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Abstract—Data Stream Processing (DSP) applications are
often modelled as a directed acyclic graph: operators with
data streams among them. Inter-operator communications can
have a significant impact on the latency of DSP applications,
accounting for 86% of the total latency. Despite their impact,
there has been relatively little work on optimizing inter-
operator communications, focusing on reducing inter-node
traffic but not considering inter-process communication (IPC)
inside a node, which often generates high latency due to
the multiple memory-copy operations. This paper describes
the design and implementation of TurboStream, a new DSP
system designed specifically to address the high latency caused
by inter-operator communications. To achieve this goal, we
introduce (1) an improved IPC framework with OSRBuffer,
a DSP-oriented buffer, to reduce memory-copy operations
and waiting time of each single message when transmitting
messages between the operators inside one node, and (2) a
coarse-grained scheduler that consolidates operator instances
and assigns them to nodes to diminish the inter-node IPC
traffic. Using a prototype implementation, we show that our
improved IPC framework reduces the end-to-end latency of
intra-node IPC by 45.64% to 99.30%. Moreover, TurboStream
reduces the latency of DSP by 83.23% compared to JStorm.

Keywords-distributed computation, data stream processing,
inter-operator latency, IPC, operator placement

I. INTRODUCTION

With the rapid development of IoT (Internet of Things),

social networks, mobile Internet, etc., there is an eager

demand in both scientific and industrial applications for

doing real-time analysis on high throughput data streams,

i.e., Data Stream Processing (DSP) [1]. Several DSP systems

have therefore been introduced including Spark Streaming

[2], Flink [3], Storm [4], Heron [5], and Alibaba JStorm [6].

As shown in Fig. 1, application of DSP, also called

topology, is made up of arbitrary operators with data streams

among them. Data streams describe the data dependencies

of operators. Each operator can subscribe for any distinct

data streams from other operators, and then it can consume

the data from subscribed data streams and produce new

data streams. Usually, an operator has many instances (i.e.,

tasks) which are executed in parallel. A DSP cluster may

consist of thousands of machines [7]. Each cluster node is

configured to use a fixed number of slots, on which workers

can be launched. Workers are Java Virtual Machine (JVM)

processes within which operator instances are executed.

Figure 1: The application layer and execution layer of DSP

In DSP, data is processed in the memory and sent to the

next operator immediately without the necessity for storing

them. In every shuffling phase, there are large numbers of

messages streaming among the operators (i.e., inter-operator

communications). If two operators are located in the same

worker, the latency of data transmission between them will

be very low because they share the same memory space.

However, if an operator needs to deliver data to an operator

which is located in another worker, the latency will be much

higher because current state-of-the-art inter-process commu-
nication (IPC) framework (i.e., Netty [8]) will invoke serial-

ization, memory copies, and de-serialization when workers

reside on the same cluster node and network transmission

will be involved when workers reside on different nodes.

In practice (see section II), inter-operator communications

account for 86% of the total latency of DSP applications and

therefore can have a significant impact on their performance.

There are two primary yet complementary ways to opti-

mize inter-operator communications: (i) reduce the cost of

intra-node IPC and (ii) reduce the inter-node IPC traffic.

Prior efforts have focused mainly on reducing the inter-node

IPC traffic by scheduling highly communicating operator

instances to workers in the same node [9–12]. However, they

may encounter high latency due to the high cost of intra-

node IPC, resulting from the memory-to-memory copying

inside a cluster node. As an effort to tackle the high cost of

intra-node IPC, T-Storm [13] dictates that each node has only

ONE available worker for each topology, hence, it avoids the

inter-worker traffic inside one node. While this is suitable
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for lightly loaded topologies, T-Storm suffers a significant

performance degradation in heavily loaded topologies, due

to the overhead of JVM Garbage Collection (GC) and the

competition on CPU resources inside each worker.

To address these limitations, we present the design and

implementation of TurboStream, a new DSP system de-

signed specifically for reducing the high latency caused by

inter-operator communications. To the best of our knowl-
edge, TurboStream is the first DSP system that improves
IPC when multiple workers reside in the same cluster
node (intra-node IPC) and exploits this feature to further
improve operator instances scheduling. To achieve this goal,

TurboStream incorporates two complementary components:

(1) an improved IPC framework with OSRBuffer (Off-heap
Stream Ring ByteBuffer) to reduce memory-copy opera-

tions and the waiting time of each single message when

transmitting messages between the operators inside one

node, and (2) a coarse-grained scheduler that consolidates

operator instances and assigns them to nodes to diminish

the inter-node IPC traffic. We implemented TurboStream

on JStorm — a well known DSP system, developed by

Alibaba, to target very low latency DSP applications [6].

