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Abstract—In many scientific computing applications, sparse
Cholesky factorization is used to solve large sparse linear equa-
tions in distributed environment. GPU computing is a new way
to solve the problem. However, sparse Cholesky factorization
on GPU is hardly to achieve excellent performance due to the
structure irregularity of matrix and the low GPU resource uti-
lization. A hybrid CPU-GPU implementation of sparse Cholesky
factorization is proposed based on multifrontal method. A large
sparse coefficient matrix is decomposed into a series of small
dense matrices (frontal matrices) in the method, and then multiple
GEMM (General Matrix-matrix Multiplication) operations are
computed. GEMMs are the main operations in sparse Cholesky
factorization, but they are hardly to perform better in parallel
on GPU. In order to improve the performance, the scheme
of multiple task queues is adopted when performing multiple
GEMMs parallelized with multifrontal method; all GEMM tasks
are scheduled dynamically on GPU and CPU based on com-
putation scales for load balance and computing-time reduction.
Experimental results show that the approach can outperform the
implementations of BLAS and cuBLAS, achieving up to 3.15x
and 1.98x speedup, respectively.

Keywords—Multifrontal method; Multiple task queues scheme;
Task allocation; GPU Acceleration

I. INTRODUCTION

In varieties of scientific computing and engineering appli-
cations, such as optimization, computational fluid dynamics
problem, it is the all-important component to solve large
systems of linear equations with the form of Ax = b. Over
the past decades, many researchers had devoted themselves to
this problem with the solutions of direct or iterative meth-
ods [1]. In a large number of applications, A is the large
and sparse Symmetric Positive Definite (SPD) matrix. Direct
method, e.g. Cholesky factorization, is widely used to solve
sparse SPD linear equations for its high performance, accuracy,
and robustness. It factors A into the product LLT, where L
is a lower triangular matrix. Many researchers have sought
to exploit novel solutions in distributed memory and shared
memory systems to reduce the overall computing time of
sparse direct solvers [2][3]. With the increase of matrix scale,
CPU cannot process such computation, so we explore the
method of accelerating the factorization of large sparse SPD
matrix by GPUs.

There exist many algorithms to implement sparse Cholesky
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factorization. Among them, the multifrontal method [4] shows
tremendous attractiveness, and it factors a large sparse matrix
into a series of small dense matrices. The factorization of dense
matrix involves general matrix-matrix multiplication (GEMM)
operation associated with a large number of floating point
arithmetics, which can be performed by invoking the efficient
BLAS (Basic Linear Algebra Subroutines) [5] or cuBLAS [6]
routines, and cuBLAS is an implementation of standard BLAS
on GPU.

The challenge is that sparse direct solvers involve irregular
memory access, complex parallelization, strong-dependence
on A’s structure. With the emergence of GPU, it has gained
widespread popularity due to enormous computing power. In
recent years, there are several literatures to accelerate sparse
direct solvers on GPUs [7][8][9]. The approaches in these
literatures involve off-loading large dense operations to GPU
to accelerate the performance, and the other operations are
processed on host CPU. However, no highly parallel hybrid
CPU-GPU implementation of sparse Cholesky factorization
exists.

In this study, a parallel hybrid CPU-GPU algorithm
of sparse Cholesky factorization is presented. An existing
shared-memory sparse direct solver, TAUCS [10], is extended
by adding GPU acceleration during Cholesky factorization.
Although multiple frontal matrices, which are not in an
ancestor-descendant relationship, can be factorized in parallel
in TAUCS, it is hard to implement the parallel scheme on
GPU through current GPU programming paradigm. In order
to achieve higher performance, two strategies are proposed:
the first is to adopt multiple task queues scheme to perform
GEMM operations in parallel, which can guarantee the kernel
computation from multiple frontal matrices be overlapped; the
second is to set a calculating quantity threshold to decide the
platform of GEMM operation, i.e. CPU or GPU. Specifically,
if the calculated quantity is larger than the threshold, then the
operation is offloaded to GPU, otherwise, it will be processed
on CPU.

The rest of the paper is organized as follows. Section II
describes related work of sparse linear solvers on GPU. Section
IIT gives a background of multifrontal method and TAUCS,
and then exploits the parallelism of TAUCS based on GPU.
The design of multiple task queues scheme is proposed in
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Section IV. A farther strategy is adopted to reduce the overall
computation time in Section V. Section VI shows experimental
results and Section VII summarizes the conclusions.

