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Abstract—The scale of cloud services keeps increasing over
time, significantly introducing huge challenges in system man-
ageability and reliability. Designing coordination services in cloud
is the right track to solve the above problems. However, existing
coordination services (e.g., Chubby and ZooKeeper) only perform
well in read-intensive scenario and small ensemble scales. To
this end, we propose Giraffe, a scalable distributed coordination
service. There are three important contributions in our design.
(1) Giraffe organizes coordination servers using interior-node-
disjoint trees for better scalability. (2) Giraffe employs a novel
Paxos protocol for strong consistency and fault-tolerance. (3)
Giraffe supports hierarchical data organization and in-memory
storage for high throughput and low latency. We evaluate Giraffe
on a high performance computing test-bed. The experimental
results show that Giraffe gains much better write performance
than ZooKeeper when server ensemble is large. Giraffe is
nearly 300% faster than ZooKeeper on update operations when
ensemble size is 50 servers. Experiments also show that Giraffe
reacts and recovers more quickly than ZooKeeper against node
failures.
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I. INTRODUCTION

With immensely increasing scale of cloud services, it is
common that a cloud service is built on tens of thousands
of machines within one data center or across multiple data
centers, or even fully distributed commodity machines (e.g.,
Bitdew [1], SlapOS 1 ), which introduces huge challenges to
manageability and reliability in the cloud. On the one hand,
it is non-trivial to enable such a large or global scale system
to update configuration or architecture, due to the inevitable
heavy burden of changing system components and probable
inconsistent membership of services introduced. On the other
hand, the bottleneck issue will raise up significantly, resulting
in the frequent inconsistent states inside the whole system and
thus complicated recovery problem from system fail-over. For
example, jobtracker of Hadoop [2] suffers serious bottleneck
problem when managing thousands of slave machines in a
Hadoop cluster.

1https://www.slapos.org

Recently, coordination service has become the key technol-
ogy to solve the above problems. It is often used to achieve bet-
ter scalability, manageability, and reliability in different cloud
systems, like Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and other large-scale distributed systems. A
whole cloud system usually contains multiple loosely-coupled
self-organizing subsystems, and it is supposed to possess the
following five important features.
• Ease-of-use management: One can efficiently query the

basic and common meta services like message queue
service in the system. For instance, many NoSQL
databases and transactional systems [3], [4] use coor-
dination service components for metadata management,
name service and load balancing. OpenStack adopts
message queue service to smoothen the management
which is also transparent to users.

• Strong consistency: Essential information
(such as membership and leader election) is
dynamically shared/transferred across all different
subsystems/components, to guarantee the consistent
system states. The latest release of Hadoop, YARN
[5], for example, migrates the keepalive mechanism
with most of Remote Procedure Calls (RPCs) into
ZooKeeper to disperse the burden of jobtracker.

• High robustness: The data under the management of
the coordination service should always be kept available
even in case of component failures in the system.

• High scalability: A coordination service should be able
to scale gracefully with the increase of the ensemble
size.

• High Read/Write performance: A coordination service
should provide high performance in both read-intensive
and write-intensive scenarios.

Basically, most of the existing designs of coordination ser-
vice (such as [6], [7], [8], [9], [10], [11], [12]) have extensively
explored the first two features, but not for the last three.
Existing coordinating protocols, such as Paxos, Fast Paxos,
and Zab [13] are not, in general, the best consensus protocol
for the wide-area or dynamic environments. For example, the
Zab in Zookeeper is leader-centric, and the leader does most
of the work. When one leader crashes, the system will not
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be available until a new leader is elected, and the recovery
time is highly subject to system scale. The recovery time of
zookeeper with the scale of 9 is three times of the scale of 3. In
general, the operations of coordination service can be simpli-
fied into two types: read operation (getting information from
coordination service component) and write operation (writing
or publishing information to the coordination service compo-
nent). The existing systems cannot deal with write-intensive
scenarios very well. For example, Chubby [10] provides a
lock semantic and preserves both strong consistency and high
availability for applications in a loosely coupled distributed
system. ZooKeeper [11] provides a wait-free coordination
service interface which achieves better read performance than
Chubby, but with a relaxed strong consistency model. Both
of them adopt a primary-backup model, which is subject to
a central-controlled consensus protocol. A primary process
(a.k.a., leader) collects all of information/operations and sends
them back to replicas in a particular order. This will definitely
cause a serious bottleneck in a large scale write-intensive
system. As we evaluated, the write performance of Zookeeper
with scale size = 21 (i.e., using 21 slave nodes) will be
degraded down to 50% in comparison to the scale size = 3.
That is, Chubby and ZooKeeper face serious scalability issues
in the write-intensive scenarios.

To address the issues listed above, we propose a novel
coordination service called Giraffe2. There are three key con-
tributions in our design.
• Giraffe organizes memberships using interior-node-

disjoint forest for better scalability. In the forest, every
tree has the same set of tree nodes, but the interior
nodes of one tree must be the leaves of others. Giraffe
nodes are partitioned into groups with different unique
identifications (denoted as colors in the papers) and built
into trees with the interior-node-disjoint property. Such
a hierarchical topology can disseminate information re-
liably and dynamically achieve load balancing.