Experimental evaluation results show that the improved IPC

framework reduces the end-to-end latency of intra-node IPC

by 45.64% to 99.30%. Moreover, TurboStream reduces the

latency of DSP by 83.23% compared to JStorm. The primary

contributions of this paper are as follows:

• By means of experimental evaluation, we provide

a deeper look at the latency breakdown of a DSP

topology. We find that inter-operator communication

accounts for 86% of the total latency. Moreover, we

show that current state-of-the-art IPC framework (i.e.,

Netty) does not scale well under high transmit rate.

• We present TurboStream. It is, to our knowledge, the

first DSP system which: (1) improves the end-to-end

latency of intra-node IPC, with the novel improved IPC

framework; and (2) diminishes inter-node IPC traffic,

with the coarse-grained scheduler.

• We extend the idea of one memory-copy operation,

utilized in MPI to improve IPC [14–16], to DSP sys-

tems. To do that, we introduce a novel buffer design,

OSRBuffer. It uses the off-heap ring byte buffer to ac-

celerate the message transmission between JVMs. Thus

it reduces memory-copy operations and the waiting

time of each single message in a DSP topology.

• We propose a generic coarse-grained scheduler, which

uses the data dependencies in the topology and the

runtime traffic information to consolidate the communi-

cating operator instances before scheduling. It embraces

a BFS-based algorithm to assign the consolidated oper-

ator instances to cluster nodes to reduce inter-node IPC

traffic and strikes load balance in the DSP cluster.

TurboStream is implemented on JStorm. This is motivated

by the wide adoption of JStorm and also due to the very

low-latency which JStorm can sustain (see section II). How-

ever, it is important to note that, although TurboStream is

implemented on (and thus evaluated against) JStorm in this

work, our target is more general. In particular, OSRBuffer

is generic and can be applied to any JVM-based DSP

system and covers the two prominent stream processing

models: record-at-a-time model and batch model. Moreover,

any topology-based DSP system can use our coarse-grained

scheduler, such as Storm[4], Heron [5], and Flink [3].

The rest of this paper is organized as follows: Section

II describes the background and motivation of our study.

Section III depicts the overview of TurboStream. Section IV

describes the design and implementation of our improved

IPC framework for DSP followed by the details of the

coarse-grained scheduler in Section V. Section VI presents

the evaluation results and corresponding analysis. Section

VII discusses the related works. Finally, Section VIII con-

cludes the paper and presents future works.

II. BACKGROUND AND MOTIVATION

In this section, we first describe JStorm, and then we

discuss our experimental results to understand the main

bottlenecks for achieving low latency in DSP systems.

A. A Representative DSP System: JStorm

JStorm is a Java version of Apache Storm and it is said

to be faster than Apache Storm [6]. JStorm is widely used

in both industry and academia [17]. Operators in JStorm

are called Components. The Components that act as the

event source of the topology are Spouts while the rest of

the topology are called Bolts. There are two other kinds

of system Components in JStorm: TopologyMaster and

Acker. TopologyMaster is in charge of backpressure strat-

egy, which can prevent the topology from being overloaded.

The function of Acker is to keep track of every source

message and it can tell the Spout whether the message

has been processed successfully or not. The data stream is

made up of continuous tuples. The operator instances of

Components are called tasks.

Latency evaluation of DSP systems. We implement Tur-

boStream on JStorm due to its claim of very low latency. Fig.

2(a) shows the average processing latency in different DSP

systems. The benchmark we used is from Yahoo Streaming

Benchmarks [18] and the input rate is 20,000 events/s.

The experimental testbed is described below. All systems

use 4 workers for processing data. Both JStorm and Storm

outperform other DSP systems in terms of latency.

B. Inter-Operator Latency in DSP

We conduct a series of experiments to analyze the impact

of inter-operator latency on the overall latency in JStorm.

All the experiments are performed on a cluster of 8 nodes.

Each node is equipped with 16x1.2 GHz CPUs, 64 GB of

RAM and 210 GB HDD. All the nodes are connected with
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(a) The average processing latency of different DSP

systems

(b) The average processing latency in different sce-

narios

(c) The impact of transmission rate on the latency in

Netty

Figure 2: Experimental analysis of (a) the latency of different DSP systems, (b) the average processing latency under different deployments, and (c) the impact of transmission
rate on the latency in Netty

Table I: The average inter-operator latency of each stage in WordCount

��������Scenario
Stage

Spout→SplitBolt SplitBolt→SumBolt

2N2W 4.46ms 6.40ms
1N2W 3.58ms 5.22ms
1N1W 0.24ms 0.47ms

1Gbps Ethernet. The OS is Redhat Enterprise Linux 6.2 with

the kernel version 2.6.32. The JVM version is 1.7.0 79. We

deploy JStorm2.1.1 and configure it with 8 worker nodes,

each of which has 4 worker slots. The topologies are SOL

benchmark and WordCount Topology [19]. In SOL bench-

mark, there are five operators and each operator has 2 tasks.

