live migration. 
The dirty bitmap in Xen address space maps the entire virtual 
address space of the VM in sequence and each bit 
corresponds to one of the VM’s pages. At the beginning, all 
bits of dirty bitmap are set to 0, and all entries of the shadow 
page table are marked as read-only. When the guest 
operating system in VM performs a write memory operation, 
the VM will trap and give over the control rights to the 
VMM. Then the VMM will set the corresponding bit in dirty 
bitmap to 1 to mark the page as a dirty page, and give the 
corresponding entry in the shadow page table writable 
permission. Thus the VM will not trap when performing 
write operations on this page again. Log dirty mode can lead 
the VM to trap and will introduce some overhead, but this 
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overhead can be almost negligible because trap occurs only 
when the target page is write at the first time, as detailed in 
section IV. 

B.  Fast Scanning Dirty Bitmap 
As described above, in order to find out the dirty pages, 

we need to scan the dirty bitmap firstly. In Xen environment, 
32-bit VM has a 4GB virtual address space, i.e., a total of 
1M (4GB/4KB) = 1048576 pages. Each page corresponds to 
one bit of the dirty bitmap in sequence, so we need 1048576 
bits = 32 pages (1048576/8/4086) to save dirty bitmap, and 
thus each page saving dirty bitmap corresponds to a 128MB 
(4GB/32) virtual address space. Traditional method scans the 
dirty bitmap bit by bit to find out the bits whose value is 1 
and then records the corresponding PFNs (page frame 
number), which usually takes several tens of milliseconds. It 
is worth noting that the VM is in stopped state during 
scanning, which would have a more serious impact on the 
performance. 

Figure 3 illustrates the addressing mode in dirty bitmap, 
i.e., how PFN corresponds to its dirty bit. As shown in 
Figure 3, Xen uses four-level page table to index dirty 
bitmap. L4 ~ L3 entries store the MFNs (machine frame 
number) of the next level page table, and the L2 entries store 
the MFNs of the dirty bitmap pages. The L1 refers to the 
base address of the dirty bitmap page. Xen separates a PFN 
into four parts to index L4 ~ L1 respectively, 41 ~ 33 bits for 
L4, 32 ~ 24 bits for L3, 23 ~ 15 bit for L2 and low 14 ~ 0 
bits for indexing the dirty bit where the PFN corresponds. 
Most important of all, whether the address in L2 entry is 
valid is an important basis for judging whether there are dirty 
pages distributed in the dirty bitmap page which corresponds 
to a 128MB virtual address space. 

 

Figure 3.  Addressing mode in dirty bitmap 

In order to get dirty bitmap, Xen needs to scan 0 ~ 31 L2 
entries in sequence to get the base address of dirty bitmap 
pages. If the address stored in the L2 entry is valid, then we 
can get a valid dirty bitmap page from the Xen address space; 
otherwise, we make a zero page to act as the dirty bitmap 
page. Finally, 32 valid or zero dirty bitmap pages compose a 
continuous dirty bitmap which maps the entire 4GB virtual 
address space. Traditional method scans the dirty bitmap bit 
by bit, which does not effectively take advantage of the 

characteristics of zero pages, and thus takes up a lot of 
redundant time. 

How dirty pages distribute in the 4GB virtual address 
space is also a matter of concern. We record dirty pages for 
317856 times with 1 second interval for a 512MB VM 
running kernel compilation to test the distribution of dirty 
pages using log dirty mode. Result shows that there are only 
2 checkpoints where dirty pages distributed in the high 
3.5GB (PFN>131072) space and that dirty pages of all the 
remaining checkpoints only distributed in the low 512MB 
(PFN�131072) space. That is to say, there are almost no 
dirty pages in the high 3.5GB space, and thus the 
corresponding dirty bitmap pages of high 3.5GB space are 
almost all zero pages. We also test other workloads, and the 
result is also the same. However, traditional method still 
scans these continuous zero pages bit by bit. 

Taking advantage of above dirty pages distribution 
characteristics, we can speed up scanning dirty bitmap using 
flags. FITDOC sets up two level flags, L1 flags and L2 flags, 
in Xen address space for the entire 4GB VM virtual address 
space, as illustrated in Figure 4. Each L1 flag corresponds to 
a dirty bitmap page and thus corresponds to a 128MB virtual 
address space in sequence. Therefore, we require a total of 
32 (4GB/128MB) L1 flags. In addition, because there are 
almost no dirty pages in the high 3.5GB space, we set up a 
L2 flag for this space. The two level flags are initialized to 0. g p g

 
Figure 4.  The mapping diagram from 4GB virtual address space to two 
level flags 

The fast scanning method contains two stages: 1) setting 
the flags; 2) judging the flags. The former is located in Xen 
space. When application in Domain0 calls for dirty bitmap 
from Xen space through hypercall, we set the values of two 
level flags according to the validity of addresses in L2 entries, 
and then return the dirty bitmap together with the two level 
flags to the upper layer application. The latter is located in 
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Domain0. After the application get the dirty bitmap and two 
level flags from Xen space, we first judge the values of flags 
in sequence and then decide whether or not to scan the 
corresponding parts in dirty bitmap, and thus save a lot of 
time. 