• A scalable consensus protocol based on a novel Group
Paxos algorithm is implemented in Giraffe for strong
consistency and fault-tolerance. Similar to Chubby and
ZooKeeper, read operations are processed locally in
Giraffe, while the update operations in Giraffe will
be dynamically synchronized among replicas. Giraffe
guarantees the order of transactions in each group as well
as the global order in the whole system. To guarantee
the global order, our designed Group Paxos algorithm
adopts multiple coordinators to run the proposal phase
in different groups and then determines the vote globally.
This can effectively guarantee the total ordering property
of broadcast transactions and also achieve better load
balancing than the primary-backup model. It also re-
duces overheads of coordinators and performs correctly
even in case of node insertion/departure.

• Hierarchical data organization and in-memory storage
are improved in Giraffe for high throughput and low
latency. Giraffe provides both blocking and non-blocking
primitives to the cloud applications. Different from the

2The source code is available at https://github.com/haohonglin/Giraffe

server-client service in Chubby and ZooKeeper, Giraffe
provides advanced service models for applications in
different scenarios. Giraffe extends service interface to
both local and remote application interfaces to provide
coordination services for servers and applications. As
mentioned in ZooKeeper, when using blocking primi-
tives, slow or faulty clients may have negative impact on
the performance of healthy and fast clients. Therefore,
blocking primitives (e.g., lock) are enabled when Giraffe
is implemented as an inner-component of an application.

We evaluate Giraffe and ZooKeeper on the High Perfor-
mance Computing Cluster (HPCC) 3 platform. Experiments
show that Giraffe significantly outperforms ZooKeeper in
update operations, for a large scale and dynamic distributed
computing environment. In absolute terms, it is nearly 300%
faster than ZooKeeper in write operations when the scale
size is 50. Giraffe also has more stable update throughput
than ZooKeeper when the ensemble size increases, and also
recovers quickly from node failure.

The rest of this paper is organized as follows: Section II
presents the system overview of Giraffe. Section III describes
the design and implementation. Section IV presents the exper-
imental results. Related work is discussed in Section V and
we conclude the paper in Section VI .

II. SYSTEM OVERVIEW

Figure 1 shows the system architecture of Giraffe.
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Fig. 1: System architecture

There are four building blocks in the system:
• Membership Management provides the construction

and management of hierarchical Giraffe server topology
for dynamic membership. In this part, we take into
account reliability and scalability issue. To minimize
the data loss when some Giraffe servers fail in data
dissemination, we employ a hierarchical topology -
interior-node-disjoint trees. In the topology, there are
several trees and each node is a Giraffe server existing
in all the trees. So there must be several data broadcast
chains through which messages can be delivered from
roots to one Giraffe server. So one Giraffe server can
get the broadcast data even some servers are failed in
the broadcast chains. Unlike other forest topologies, we
exploit a near-balance constructing mechanism. In this

3http://grid.hust.edu.cn/hpcc
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mechanism, we minimize the change of membership in
the trees to reach the expected balance.

• Atomic Broadcast exploits a novel Paxos protocol for
strong consistency and high durability to preserve the
total order of update events among replicas. We propose
a novel Paxos variant, called Group Paxos, which is
based on the interior-node-disjointed trees. Group Paxos
addresses two issues: quorum size4 and coordinator
failure discussed in [7], [14], [15]. In Group Paxos, we
divide acceptors5 into several groups, and use multiple
group coordinators to make votes in parallel in different
groups and globally. Upon the Group Paxos, we imple-
ment atomic broadcast mechanism to commit transaction
updates in the sequential order among all servers.

• Application Service provides both coordination service
semantics and application interface. Giraffe provides for
applications a simple file system interface, which is
handled by the local/remote interface component. Based
on the low-level file interface, the local/remote interface
can build high-level semantics regarding queue and lock.
Through the local/remote interface, applications store in-
formation (e.g., metadata and configuration) to coordina-
tion service core of Giraffe. Moreover, applications can
get data from Giraffe and observe the data modifications
by the call-back mechanism, so that applications can
implement many distributed algorithms without blocking
the application. In the coordination service core, the data
of applications is organized in a hierarchical key-value
structure in memory, where the key is equal to a file path
and the value is the corresponding file content. Once
applications create or modify data, Giraffe synchronizes
the updates throughout the Giraffe cluster using a novel
consensus protocol of atomic broadcast block.

• Network Transfer Block provides a high performance
transformation protocol and a simple development inter-
face for high-level network applications.

III. DESIGN AND IMPLEMENTATION

In this section, we first discuss the membership manage-
ment protocol to achieve a scalable ensemble for coordination
service. And then we discuss the consensus protocol which
guarantees the strong consistency among the Giraffe ensemble.

A. Membership Management Protocol
A dynamic membership management protocol is imple-

mented to build the interior-node-disjoint trees for reliable data
transmission and load balancing. Furthermore, the membership
management provides topology that group paxos requires and
improves the efficiency of commitments of group paxos.
Different from other load balance algorithms, such as DHT
and round-robin, interior-node-disjoint trees is able to deliver
data reliably to all the nodes even some are in failure. Also
the hierarchical topology is more helpful to run group paxos
and to relieve the overhead of the central node, e.g., leader.

4slow vote performance of paxos with big quorum size.
5acceptors mean the processes of making votes for messages

Two issues are addressed in the membership management
protocol: 1) membership registration and notification mecha-
nism which guarantees the consistent sequence of membership
updates inside Giraffe cluster and even distribution of nodes
in trees; 2) interior-node-disjoint trees construction which is a
solution for forest deployment and reliable delivery network.