II. RELATED WORK

In recent years, sparse linear solvers on GPU have attracted
many researchers’ attentions.

George et al. presented an adaptive hybrid approach for
accelerating multifrontal sparse Cholesky factorization based
on a coupled CPU-GPU [11]. They put forward four policies to
distribute the workload between CPU and GPU. They obtained
significant improvements over WSMP [12] implementation.

Sao et al. proposed a hybrid CPU-GPU implementation
of a distributed memory right-looking unsymmetric sparse
direct solver [8]. It aggregated the collections of small BLAS
operations into larger ones, hid long-latency operations and
exploited parallelism between CPU and GPU. Experiments
verified that their method outperformed SUPERLU_DIST [13].

Lucas et al. utilized GPUs to accelerate the factorization
of large sparse indefinite matrices, which demonstrated that
GPU could dramatically accelerate the factorization relative to
one host CPU [14]. Vuduc et al. exploited multithreaded CPU
and GPU implementations of sparse Cholesky factorization,
which confirmed that the structure of input matrix determined
the performance [15]. Yu et al. proposed three strategies for
accelerating the factoring of unsymmetric multifrontal method
based on a hybrid CPU-GPU system, which achieved remark-
able result for computation-expensive problems [16]. Yeralan
et al. presented a sparse multifrontal QR factorization algo-
rithm on GPU, and experiments exhibited that their method
was up to ten times faster than a highly optimized method
on a multicore CPU [17]. Li et al. integrated multifrontal
method and cuBLAS to accelerate sparse direct solver, which
greatly improved the performance [7]. Ren et al. proposed
a GPU-based sparse LU solver [18], which optimized work
partitioning, and memory access pattern. Their experimental
results showed 1.49x speedup over multicore CPU.

However, most of the above methods rely on GPU to accel-
erate the operation of the large compute-intensive dense ma-
trices, and process the other matrices on CPU. Since multiple
frontal matrices can not be factorized in parallel on GPU, the
computation resources of GPU cannot be utilized sufficiently.
Our approach can take the utilization of GPU’s computational
resource into consideration, and propose multiple task queues
scheme. Meanwhile, threshold setting is adopted to improve
the performance of GEMM operation.

III. SYSTEM ANALYSIS AND DESIGN

In this section, the background information of multifrontal
sparse Cholesky factorization and TAUCS are introduced
briefly, and then the parallelism scheme of multifrontal algo-
rithm on GPU is exploited.

A. Analysis of Multifrontal Method and TAUCS

Multifrontal method is widely used in solving sparse linear
equations. The factorization procedure of sparse Cholesky
factorization based on multifrontal method can be summarized
in the following main steps:
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e  Forming matrix: row data is transformed into original
matrix A.

e  Preprocessing: The original matrix A is transformed
into a new matrix B by column pre-ordering to reduce
potential fill-ins (new non-zero in L but not in A).

e Symbolic factorization: B is decomposed into a series
of small dense matrices. The elimination tree and the
number of non-zero in matrix L are gotten in this
phase.

e Numerical factorization: Frontal matrix F™ and up-
date matrix U™ are processed. For each node in
elimination tree, firstly, frontal matrix is formed; then,
pivot rows and columns in the current frontal matrix
are factorized; lastly, update matrix is updated. The
main operation in numerical factorization involves
three arithmetic operations: Cholesky factorization,
trianglular matrix multiplication and symmetric rank-
k update.

e  Forward and Backward: After A is factorized into
the product LLT, x can be solved by a forward and
backward triangular solve.

As known to all, numerical factorization is the most
compute-intensive component in multifrontal method. The
experiments in [11] show that the processing of frontal ma-
trices and update matrices consume about 80% of the overall
computation time for large matrices. Therefore, we mainly
focus on the numerical factorization phase and take some
effective measures to accelerate the computation of frontal
matrices and update matrices in this paper.

TAUCS [10] is a C language library for sparse linear
solvers, in which multithreaded multifrontal supernodal sparse
Cholesky factorization has been implemented. The parallel
component of sparse multifrontal Cholesky factorization fac-
torizes multiple frontal matrices at the same time. This parallel
algorithm has been implemented with Cilk[19], which is a
language for multithreaded parallel programming. The pro-
grammer can concentrate on structuring the program to expose
parallelism, and the Cilk runtime system takes communication
protocols, load balancing, etc into account. TAUCS is an open
source library and has been implemented on CPU, so we can
modify it and carry it out on GPU to gain more efficient
performance.