Since most of the flags are zero, we can skip the scan of 
the corresponding parts in the dirty bitmap, and therefore 
effectively save the scanning time. The result is shown in 
section IV. 

C.  Delta Memory Compression 
Seen from Table I, there are a lot of dirty pages which 

only change a few bytes. But traditional checkpointing 
method needs to save the complete 4KB page data, which 
take up more time. 

Delta memory compression provides an effective 
solution to address this problem. To compare with previous 
pages, we save the dirty pages of previous checkpoints into a 
memory buffer. According to the time locality principle of 
program, a previous dirty page will likely continue to be 
changed later, and therefore we adopt the LRU (Least Recent 
Used) page replacement algorithm. FITDOC borrows ideas 
from RLE [18] data compression method and improves it. 
The schematic diagram of delta memory compression is 
illustrated in Figure 5. We compare the changes between 
pre-page and post-page and get the dirty lines in 8B 
granularity (8B/line), then use line number to mark it. 

 
Figure 5.  Schematic diagram of delta memory compression 

The basic process is as follows: 
First, for a target dirty page, we first judge the hit or miss 

in the memory buffer. If miss, we add the target dirty page 
into memory buffer according to the LRU page replacement 
algorithm, and then turn into processing next dirty page; 
otherwise, go to next step. 

Second, we make a generalized XOR operation for the 
hitting page (pre-page) and the target dirty page (post-page). 
Since the dirty bytes in a page also distribute locally, as 
described in section II, we make the XOR operation in 8 
bytes in X86_64 computers for speed up. Then we will get a 
sparse page which contains the delta information. 

Finally, we record the indexes and data of non-zero units 
in the sparse page, which is named compressed data and then 
update the memory buffer. 

Because of the independence among compression tasks 
on each page, we can use multi-threading technology to 

speed up memory compression. FITDOC adopts the classic 
producer/consumer model: producer thread is responsible for 
compressing target dirty pages and then putting the 
compressed data into a memory buffer; consumer thread is 
for reading compressed data from the buffer and then 
transferring them to NFS server. The experiments show that 
two producer threads and a consumer thread can achieve 
better compression performance. 

IV. PERFORMANCE EVALUATION 
In this section, we evaluate FITDOC with various 

workloads detailed in section II, then present and analyze 
performance improvement compared with Xen’s default 
whole system-level checkpointing algorithm and Remus’s 
incremental solution [8]. We primarily care about the impact 
on VM’s performance using dirty page logging mechanism, 
the time spent on scanning dirty bitmap, the checkpointing 
time, the checkpointing size and the compression overhead. 

A.  Experimental Environment 
Our experiment platform is composed by two identical 

computer servers. One server works as the storage server 
providing shared storage by NFS protocol to the other server, 
which acts as the physical machine running VMM. For each 
server, its configuration includes eight Intel Xeon E5620 
quad-core CPUs running at 2.40GHz, 16GB DDR RAM. 
Two servers are connected by a Gigabit LAN. We use 
CentOS 5.4 as the guest OS (DomainU) and the host OS 
(Domain0). The version of VMM is Xen-4.0.1 and dom0 
Linux kernel is 2.6.31.8. The unprivileged VM is configured 
with 2 VCPUs and 512MB RAM except where noted 
otherwise. Full-virtualized VMs are used in our tests. 

B.  Overhead of Log Dirty Mode  
As described above, using log dirty mode would 

introduce some overhead. We make experiments to test the 
completion time of NPB-LU.B and kernel compile in the ON 
and OFF mode respectively, and the result is illustrated in 
Figure 6. Seen from the figure, the completion time in ON 
mode only increases 0.52% and 0.26% compared to OFF 
mode, that is, log dirty mode almost has no effect on the 
performance of the VM. This is mainly because that the VM 
will trap only when the target page is written at the first time, 
which will introduce some overhead, but subsequent write 
operations on the same target page will not lead the VM into 
a trap. Due to time locality principle of program, a target 
page generally tends to be written repeatedly, and therefore 
the overhead introduced by the first write on the target page 
can be almost negligible. 