Membership Registration and Notification. The Giraffe
nodes are constructed into interior-node-disjointed trees. Each
tree has a unique identification, called color. Each Giraffe node
has two properties: 1) IP address for exchanging membership
information with others and 2) node color for denoting which
tree the node belongs to. In Giraffe cluster, the central manager,
called Rooter, determines the number of the trees by con-
figuration, promotes membership version if the membership
changes, generates the color information for new nodes and
broadcasts membership updates. Initially the first Giraffe node
in the cluster is configured as Rooter.

Giraffe uses version membership and central management of
Rooter to register new member and update membership. The
view of each membership is associated with a version number.
When a membership change occurs because of the registration
or departure of some node, Rooter increments the membership
version and disseminates the update as well as the new version
to other nodes. Rooter holds the whole cluster membership
view, so it is easy to manage color distribution. When a new
node arrives, it firstly retrieves the membership view from
an existing node, and then requests color information from
Rooter by sending a message. This message includes its IP
and recent membership version that it has fetched from the
other node. Rooter compares its current version with that in
the request message and then sends membership update and
color information back to the new node. As the registration is
managed centrally, Rooter holds the latest membership view
in the cluster, and so the new node is able to build the latest
view by incrementing the version obtained from Rooter.

Node’s failure or departure is detected by periodic heartbeats
between its parents and its children. In the interior-node-
disjoint trees, a node is either an interior or leaf member in
every tree, so it may have several parents and children. For
failure detection a node is assigned a lease, which is typically a
timer, to detect aliveness of the node. A node needs to heartbeat
with its parents and children within its lease. Otherwise, it
will be treated as expired and other nodes will notify Rooter,
and then Rooter distributes such information throughout trees.
Compared with primary-backup systems, Rooter acknowledges
node status from other nodes and so the overhead of Rooter
for failure detection is reduced. If the Rooter fails, the root of
a tree which maintains the latest membership view among the
root group will be elected as the new Rooter.

Membership updates and other messages are delivered along
the interior-node-disjoint trees. We duplicate one message into
several messages and deliver each message along each tree. So
there are several paths for a node to get one message. However,
each node has a footstep in every tree, causing the message to
be recursively transferred endlessly. To address this problem,
when deliver a message in a tree, we attaches a tag containing
the tree color to the message. A node delivers messages to its
children only when it has the same color with the message tag.
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Fig. 2: add new red node into a tree with red color

This solution prevents leaf nodes from delivering message to
nodes of other trees.

Construction of Hierarchical Topology. The number of
children of each node and the height of each tree significantly
impact load balancing, throughput and latency. If trees are
high, it takes long to deliver information from the root to
leaves. If a node has more children, it would suffer more loads
on information dissemination. We use MAX COLOR NUM
to denote the max number of trees in the forest and use
MAX CHILDREN SIZE to denote the max number of children
a node can have. These two attributes are set by Rooter.

A node in the forest contains the following attributes: color,
IP, parent, children, descendants and height. Color is an
integer to determine which tree a node belongs to, and IP
is the address. Parent is a 1-dimensional array that contains
node’s parents in each tree. Children is a 2-dimensional array
in which the items are the node’s direct children in each tree.
Descendants is a 1-dimensional array that contains the number
of its descendants in each tree. Height is an array containing
the distance of the node to leaf in each tree. Both descendants
and height are essential attributes to indicate the overhead of
dissemination and the message latency within each sub-tree.

How to build a forest topology is described as follows.
Basically, there are two essential functions to build interior-
node-disjoint trees: insert into tree and remove from tree,
whose pseudo-codes are shown as Algorithm 1 and Algorithm
2 respectively. we perform the two functions into each tree in
the forest when a node is added to the forest or removed from
the forest. There are two basic steps in adding a new node to
each tree in the forest: (1) select the shortest sub-tree with the
smallest height; (2) continue to select the node which has the
fewest descendants in the sub-trees. Then, the selected node
will serve as the parent node of the new node to insert. When
removing a node, we select a proper sub-node to replace it. In
the procedure of building the forest topology, each node keeps
track of the height and the descendant number of its children.

Function insert into tree, as shown in Algorithm 1 and
Figure 2, is triggered upon receiving information from the
registered node. A node is added into a tree based on three
principles:

1) a node not with tree.color tends to be a child of the
node with tree.color (lines 3-11 in Algorithm 1).

2) new node tends to be a child of unsaturated node with
tree.color (lines 12-16 in Algorithm 1).

3) if a node is saturated, then new node tends to be a
descendant of its child who has least height or fewest
descendants (lines 17-19 in Algorithm 1).