B. Parallel Design of TAUCS base on Hybrid CPU-GPU

The main computation component of multifrontal algo-
rithm is the computation of F™ and U™, which involves
vast dense linear operations. The multiple frontal matrices
are factorized in parallel in TAUCS by multiple CPU threads.
BLAS is introduced to process the above dense operations. As
GPUs have been developed to be massively parallel computing
devices with excellent computation power and memory band-
width, we attempt to explore GPU to accelerate multifrontal
algorithm.

According to the design philosophy of TAUCS, the com-
putation focuses on F™* and U", and the processing procedure
of F and U™ can be divided into four parts in TAUCS:
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Fig. 1. The function call relationship in factoring one frontal matrix

e taucs_cilk_potrf: a Cholesky factorization (POTRF)
on the frontal £ x k block, where k is the size (the
number of consecutive rows and columns with the
same nonzero pattern in L) of supernode n;

e  taucs_cilk_trsm: solve a triangular linear system with
multiple right-hand-sides (TRSM) on matrices of size
m x k and k x k, where m is the number of non-pivot
elements of the last pivot column;

e taucs_cilk_herk: a symmetric rank-k update (SYRK)
on a matrix of size m x m, where the matrix is
symmetric and stored in lower or upper mode;

o taucs_cilk_gemm: a GEMM operation of the form
C = AB with dimensions A (my X n1), B (n1 X k1)
and C (m X kq), respectively. A, B and C' are all full
matrices.

In the above analysis, the factorization of frontal matrix
is made up of functions taucs_cilk_potrf, taucs_cilk_herk,
taucs_cilk_trsm and taucs_cilk_gemm. There are some depen-
dency relationship among the above four functions. From the
Fig. 1, we can observe that taucs_cilk_gemm is the foundation
of the other three functions, i.e. both of taucs_cilk_herk and
taucs_cilk_trsm directly call it and taucs_cilk_potrf calls it
indirectly, since faucs_cilk_potrf needs to call taucs_cilk_herk
and taucs_cilk_trsm. In addition, all of the four functions can
be called by themselves.

The dependency relationship among the above four func-
tions indicates that the large matrix processed by each function
is divided into a series of submatrices and then can be
processed in parallel. Therefore, the performance of multicore
CPU can be sufficiently utilized by BLAS. However, due to
the limited cores of CPU, the resource factorizing multiple
frontal matrices in parallel is not sufficient. While, excellent
performance can easily be achieved by these matrix operations
on GPU due to the outstanding computational power of GPU
and its specialized structure.

As a result of the vast computational power, GEMM oper-
ation can be suitably implemented on GPU. The size of a node
is limited, and Cholesky factorization on a k x k matrix cannot
sufficiently utilize the computing resource of GPU, therefore,
POTRF should be implemented on CPU. Both of TRSM and
HERK involve the operations of triangular matrix, and the
computation time by CPU outperforms GPU because of the
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GPU process GEMM' GEMM
GPU process GEMM? = GEMM

]
GPU process GEMM? — GEMM
GPU process GEMM? = GEMM

Fig. 2. System design of numerical factorization

overhead of data transfer on GPU. Based on this analysis,
we draw the system design of numerical factorization based
on CPU and GPU, as shown in Fig. 2. The factorization of
single frontal matrix generates several GEMM operations. So,
when multiple frontal matrices are factorized in parallel, there
will exist a large number of GEMM operations to process.
Therefore, how to perform plenty of GEMM operations more
efficiently?

We attempt to explore the parallelism of multiple GEMM
operations on GPU with the following steps:

o A multiple task queues scheme (MTQS) is proposed
to solve GEMM operations in parallel. It is difficult
to perform GEMM operations in parallel on GPU
by current GPU programming paradigm. Although
cuBLAS achieves excellent performance to accelerate
single GEMM operation and can be executed asyn-
chronously, only data transfer and kernel launching
can be executed in parallel, as shown in Fig. 3(a).
Therefore, this method can not satisfactorily address
the problem of insufficient GPU resource utilization.
On the contrary, multiple task queues scheme can
execute multiple GEMM operations in parallel, as
shown in Fig. 3(b), which makes GPU computation
resource utilization more adequate.

e In order to achieve high performance, the GEMM
operations involving large computation scale should
be processed on GPU because the overhead of data
transfer can be overlapped. On the contrary, the other
GEMM operations should be processed on CPU. In
order to make the factorization of frontal matrix more
efficient, a threshold is set to decide whether GPU
should be used or not.