C. Scanning Time of Dirty Bitmap 
Figure 7 illustrates the time to scan dirty bitmap under 

several different workloads. Experimental results show that 
compared with Xen’s default scanning algorithm, FITDOC 
can reduce scanning time by 91.13%, 91.24%, 91.23%, 
91.03%, 91.13%, 91.05%, and in average of 91.13%, which 
agrees with the statistics in section II. We can reduce more 
with small memory size. The substantial effect is caused by 
following reasons. Firstly, by using L1 flag, FITDOC only 
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scans the dirty bitmap page where dirty pages distribute. 
Second, there is generally almost no dirty page in the high 
3.5GB space, we can usually skip to scan the dirty bitmap for 
this space using L2 flag. In addition, what we can also see 
from the figure is that the scanning time is almost 
independent of the workload ran in the VM. 

 
Figure 6.  The impact on VM’s performance using log dirty mode 

 
Figure 7.  Time to scan dirty bitmap 

D.  Checkpointing Time 
An important concern is the checkpointing time and 

Figure 8 illustrates it under different workloads and memory 
sizes. Experimental results show that compared to Xen’s 
default checkpointing algorithm, FITDOC can reduce 
checkpointing time by 91.90%, 84.52%, 77.26%, 45.52%, 
40.41%, 83.81%, and 70.54% on average with 1GB memory 
size, and the checkpointing time increases by only a small 
amount with the increasing memory size. This is mainly 
because: 1) different workloads have different dirty page set 
sizes. FITDOC only records the dirty pages using log dirty 
mode. 2) FITDOC only transfers the dirty bytes in dirty 
pages in 8B, which eliminates a large number of redundant 
state data. 3) The fast method to scan VM’s dirty bitmap. 4) 
The dirty page set sizes do not change much despite the 
different configurations of memory size. 

E.  Checkpointing Size 
Another important aspect is the checkpointing size and 

Figure 9 illustrates the size of one checkpointing under 
different workloads with 1GB memory size. Experimental 
results show that compared to Xen’s system-level 
checkpointing algorithm, FITDOC can reduce checkpoint 
size by 99.99%, 98.93%, 92.63%, 58.00%, 49.74%, 98.84%, 
and in average of 83.02%. As we known, Remus [8] 

incremental solution only saves the dirty pages to eliminate 
redundant memory data and speed up checkpointing. But the 
dirty pages also contain lots of unchanged bytes, as detailed 
in section II. Experimental results show that compared to 
Remus’s incremental checkpointing solution, FITDOC can 
reduce checkpoint size by 96.57%, 87.62%, 26.80%, 15.87%, 
20.92%, 69.52%, and in average of 52.88%. This is because 
FITDOC saves the dirty data in a fine-granularity, while 
Remus works with the page granularity. 

 
Figure 8.  Checkpointing time under different workloads and memory 
sizes 

 
Figure 9.  The size of one checkpointing under different workloads 
compared with Remus’s incremental solution (Memory size: 1GB) 

F.  Compression Overhead 
Compared to Xen’s default checkpointing algorithm, the 

most overhead FITDOC brings is the compression overhead. 
Figure 10 illustrates the compression time under different 
workloads and memory sizes. Seen from Figure 10, with 
1GB memory configuration, the compression time accounts 
for 34.71%, 32.19%, 33.40%, 38.23%, 35.66%, 31.18% 
respectively of the total checkpoint time, and in average of 
34.23%. Because of the basically fixed dirty page set, the 
compression time also increases by only a small amount with 
the increasing memory size. Although memory compression 
brings additional compression time, it eliminates a large 
number of redundant state data that need to be transferred 
through network, and therefore greatly shorten the 
checkpointing time overall. 

V. RELATED WORK 
As important features of virtualization technology, 

physical memory related functionalities such as 
checkpointing, live migration and fault-tolerance have 
received a lot of attention in academia and industry. 
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Figure 10.  Compression time under different workloads and memory sizes 

VM live migration [12, 19, 20] can migrate a running 
VM from one physical machine to another without stopping 
the execution of the VM. Pre-copy is the default migration 
algorithm for Xen, which transfers memory pages iteratively. 
But Pre-copy has to transfer too much memory data, and 
then a great total migration time is brought about. Post-copy 
[21] is proposed to solve this problem and ensures that each 
memory page is transferred at most once. However, Post-
copy does not have the same level of reliability as Pre-copy. 