Algorithm 1 insert node into tree
1: procedure INSERT INTO TREE(tree, newNode, color)
2: root = tree.root
3: if root.color != color and newNode.color == color then
4: newNode.children[color].first← root
5: root.parent[color]← newNode
6: tree.root← newNode
7: while newNode.children[color].size < MAX CHILDREN

SIZE do
8: move node from root.children[color] to newNode.

children[color]
9: end while

10: return
11: end if
12: if root.children[color].size < MAX CHILDREN SIZE then
13: root.children[color][nextchild]← newNode
14: newNode.parent[color]← root
15: return
16: end if
17: n = select a node in root.children[color] which does not belong to the

color set, or which has the least height or descendants
18: st = sub-tree of the tree whose root is n
19: INSERT INTO TREE (st,newNode,color)
20: return
21: end procedure

rep lacea
b

c

b

c

st1 st1st2 st2st3 st3'

Fig. 3: Node departure in a tree with yellow color

We give an example to illustrate how to insert a new node
to the tree, as shown in Figure 2. We suppose the new node is
red, the three ought to be red and MAX CHILDREN SIZE
is 3. a. The root of tree is not red so there are not red
nodes in the tree. The new red node will become the new
root and other nodes are its children or descents. b. The root
of the tree is red and the number of children of the root is
less than MAX CHILDREN SIZE. Then the new red node
will become the child of the root. c. The root of the tree
is red and the number of its children already reaches the
MAX CHILDREN SIZE. Then a sub-tree st3 is picked from
the sub-trees of the root and insert the new node into st3. st3
should have the least height or fewest descendants among all
the sub-trees.

Function remove from tree, as shown in Algorithm 2, is
triggered upon receiving notification that a node failed. To
remove a node, one node to replace the failed node must be
selected from the children set of the failed node (lines 2-4 in
Algorithm 2). When replacing the failed node, if other children
of the failed node are linked directly to the selected one, it
may lead to over saturation (lines 5-9 in Algorithm 2). In this
case, the sub-tree of the selected node needs to be adjusted.
As shown in Figure 3, a given sub-tree ST with yellow color
has a failed root a. st3 is highest among all sub-trees of node
a. In this case, node b, the root of st3 is selected to replace a.
And its child c becomes the root in the adjusted sub-tree st3.

B. Consensus Protocol
Group Paxos. Group Paxos is a new Paxos variant we

propose. It aims to reduce the overhead of central node (leader)
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Algorithm 2 remove node from tree
1: procedure POP ROOT(rmNode,color)
2: n = the node which has the most height or descendants among

rmnode.children[color]
3: remove n from rmNode.children[color]
4: move rmNode.children[color] to nodeSet
5: while nodeSet.size < MAX CHILDREN SIZE - 1 do
6: move node to nodeSet from n.children[color] which has the least

height or descendants
7: end while
8: newRoot = POP ROOT(n,color)

9: add newRoot into nodeSet and let nodeSet as n.children[color]
10: return n
11: end procedure
12: procedure REMOVE FROM TREE(tree,ip)
13: rmNode = the node in the tree of which node.ip is ip.
14: rpNode = POP ROOT (rmNode,tree.color)
15: if tree.root is rmNode then
16: tree.root← rpNode
17: else
18: parent← rmNode.parents[color]
19: remove rmNode from parent.children[color]
20: insert rpNode into parent.children[color]
21: end if
22: return rmNode
23: end procedure

even when the scale of acceptors is increasing. It assembles
acceptors into groups and hence reduces the number of nodes
that central node manages directly. It is useful to solve the
performance and scalability issues caused by central node in
other paoxos protocols. And also Group Paxos achieves better
robustness since Group Paxos recovers more quickly than other
paxos algorithms when central node is failed.

Group Paxos is implemented on interior-node-disjoint trees,
as shown in Figure 4.

• Group: the collection of nodes which are of the same
color. The number of groups is equal to the numberof
trees in forest-topology.

• Group coordinator(gc): the root of a tree. The group
coordinator is supposed to lead vote in its group and
coordinate votes with a global leader. It is also a learner.

• Group acceptor(ga): the acceptor in a group, typically,
the interior node of a tree. It is also a learner.

• Global leader(gl): the leader of all the group coordi-
nators to guarantee order properties of proposals and
transactions.

In the forest with different colors, we define a group
with color k as Group-k or g-k, the acceptors number of
Group-k as Group-k-size, the group coordinator of Group-
k as Group-k-coordinator or gc-k and the group acceptor as
Group-k-acceptor or ga-k. In Group Paxos, we parallelize the
Paxos phases among different groups and use global leader to
pipeline messages proposed by proposers.

group 1
group coordinator group coordinator(global leader)group coordinator

group i group n

group
acceptor

Fig. 4: Group Paxos deployment in duplicate interior-node-
disjoint trees

gc-1

2b
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gc-n

2b
……

proposer

1

1

3

2a/4
Flow:
1.   proposal with id
2a. round of id
2b. inner group paxos
3.   group pre-commitment
4.   global commitment

gl

……

Fig. 5: Group Paxos. 1.A proposer sends proposal request to
global leader and group coordinators. 2.The group coordinators
will sends the request and gather the promises of its group
acceptor. Meanwhile, global leader determines the order of
proposal and sends it to group coordinators. 3.Group coordi-
nators send pre-commit request to global leader if a quorum
of acceptor in its group accept the proposal. 4.Global leader
sends the commitment to all groups.

The procedure of Group Paxos is presented in Figure 5.
There are 4 steps in total.
• Step 1: A proposer, which could be any node in the

Giraffe cluster, sends to global leader and all the group
coordinators the proposal message with unique id.

• Step 2:
◦ Step 2a: Global leader sends proposal message

with new round to group coordinators.
◦ Step 2b: In the meantime, each group coordinator

performs Paxos within its own group. When the
group coordinator receives a majority of group
acceptors from its group, it supposes that the
proposal message can be committed in its group.