IV. DESIGN OF MULTIPLE TASK QUEUES SCHEME

A. Task Queue Scheme

Chen et al. developed a task queue based load balancing
scheme for GPU systems [20]. In order to execute multiple
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Fig. 3. Execution mode of GEMM operations on current GPU programming
paradigm and MTQS

tasks, they launch a persistent kernel with B TBs (thread
block), where B is the maximum number of concurrently
active TBs that a specific device can support. The host process
inserts task to task queue. The kernel takes out tasks from
task queue and executes them according to task information.
The document [20] adopted two different CUDA streams to
implement the task queue scheme. One stream is used for
kernel execution, and the other stream is used for performing
queue operations.

However, there are some deficiencies in the task queue
scheme. First, only one stream is adopted to perform queue
operations, when this stream is waitting for the result from
device, the other tasks can not be processed until data transfer
from device to host is finished, causing the serious performance
issue; second, in order to determine the non-empty task queue,
each TB has to check all the task queues, which will cause
additional overhead on empty task queues, in addition, some
measures must be taken to avoid multiple TBs accessing the
same task queue; last, if the host needs to run in multithreaded
environment, this scheme will not work correctly.

Although the above task queue scheme has some disadvan-
tages, it can also be introduced to optimize multifrontal method
on GPU. In order to make task queue scheme more efficient,
some measures are taken to overcome these disadvantages, and
the optimizing scheme is called multiple task queues scheme.

B. Multiple Task Queues Scheme
1) System Design

According to the characteristic of TAUCS, there are mul-
tiple threads running in host concurrently. In order to execute
multiple GEMM operations in parallel, n threads are created
on host and each thread processes one GEMM operation,
where n is the number of host processors. When one GEMM
operation is ready, the corresponding thread will choose one
empty queue to place matrices. When data transfer from host to
device is finished, the host thread will inform the device kernel
to perform GEMM operation, and it goes into the waiting
state. Then the device kernel fetches matrices from the queue
and executes them by groups of threads, which is called task
execution unit (TEU). When the computation on the kernel is
finished, the TEU will inform the host thread to get the result
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Fig. 4. Multiple task queues scheme

and it enters into the waiting state. Then the host thread copies
matrix from device back to host, and processes other GEMM
operation. After all GEMM operations are executed, the host
thread will enqueue signalling task to terminate the kernel. The
multiple task queues scheme is illustrated in Fig. 4.

2) Difficulties

If we want to implement the scheme of multiple task
queues, the following issues must be solved.

The first issue is how to avoid multiple host threads
accessing the same queue. Before host thread inserts a task,
it needs to be confirmed which queue is empty. As Cilk is
used for task scheduling, each queue can not be assigned to
a specific host thread. Therefore, in order to determine the
non-empty queue, each host thread has to check all queues. If
multiple host threads access the same queue, the content of the
queue is uncertain, so the ultimate result is uncertain. Lock can
guarantee that multiple host threads choose different queues,
but it is very costly because of the utilization of blocking
synchronization mechanism.

The second issue is how to reduce the overhead for
searching the non-empty queue on GPU. If each TEU searches
the non-empty queue by checking all queues, it has to spend
extra time on empty queues, causing the performance issue.
At the same time, multiple TEUs may operate the same queue
resulting in data race. Although atomic functions can ensure
the correctness on operating the same queue, in order to
confirm the non-empty queue, all the queues must be checked.

Atomic functions can ensure the correctness on access-
ing the same queue by multiple host threads. If one host
thread needs to make sure which is the non-empty queue, the
function __sync_bool_compare_and_swap is called to check
whether the queue is empty. When one non-empty queue is
chosen, host thread will transfer data from host to device.
Once the computation on GPU has completed, the function
__sync_fetch_and_sub is called to reset the queue to be null.
According to the design philosophy of atomic functions, they
will not be interrupted until one command has completed.
Therefore, although multiple host threads try to access the
same queue, only one can actually enter the queue. This solves
the first issue.

In order to decrease the overhead for seeking the non-
empty queue, the best choice is to avoid empty queue as
much as possible. Based on the mentioned above, the optimal
strategy is that each TEU has a specified queue. First, the host
thread inserts the task to empty queue, and then it informs
TEU to take out the task from the queue and waits for the



computation result from TEU, finally, the TEU gets the task,
processes it and returns the result to host thread. This solves
the second issue.