To improve migration performance, Deng et al. [22] 
introduce compression into migration to decrease the amount 
of transferred data and achieve better effect. But the normal 
compression also compresses and transfers much duplicated 
data, which would affect performance. Trace-replay [23] is 
also introduced into migration innovatively. The amount of 
traces is much smaller than that of modified memory pages, 
so trace-replay can improve migration performance 
significantly. However, in multi-processor environment, 
trace-replay based migration is not that suitable. 

Speeding up checkpointing has already become a 
research focus in many years. One of the effective methods 
to accelerate checkpointing is to improve network bandwidth. 
InfiniBand (IB) is indeed popular in modern clusters and data 
centers. We can transfer VM’s state data through RDMA [24] 
and achieve good results. However, it is expensive and 
complex to manage. 

For a fixed bandwidth, reducing the amount of 
transferred data is a good choice. A common technique is 
self-ballooning [21]: the VMM communicates with the 
ballooning driver running inside the VM. There are many 
unused pages in free state among the VM’s occupied 
physical memory. Before the save operation, self-ballooning 
releases the unused pages and returns them to VMM, thereby 
reducing VM’s memory and the total amount of transferred 
data. Self-ballooning can only release the unused pages, but 
help nothing for those pages containing useful information. 
Memory compression [11] is another effective solution to 
overcome the bottleneck of network bandwidth, which is 
recommended for migration to decrease the amount of 
transferred data, and improve migration performance greatly. 
But it must compress all the pages including unchanged 
pages which account for an important proportion. Moreover, 
a compression algorithm which achieves high compression 
ratio generally takes long time to compress. Suppose that 

compression brings too much time overhead, it will get just 
the opposite to the ideal result that we have expected. 

Park et al. [10] present a technique for fast and space-
efficient checkpointing of virtual machines. Modern 
operating systems use the better part of the available memory 
for a page cache that caches data recently read from or 
written to disk. Through transparent I/O interception at the 
VMM level, they track I/O requests and maintain an up-to-
date mapping of memory pages to disk blocks in a 
page_to_block map. At checkpointing time, they exclude 
those pages from the memory images written to disk, thereby 
saving a considerable amount of disk space and time. 

The study most relevant to ours is [12]. In this paper, 
Zhang et al. study the characteristics of run-time memory 
image data during migration, and find that there is a high 
similarity among transferred pages in each iteration. They 
utilize the self-similarity of run-time memory image, use 
hash based fingerprints to find identical and similar memory 
pages, and employ RLE to eliminate redundant memory data 
during migration. But it is a big overhead to find similar 
pages in each iteration and they do not study the similarity of 
pages in different iteration. In [27], Zou et al. explore several 
potential data-analytics placement strategies along the I/O 
path and propose a flexible data analytics (FlexAnalytics) 
framework. FlexAnalytics enhances the scalability and 
flexibility of current I/O stack on HEC (High-End 
Computing) platforms and is useful for data pre-processing, 
runtime data analysis and visualization, as well as for large-
scale data transfer. 

Delta memory compression has been introduced into live 
migration effectively. In [18], Svard et al. study the 
application of delta compression during the transfer of 
memory pages in order to increase migration throughput and 
thus reduce downtime, and they achieve better performance. 
But they do not quantitatively analyze the changed bytes in 
dirty pages. What’s more, they need to compress a page byte 
by byte, which introduces more additional overhead. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we first study the variation characteristics 

of run-time memory in byte granularity, and find that too 
much redundant data has been transferred. Then the design 
and specific implementation of FIDOC is in deep discussion, 
which introduces dirty page logging mechanism as well as 
delta memory compression into checkpointing. Furthermore, 
we also propose a fast method to scan VM’s dirty bitmap 
aiming at find out the dirty pages. Finally we present the 
evaluation of FITDOC. Experiments demonstrates that 
compared with Xen’s default system-level checkpointing 
algorithm, FITDOC can reduce 70.54% of checkpointing 
time on average with 1GB memory size and achieve better 
improvement for VMs with larger memory configurations. 
FITDOC can reduce 52.88% of the checkpointing data size 
on average compared with Remus’s incremental solution 
which is in page granularity. Besides, compared with default 
dirty bitmap scanning method in Xen, the scanning time of 
FITDOC is decreased by 91.13% on average. 

A fast method for saving full-virtualized VM has been 
proposed and the experimental results have verified its high 
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efficiency. In the future, we concentrate on how to restore a 
VM quickly with compressed data involved, and we will also 
extend support for para-virtualized VM intensively. Actually, 
diminishing compression overhead is full of challenge which 
is our main occupation in the future work. 
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