• Step 3: Then it sends to the global leader a group-
precommit message consisting of the group size, round
number and proposal id. We propose a mechanism to de-
termine whether a proposal message could be committed
or not. We use counter to calculate the sum of group size
in group-precommit message for each proposal. Only
when the counter value reaches half of the cluster size
can the message be committed.

• Step 4: In this case, the global leader sends a commit
message to all group coordinators and then each group
coordinator commits such transaction in its group.

In our Group Paxos, global leader does much less work
than leader in the classic Paxos and so it efficiently reduces
overhead as well as the message lost rate. Each group coor-
dinator does a similar work as the coordinator in the classic
Paxos. However, it works in a group and commits transactions
hierarchically. Multiple groups enable Paxos to run instances
in parallel efficiently even in a large-scale system.

The key advantage of such a Group Paxos algorithm design
is two-fold, described as follows:
• Efficiency. According to the algorithm of constructing

interior-node-disjoint trees, the size of Group-k is ap-
proximately equal to that of other groups, ensuring the
balance of each inner-group paxos. The Group Paxos
instance would become efficient when each group takes
the same time to finish its inner-group paxos procedure.
In the classic Paxos, disk write is one solution for
fault-tolerance, but a performance bottleneck of the
Paxos procedure. We reduce to one disk write per
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transaction commit by co-locate deployment in which
coordinator and acceptor are also learners. In Group
Paxos, coordinator in different groups manages majority
actions of its group. Only when coordinator receives
acknowledgements of one proposal from the majority
of group acceptors, it writes the proposal to disk before
sending commitment message to its acceptors.
As discussed in paxos and ZooKeeper, the time of leader
election becomes longer as the election group becomes
larger. In Group Paxos, the global leader is elected from
a small group which is organized by group coordinators.
As the number of group coordinators is much smaller
than the total group of members in Group Paxos, the
election time maintains stable. In this way, we achieve
quick reaction of leader failure.

• Fault-tolerance. Global leader and group coordinator
are two important roles in Group Paxos. Global leader
handles global Paxos instances among group coordi-
nators and makes decision globally. Group coordinator
only handles local Paxos instances inside its group and
serializes the Paxos events. Global Paxos and local
Paxos can interleave with each other. So how to handle
the failure of global leader and group coordination is
important to the correctness of Group Paxos. We will
discuss three situations in the following:
1. Suppose only global leader fails, one new global
leader will be elected correctly among group coordina-
tors by Paxos and then synchronize the states among
group coordinators. As soon as the new global leader
is elected, all the global Paxos is processed by the new
one, so the old global leader will not effect the Group
Paxos even if it comes up from failure.
2. Suppose group coordinator in Group-k fails, the
failure will be detected by rooter and its children. The
topology will be reconstructed and the new root of tree-k
will become the new group coordinator in Group-k. The
new group coordinator will synchronize state with global
leader and its group acceptors. As shown in Figure 4,
the acceptors in one group are also the learner of other
groups. So the acceptors still can learn the commitment
values from other groups even their group coordinator is
failed. Also it is possible that in one group, there coexist
two group coordinators including the old one. In this
situation, we have more group coordinators than groups.
Then f+1 will not be the true majority if the number
of groups is 2f+1. To address this problem, we tag the
messages of global Paxos by global epoch + group id
+ group epoch. The messages with the same group id
are considered as the messages from the same group
coordinator of the idth group. Even in the execution
of one global Paxos instance, there are two co-existing
group coordinators in the same group (such as group
K), other group coordinators can tell the old one from
the two group-K-coordinators by group epoch + global
epoch and then ignore the messages from the old one.
3. Suppose both global leader and group coordinator fail,
in Group Paxos the elections of the global leader and
group coordinator are in different groups, so eventually

there will be new correct global leader and group coor-
dinator elected. Also it is important to synchronize the
status after election. If global leader makes a decision
to globally commit one event, but after sending the
commitment to Group-k-coordinator, both global leader
and Group-k-coordinator fail. a) If Group-k-coordinator
fails before it send commitment to its group learners, the
global commitment has not been learned before election,
so after global leader is elected, it will synchronize status
with all the group coordinators and commit the events
that should be committed. b) If Group-k-coordinator fails
after the commitment is learned by its group learners,
it means that in the new global epoch the commitment
should be committed before any new commitment. If
the new global leader is elected before the new group
coordinator, the global leader will commit all the events
which has been pre-committed in some group. So all the
pre-commitments in any group except Group-K will be
committed. If the latest global commitment A was hap-
pened in Group-K and the event of A did not exist in the
pre-commitments of other Group, it means that Group
k is the majority quorum of global decision, so unless
the new group-k-coordinator comes up there are none
new commitment happened in the new global epoch.
After new Group-k-coordinator is elected, it does not
vote for the new proposal until it finishes synchronizing
status with new global leader. So even global leader and
group coordinator fail at the same time, Group Paxos
can guarantee the consistency after election.

Atomic Broadcast Protocol. We implement an atomic
broadcast protocol for coordination service upon Group Paxos.
Our protocol consists of three phases: discovery phase, syn-
chronization phase and broadcast phase. Discovery phase and
synchronization phase are for global leader election and global
synchronization. Broadcast phase is for committing proposals.
In the following phase, gc.p means the latest promise message
of gc while gc.a means the latest accepted message of gc.