V. GEMM DISTRIBUTION BETWEEN CPU AND GPU

There are vast GEMM operations in TAUCS, some involve
large computation cost and some involve small computation
cost. As the excellent computation power, the GEMM opera-
tion that involves large scale matrix can be performed better
on GPU. Small scale matrix can not sufficiently utilize GPU’s
computation resources and there is data transfer overhead
between CPU and GPU, therefore, the GEMM operation that
involves small scale matrix should be performed on CPU.
Based on the above analysis, a threshold should be set to
determine whether a GEMM operation should be performed
on GPU or not.

Let T, denote the time on CPU for GEMM operation,
while T}, denotes the same in the case of GPU. The time for
host CPU implementation can be estimated as (1):

N
Tcpu = !

ey

Qepy

The basic GPU implementation includes data copy costs
as (2):

N Ny
Topn = —— + — 2
gpu Qgpu B ( )
where N7 = m; - ny - k1 is the number of operations for

GEMM, and Ny = mq-k1+nq1-k1+2-mq-nq is the size of
data transfer. o, and oy, represent the average computing
speeds for GEMM operation on CPU, GPU respectively. 3
represents the average speed for data transfer on CPU-GPU.

When T.,, is greater than or equal to T,,,, GEMM
operation should be performed on GPU, and the relationship
among mj1, ni, k1 is as (3):

Tcpu Z Tgpu (3)
Then put (1), (2) and Ny, N, into (3), and make some
conversion to form (4):
1 1 2
—+ —+—<
miy s kl

1 1

Agpu

B ( ) “

Aepuy

According to the mathematical theorem, (4) can be con-
verted into (5):

1 1 1 2 2
B-( - )> —+—+-—>37 (5)
Aepy Agpy m1 ni kl mi-ny - kl
Then make some conversion to form (6):
54-a3 o
my-ny -k > RN (6)

(Qgpu — tepu)? - B

We denote the latter part of (6) as Ny, i.e., the threshold
of determing if GPU is used.

Equation (6) provides theoretical foundation for GEMM
operation distribution between CPU and GPU. For each
GEMM operation, Ny with [V, are compared to decide whether
GPU should be applied.
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TABLE L THE DESCRIPTION OF TESTING MATRICES
Name Dimension NNZ Sparseness Application
minsurfo 408062 203622 0.999878 Optimization
2cubes_sphere 1014922 1647264 0.999840 Electromagnetics
thermomech_dM 2043162 1423116 0.999966 Thermal
parabolic_fem 5258252 3674625  0.999987 Computational
fluid dynamics
apache?2 7151762 4817870 0.999991 Structural
ecology?2 9999992 4995991 0.999995 2D/3D
VI. EXPERIMENTAL RESULTS

In this section the experimental configuration and testing
cases are described, and then performance reports on four
testing schemes are presented.

A. Experimental Environment

All experiments are run on GPU of NVIDIA Geforce
GTX460, whose CUDA capability is 2.1 and GPU clock rate
is 1.55GHz. The testing system is equipped with an Intel Core
17 950 CPU with 8 processors. The operating system is 64-bit
Red Hat Enterprise Linux 5.9 with Linux kernel 2.6.18 and
NVIDIA CUDA runtime version is 4.0.

The experimental testing matrices shown in Table I are
selected from Tim Davis’s sparse matrix collection [21]. All
of them are derived from real applications, such as optimiza-
tion, electromagnetics, thermal, computational fluid dynamics,
structural and 2D/3D problem. The terms in Table I consist
of name, dimension, numbers of non-zero (NNZ), sparseness
(the proportion of non-zero in overall numbers) and application
area.

There are four testing schemes to be performed on each
testing case:

e TAUCS_BLAS: it is the baseline scheme, based on
TAUCS Version 2.2, which implements the multi-
threaded Cholesky factorization on CPU. The com-
putation of vectors and matrices in the course of
factorization of frontal matrix are solved by BLAS.

TAUCS _CUBLAS: it is the same as TAUCS_BLAS,
but GEMM operation with large computation scale
is solved by cuBLAS and GEMM operation with
small computation scale is solved by BLAS. As the
cuBLAS can be executed asynchronously, the over-
head of data transmission can be overlapped. When
multiple GEMM operations need to be processed,
CUDA streams can be used to overlap the overhead
in these GEMM operations.