Discovery phase:
Step gc.1.1 a group coordinator sends to the prospective
leader gl its last promise (gc.p), a GEPOCH message
Step gl.1.1 upon receiving GEPOCH messages from a
quorum Q of coordinator, the prospective global leader
gl proposes NEWGEPOCH message (e′) to group
coordinators in Q. the new global epoch e′ is larger
than any e received in a GEPOCH message
Step gc.1.2 upon receiving the NEWGEPOCH(e′) from
gl, if gc.p < e′, then make gc.p = e′ and acknowledge
the new epoch proposal NEWGEPOCH(e′). Acknowl-
edgment ACK-E (gc.a, h) contains the id of latest
accepted transaction and its history
Step gl.1.2 once it receives a confirmation from each
group coordinator from Q, then it selects the history of
one group coordinator gc in Q to be the initial history
I ′. gc satisfies that every gc′ in Q, gc′.a < gc.a or
(gc′.a = gc.a) ∧ (gc′.gid < gc.gid)

Synchronization phase:
Step gl.2.1 global leader proposes NEWGLEADER
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(e′, I ′) to all group coordinators
Step gc.2.1 upon receiving NEWGLEADER (e′, I ′)
from gl, then executes if gc.p = e′

1. gc sets gc.a to e′

2. for each < v, z > in I ′, accepts< e′, <
v, z >>, make h = I ′ <In this phase, gc broad-
casts NEWGC< e′, I ′, groupid > to its group.>
3. gc acknowledges to gl

Step ga.2.2 once ga in group-id receives NEWGC<
e′, I ′, groupid >, ga sets ga.a to e′, accepts every <
v, z > and makes h = I ′

Step gl.2.2 upon receiving the acknowledgments from a
quorum of group coordinator, gl sends commit message
to all group coordinator
Step gc.2.2 once gc receives commit message from gl,
gc broadcasts the commit message in its group.
Step ga.2.3 upon receiving commit message from gc,
ga deliver transactions in I ′

Broadcast phase:
Step gl.3.1 global leader gl sends proposal< e′, <
v, z >> to all group coordinators in increasing order
of zxid. epoch (z) = e′

Step gc.3.1 upon receipt of proposal< e′, < v, z >>,
group coordinator gc delivers group proposal< e′, <
v, z >, groupid > to group acceptor along the tree
Step ga.3.1 when group acceptor gets group proposal,
it accepts proposals, then acknowledges to group coor-
dinator
Step gc.3.2 upon receipt acknowledgment from a quo-
rum of group acceptors in its group, group coordinator
append the particular proposal to its history, and ac-
knowledges to global leader. Acknowledgment ACK-G
contains group size and zxid
Step gl.3.2 once global leader gets acknowledgment
from one group coordinator, it calculates sum of group
size of ACK-G it have received for a given proposal.
If the sum is greater than half of all members, global
leader sends a commit COMMIT (e′, < v, z >) to all
group coordinators
Step gc.3.3 once group coordinator receives COMMIT
(e′, < v, z >) from global leader, if it has committed all
transactions < v′, z′ > such that < v′, z′ > is in history
and z′ < z, group coordinator commits < v, z >, and
broadcasts COMMIT-G (e′, < v, z >, groupid)
Step ga.3.3 upon receipt of COMMIT-G (e′, < v, z >
, groupid), if < v, z > has not been committed yet, ga
commits such transaction and delivers it along tree

IV. PERFORMANCE EVALUATION

We conducted a set of experiments. All experiments were
run on a dedicated IBM Blade cluster in High Performance
Computing Center at Huazhong University of Science and
Technology. The IBM Blade cluster has 39 HS21 nodes; each
HS21 node is equipped with a 2-way, 4-core Intel Xeon CPU
E5345 running at 2.33GHz, and with 8GB memory and a
73GB SCSI hard disk. All the nodes are interconnected via
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Fig. 6: Throughput of write operation on ZooKeeper and
Giraffe.

a Gigabit Ethernet network and a 10Gbps Infiniband, and all
nodes run the RedHat Enterprize Linux 5 (Linux 2.6.18-8.el5).

For the existing related works, the ensemble of coordination
service is unable to scale up to more than 10 servers. As
studied in [11], when the ensemble is scaling, the bottleneck of
central leader becomes a serious issue and update throughput
drops down quickly. It would drag down the performance
of application in write-sensitive scenario. So how to provide
a large scale coordination service (such as more than 100
servers) is a challenge in distributed systems. The quality of
coordination service is bounded with throughput, availability
and latency. We divide the operations for coordination service
into two types: read operation which only retrieves data from
coordination service component, and update operation which
modifies the data space. In both Giraffe and ZooKeeper, the
throughput of read operations increases with the scaling of
coordination service components as they need to read from
local data space. In contrast, every update operation needs to be
synchronized among service ensemble. It causes the decrease
of write throughput with the scaling of service ensemble. Thus
update operation is the key issue of throughput. Availability
and latency are also the key characteristics for service .

A. Throughput
We conducted experiments in the server-client mode. We

split servers into two parts: 4 HS21 nodes simulate 1000
clients and 19 HS21 nodes run up to 190 Giraffes varied from
the number of Giraffe node. To compare the performance of
Giraffe, we install ZooKeeper (3.3.6) in 10 HS21 nodes to run
up to 50 ZooKeepers varied from the number of ZooKeeper
node and 4 HS21 nodes simulate 1000 clients.