TAUCS_MTQS: it is the proposed MTQS based on
TAUCS in the paper, and all GEMM operations are
performed on GPU. The programmer cannot modify
the implementation details of cuBLAS, which may
cause the insufficient utilization of GPU resources.
Therefore, MTQS is proposed to execute multiple
GEMM operations on GPU in parallel.
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Fig. 5.

e TAUCS_MTQS_TA: it is the same as TAUCS_MTQS,
but GEMM operations are scheduled dynamically on
CPU and GPU based on computation scales.

B. Performance Evaluation

Fig. 5 shows the performance comparison for different
testing matrices based on four testing schemes. We plot the
speedup as the vertical axis in the figure. The horizontal axis
represents the testing scheme. The speedup Sp is defined as

(7):

T'low
S, = =% @)
P Tfast
where Ty, represents the computation time of

TAUCS_BLAS and Ty, represents the computation time of
TAUCS_CUBLAS, TAUCS_MTQS or TAUCS_MTQS TA. As
TAUCS_BLAS has implemented the multithreaded Cholesky
factorization, the computation time in Fig. 5 derives from the
computational performance of 4 threads. The computing time
of T;0 1S normalized to the baseline.

Fig. 5 shows that comparing with TAUCS_BLAS,
TAUCS_MTQS_TA has a significant performance improve-
ment, which achieves up to more than 2x speedup in
each testing case, specially, about 3x speedup is achieved
in parabolic_fem and ecology2. At the same time, all
the experimental results show that the performance of
TAUCS_CUBLAS outperforms TAUCS_BLAS, which has
achieved to 1.5 ~ 1.95x speedup. Both of TAUCS_CUBLAS
and TAUCS_MTQS_TA implement the acceleration of GEMM
operation on GPU, but as the difference of the implemen-
tation mechanism, the performance of TAUCS_MTQS_TA is
better than TAUCS_CUBLAS, achieving up to approximate
2x speedup. All GEMM operations are performed on GPU
in TAUCS_MTQS, and the overhead of data transfer can not

(e) apache2
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be overlapped for small computation scale GEMM operations,
therefore, the performance of TAUCS_MTQS_TA is also better
than TAUCS_MTQS. With the increase of the proportion of the
large computation scale GEMM operations, the performance
of TAUCS_MTQS will be better due to that a majority of
GEMM operations are performed on GPU. On the whole, with
the increase of matrix dimension, TAUCS_MTQS_TA achieves
better performance, which can be observed in Fig. 5.

With the development of GPU compute capability, data
transfer and kernel execution can be performed in parallel.
In the newest version of cuBLAS, it can be executed asyn-
chronously. When multiple GEMM operations need to be
performed, the overhead of data transfer can be hidden. Benefit
from the powerful computational of GPU, the computing time
of GEMM operation on GPU is less than the computation
time on CPU, causing the performance of TAUCS_CUBLAS
outperforms TAUCS_BLAS. However, when GEMM operations
associated with kernel launching, kernel termination, resource
allocation and resource release are performed by cuBLAS,
the performance of TAUCS_CUBLAS will be degraded, mean-
while, multiple GEMM operations can not be executed on GPU
at the same time, consequently, it only achieves 1.5 ~ 1.95x%
speedup.

In order to make full use of GPU resource and reduce
the time of resource allocation and release, TAUCS_MTQS_TA
makes several TBs as a TEU, therefore, multiple GEMM
operations can be performed concurrently on device kernel.
Compared with TAUCS_CUBLAS, the computation time of
multiple GEMM operations on GPU can be overlapped in
TAUCS_MTQS_TA. As the allocation of storage space con-
sumes much time, it will be allocated space before frontal ma-
trix is factorized. The overhead of TAUCS_MTQS TA consists
of data transfer and kernel execution, when multiple GEMM
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Fig. 6. Performance comparison on multithreaded environment

operations are performed concurrently by multiple TBs, data
copy overhead can be overlapped as much as possible. For
example, if there are 100 GEMM operations need to be
processed on GPU, the ratio of data transfer overhead and
kernel execution cost is 1 to 2, t; represents the overhead
of kernel launching, kernel termination, resource allocation
and resource release in a GEMM operation and ¢, represents
the overhead of data transfer in the same case, so the overall
computation time of TAUCS_MTQS_TA and TAUCS_CUBLAS
are (t1+103¢2) and (100¢1+202t5), respectively. Obviously, the
performance of TAUCS_MTQS_TA exceeds TAUCS_CUBLAS.

Fig. 6 shows the computation time of numerical factor-
ization based on different number of host threads for different
test problems. There are two curves in Fig. 6, corresponding to
TAUCS_BLAS and TAUCS_MTQS_TA respectively. The varia-
tion tendency of curve indicates the variation of computation
time on different number of host threads. The vertical axis
shows the computing time and the horizontal axis represents
the number of host threads.

The two curves have the similar variation tendency in each
testing case. With the exponential increase of the number of
threads, the computing time degrades exponentially. However,
the variation tendencies on 4 threads and 8 threads do not
meet this rule: the computation times on them have not too
much differences. This is caused by lots of extra costs, e.g.
for 8 threads configuration, 8 threads are created, but there
are no enough GEMM operations needing to be performed
concurrently, therefore, the overhead of unnecessary threads
communication and synchronization brings extra costs. The
computation scales can affect the computation time more
easily, so with the increase of matrix dimension, the computing
time will also increase.
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Fig. 7. Processing time of GEMM operation on CPU and GPU

C. GEMM Performance on CPU and GPU

In order to respectively show the computation times of
different scales of GEMM operations on CPU and GPU, we
process a lot of different scale GEMM operations and then
record the computation time of each sample. Finally we give
the statistic results in Fig. 7. The horizontal axis represents
the variation range of /N; and the vertical axis represents the
computation time on CPU and GPU, respectively.

With the increase of Ny, T¢,, increases approximate lin-
early. T, is not only related to [Ny, but also related to my, ki,
and n;. For two different scale GEMM operations G; and Go,
even though the calculated amount N;_; from G is less than
Ni_5 from Go, the computation time Ty, —1 from G may
be greater than T, _» from G,. But generally speaking, with
the increase of Ny, Ty, increases. We do some experiments
to achieve the average performance for GEMM operation on
CPU and GPU, respectively. The experimental result indicates
that the values of oy, and agy,, are 9.53 GFlops and 123.63
GFlops. We also check the average bandwidth 5 achieved for
copying matrix between CPU and GPU, which is observed to
be approximately 1.7 GB/s. We get the theoretical value of
N, by putting acpy, qgp, and B into Equation (6), and it is
verified that the value of N; consist with intersection point of
curves in the Fig. 7.

In order to verify whether the theoretical value of N, is
reasonable or not, we take other two values N;_; and N;_,
as threshold and perform experiments with TAUCS_MTQS_TA
on two testing cases, where N;_; is less than IN; and N;_, is
greater than NV;. Fig. 8 shows the performance comparison
based on Ny, N;_;, N;_4. Obviously, when N; is set as
threshold, the performance of TAUCS_MTQS_TA is better than
the other two values as thresholds. Because N;_; is less than
theoretical value, there are much more small scale GEMM
operations processed by GPU. As the overhead of data transfer
can not be overlapped for small scale GEMM operations,
the performance of TAUCS_MTQS_TA based on N;_; will be
degraded. Similarly, due to N;_, is greater than theoretical
value, there are much more larger scale GEMM operations
processed by CPU. As the computational power of CPU is not
enough, CPU needs to spend more time performing large scale
GEMM operations, the performance of TAUCS_MTQS_TA
based on N; is better than N;_,. Therefore, the theoretical
value of N; is resonable.
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VII. CONCLUSIONS AND FUTURE WORK

It is the most compute-intensive component to solve large
sparse SPD linear equations in many scientific computing
applications. There is no highly efficient implementation of
sparse Cholesky factorization on GPU. In order to more
efficiently solve large sparse SPD linear equations, a hy-
brid CPU-GPU algorithm of sparse Cholesky factorization
is presented based on multifrontal method. Two strategies
are proposed to accelerate it: multiple task queues scheme
is adopted to perform multiple GEMM operations in paral-
lel on GPU; a calculating quantity threshold is set to dis-
tribute GEMM operations to CPU or GPU based on com-
putation scales. Experimental results show that our approach
(TAUCS_MTQS_TA) outperforms the implementation of BLAS
(TAUCS_BLAS) and cuBLAS (TAUCS_CUBLAS), achieving
up to 3.15x and 1.98x speedup, respectively. In the future,
multiple task queues scheme based on multi-GPU will be
adopted to decrease the overall computation time of numerical
factorization of multifrontal method.
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