In the evaluation, client simulators generate the application
request to Giraffe. The requests are data write operations
which contains 1KB data. Different organizations of Giraffe
cluster impact the throughput of system, so we set up a group
of Giraffe nodes in different configurations of interior-node-
disjoint trees. The configuration is formatted as t-c mode which
is initialized in Rooter; t is the total number of trees while c is
the maximum number of children of a node. In the evaluation,
we prefer to build a forest in which the depth of each tree is not
greater than 4. So typically with a t-c configuration the Giraffe
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cluster can hold up to Smax = t ∗ (1+ c+ c ∗ c) nodes. In this
case, a cluster of 9-9 interior-node-disjoint trees can hold up
to 819 nodes for 4-depth trees while a cluster of 3-5 trees hold
up to 93 Giraffe nodes. We set up several t-c configurations
to evaluate a saturated system on write operations.

As shown in Figure 6, Giraffe has a significant improvement
on write operation over ZooKeeper. The experimental results
show that the throughput of both ZooKeeper and Giraffe goes
down while ensemble becomes larger, but ZooKeeper degrades
more quickly than Giraffe especially in relatively large ensem-
bles. When the ensemble size is 50 servers, the throughput
of Giraffe is almost 300% as large as that of ZooKeeper.
When the ensemble of Zookeeper servers is scaling, the central
leader has to process more messages from its followers when
write operations occur. And the limited process ability of the
leader drags down the write throughput of the entire ensemble.
Differently, Giraffe exploits group paxos to distribute the
overload of global leader among group coordinators reducing
the bottleneck of global leader. Also Giraffe introduces the
hierarchical topology to reduce the dissemination load to its
children. So Giraffe achieves better scalability and better write
throughput than Zookeeper. Moreover, Giraffe with different
initialised t-c performs differently in terms of throughput. With
a greater t the slope of the line declines more gently. It is
obvious as multiple groups running Paxos instances in parallel
can actually accelerate the whole Paxos procedure. The slope
of trend lines for 3-3 Giraffe and 3-5 Giraffe are almost the
same. When the ensemble becomes larger than 100 servers,
however, the throughput of 3-5 Giraffe is higher than that of 3-
3 Giraffe. It is because the 3-3 Giraffe tree is much higher than
that of 3-5 Giraffe in large ensemble, causing extra message
delays and thus slowing down the write procedure.

Atomic broadcast protocol is the core of both Giraffe and
ZooKeeper which limits the throughput of write operation. We
benchmark the broadcast protocol of Giraffe and ZooKeeper
by simulating client request directly to global leader of Giraffe
and leader of ZooKeeper. In Figure 7, the throughput of atomic
broadcast is much higher than 100% write in coordination
service. It is obvious that client connections and request
handles spend much CPU-bound of ZooKeeper and Giraffe.
As shown in Figure 7, the atomic broadcast implemented in
Giraffe generally outperforms that in ZooKeeper. Though the
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Fig. 8: Recovery of leader after failure injection.

performance of Giraffe goes down as ZooKeeper does, the
tendency is much gentler. The key reason is similar to that of
write throughput. Such a performance gain is because of the
distributed structure of the group paxos, so to reduce the cost
of central leader, which is similar to that of write throughput.

In Giraffe, throughput of the topology with 9-9 configuration
is more efficient than the topology with 3-5 configuration. It
implies that group coordinator does more work in the atomic
broadcast protocol. A Giraffe cluster has more groups in forest
of 9-9 configuration than that of 3-3 configuration so that each
group coordinator manages a relatively smaller group in 9-9
configuration than that in 3-3 configuration. However, it does
not mean that more groups always have higher throughput.
When the group number in the topology becomes larger,
global leader has to manage more group coordinators, resulting
in heavier overhead for global leader. When global leader
becomes the bottleneck ahead of group coordinator, more
groups may lead to poor performance.

B. Availability

High availability is one of the characteristics concerned
mostly in coordination service. Figure 8 shows the recovery
time of ZooKeeper and Giraffe after leader fails by failure
injection. We find that the election time of global leader in
Giraffe is stable even the ensemble becomes larger. However,
the election time in ZooKeeper increases linearly with the
increase of ensemble size. We can also see that in Giraffe,
tree number is the essential configuration to influence the
election time of global leader. The cluster with fewer trees
takes less time to elect global leader, as shown in Figure 8.
As reported in [11], leader is the major node for consistent
update of the whole ZooKeeper cluster. Its crash leads to
periodically unavailability and inconsistency of ZooKeeper
ensemble. ZooKeeper uses the fast paxos to elect new leader
from followers and synchronize the state of all followers when
old leader has crashed. So when Zookeeper is scaling, the
quorum of paxos becomes larger leading to long election time
among Zookeeper followers. While in Giraffe, the crash of
global leader will cause the update service unavailable and a
new global leader will be elected from group coordinators. As
the number of group coordinator is configured when system
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Fig. 10: Latency of create request.

is deployed, the election time of a new global leader is steady
even when the Giraffe cluster is scaling.

Additionally, the crash of a group coordinator in Giraffe may
lead to failure of Paxos procedure in a group and slow down
the global Paxos commitment. Giraffe will rebuild the whole
topology when the failure of a group coordinator is detected.
Figure 9 shows the recovery time of group coordinator in
different topologies with failure injection. It shows that the
recovery time is almost between 100ms and 130ms, meaning
the ensemble size does not affect the recovery time greatly.

C. Latency of requests
We follow the benchmark of ZooKeeper on latency of

requests. We have started a worker to create 10,000 data nodes,
each including 1KB data, on both Giraffe and ZooKeeper. The
worker creates data nodes one at a time, waits for it to finish,
sends an asynchronous delete to the node and then creates
another one. We vary the number of ZooKeeper and Giraffe
server when creating data nodes. We calculate the latency by
dividing the total time by the number of create requests.

We show the request processing rate in Figure 10. When
ensemble is small, the latency of Giraffe is similar to that of
ZooKeeper. As the size of ensemble grows, the latency of both
ZooKeeper and Giraffe becomes larger but acceptable. In some
configurations such as 7-7 and 9-9, the latency of Giraffe is
lower than ZooKeeper in moderate size of servers.

V. RELATED WORK

As a typical protocol for asynchronous consistency, Paxos
has many versions, e.g., classic Paxos [14], fast Paxos [7], Zab

[13], and multi-coordinated Paxos [15]. In the classic Paxos,
a coordinator plays an important role in voting. In a Paxos
round, the coordinator sends phase1a and phase2a messages
to a majority of acceptors. There are two issues to affect the
whole Paxos consensus: 1) quorum size; 2) coordinator failure.
As the quorum becomes large, the coordinator has to send more
messages in a Paxos round that could be a heavy burden to the
coordinator. Besides, once the coordinator is crashed, a new
coordinator needs to be selected, typically from the coordinator
quorum. In this period of time, Paxos becomes unavailable for
proposers. In fast Paxos, fast rounds do not depend on a single
coordinator, but do have stricter requirements on quorum sizes.
Multi-coordinated Paxos extends classic Paxos to have multi-
coordinators for higher reliability while maintaining latency
and acceptor quorum requirements, but requires more mes-
sages and stricter conditions to determine a value. These Paxos
variants do not deal with issue of acceptor size. Group Paxos
has addressed these issues. Zab use a distinguished process
(the leader) to guarantee the order of messages. Ring-Paxos
[16] takes advantage of IP multicast and Ring topology for
high performance. It executes consensus instances on ids which
makes it efficient but only performs well in reliable network
environments (LAN). In these leader-centric protocols, the
leader does more work than other replicas, suffering from the
limitation of scalability and performance.

S-Paxos[8] derives the fixed sequencer protocol. It dis-
tributes the work of traditional leader, including request re-
ception, request dissemination and sending replies, across all
replicas for high throughput. Mencius [17] and other moving
sequencer protocols rotate the sequencer role among replicas.
These protocol are efficient in WAN and failure-free environ-
ments. But the crash of any replica will stop the progress.
EPaxos [18] is one paxos variant of virtual-synchronization
version. It is efficient to reduce the latency of data replication
in wide area. But it only performs well in small scale and does
not satisfy the coordination service environment. Our Group
Paxos in Giraffe distributes the load of leader by a hierarchical
topology. With the disjoint property of topology, Group Paxos
achieves more reliable Paxos instance even some replicas are
failed. State partition is another way to solve leader-centric
problem. [19] comes up with a highly available parallel B-
tree service. Multi-Ring Paxos [20] addresses the problem of
group communication protocols. It improves the scalability of
group communication by partitioning the states in different
rings. Group Paxos of Giraffe achieves scalability for full data
replication. Even with failures, Giraffe can execute correctly.

Some existing systems have been implemented for coordina-
tion service. Chubby [10] raises the goals of high availability
and strong consistency in distributed systems. It provides advi-
sor lock primitive to implement complex distributed algorithms
for the systems in Google. ZooKeeper [11] shares many design
goals of Chubby. It outperforms Chubby on read by multiple
servers providing service. Giraffe also exploits a hierarchical
organization of data space, in-memory storage and file-system-
like interface. And it combines blocking primitives and non-
blocking primitives for various needs of scenarios.

Granola [21] implements a timestamp-based coordination
mechanism to achieve order transaction and storage partition in
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several repositories. However, it requires fixed repository con-
figuration and client participating to generate timestamps for
transactional consistency. Giraffe exploits a different solution
by implementing consensus protocol based on Paxos and trees
topology. Scatter [22] implements a P2P storage layer targeting
both consistency and scalability. Spanner [23] provides storage
service for consistency replication across data centers and pro-
vides external-consistent distributed transactions. Differently,
Giraffe stores configuration and other resources in memory. It
implements a lighter and abstraction for transaction.

VI. CONCLUSION

Compared with ZooKeeper, Giraffe has higher performance
in terms of scalability and strong consistency. Giraffe adopts
a new scheme for membership management and a novel
consensus protocol based on Paxos for consistent transactions.
We evaluate the throughput, availability and latency of Giraffe
and Zookeeper. Some key findings are listed below:
• Our Group Paxos helps to reduce the overload of centric

leader and improve the scalability. The inner-group
paxos which interleaves with global paxos accelerates
the votes among large-scale acceptors. Giraffe is nearly
300% faster than ZooKeeper on update operations when
ensemble size is with 50 nodes.

• Giraffe is more reliable than Zookeeper. Global leader of
Giraffe recovers fast and steadily even when the group
acceptors are scaling up.

• The depth of the forest effects the write throughput and
the latency of commitment. In our evaluation, the deeper
topology (e.g., t-c = 3-5, group number is 3 and max-
children-number is 5) performs less efficient throughput
and longer latency than others (e.g., t-c = 9-9).
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