The input rate is 5,000 tuples/s. In WordCount Topology,

Spout produces sentences for the topology, and the input

rate is 10,000 tuples/s. SplitBolt splits the sentences into

words, which is summed up by the SumBolt. We deploy the

two topologies in 3 different scenarios (2N2W: deploy the

topology to 2 workers in 2 different nodes, 1N2W: deploy

the topology to 2 workers inside 1 node, 1N1W: deploy the

topology to only 1 worker), and measure the total processing

latency as well as the latency of every stage.

As shown in Fig. 2(b), although the intra-node IPC is

more efficient than the inter-node IPC in terms of end-

to-end latency, the performance difference between 2N2W

and 1N2W is not significant in both WordCount Topology

and SOL benchmark. As shown in Table I and Fig. 2(b),

the proportion of inter-operator latency to total processing

latency of WordCount Topology is up to 86.88% and 86.66%

in these two scenarios without the effect of Acker. When

we put all the tasks in only one worker (1N1W in Fig. 2(b))

to remove the inter-worker traffic, there is a sharp drop in

total processing latency. As seen in Table I, the total inter-

operator latency of WordCount Topology is only 0.71ms.

In conclusion, event latency between operators located in

different workers is the bottleneck when the topology is

deployed on multiple workers (2N2W, 1N2W).

The inter-operator latency is no longer the bottleneck of

the total processing latency in 1N1W. The total processing

latency of SOL benchmark decreases sharply while the total

processing latency does not decrease as much as we expect

in WordCount Topology, because the former is network sen-

sitive and the later is CPU sensitive. Actually, the backpres-

sure strategy of JStorm is activated in WordCount Topology

when we put all the tasks in only one worker as the worker

is overloaded. Both the GC overhead and the competition

on CPU resources inside each worker significantly degrade

the overall performance because one worker takes the total

workload. Therefore, we can not put all the tasks in only

one worker in real scenario, especially for heavily loaded

topologies. In practice, operators are distributed to multiple

workers in each node, thus, improving the end-to-end latency

of intra-node IPC is an important factor to improve the inter-

operator latency of DSP applications.

C. IPC Framework of DSP

Netty [8] is the IPC framework not only for JStorm,

but also for Storm, Flink, Spark, etc. Netty socket is more

efficient than Java socket for its zero-copy buffer and re-

moving the unnecessary memory copy. We write a server-

client Netty application to take a quantitative measurement

on the performance of Netty in the context of IPC. The

total message latency contains the time of serialization, data

transmission, and de-serialization. The latency shown in Fig.

2(c) is the average value of 10,000 messages.

As we increase the transmission rate in Fig. 2(c), the

latency of 10KB message and 40KB message increase to

11.43ms and 192.36ms, respectively, when the transmission

rate reaches 3,000 messages/s. In Netty, messages will

be queued in send buffer and sent in batches when the

transmission rate is very high. Such a design is efficient

in network transmission but sacrifices the latency of each

single message. This batch model is not suitable for intra-

node IPC, particularly in DSP systems. Besides, Netty still

has three memory-copy operations between heap and off-

heap memory in the context of intra-node IPC. We find that

the IPC of DSP has many potential optimizations through

the analysis above.
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Figure 3: The overview of TurboStream

III. AN OVERVIEW OF TURBOSTREAM

TurboStream is designed to reduce the inter-operator

latency in DSP applications. The reduction in inter-operator

latency is due to two important factors: 1) the reduction in

the latency of intra-node IPC, and 2) the reduction in inter-

node traffic. As shown in Fig. 3, TurboStream consists of

two main components, the improved IPC framework with

OSRBuffer and coarse-grained scheduler. As mentioned in

section II, the design of Netty is not suitable for intra-

node IPC in terms of latency. We reduce both memory-

copy operations and the waiting time of message in intra-

node IPC by using OSRBuffer, which merges read buffer

and write buffer into a shared one. At the same time,

we provide a producer-consumer model for OSRBuffer to

transfer data. In the context of DSP, messages are continuous

data streams with high throughput. In order to achieve high

efficiency of writing, OSRBuffer designs a ring structure.

OSRBuffer does not need read-write lock operations in high-

concurrency scenarios, which improves the performance.

OSRBuffer can therefore reduce the event latency between

operators located in the same node.

The event latency between operators located in the same

node decreases through the implementation of OSRBuffer

in intra-node IPC. However, the event latency between

operators located in different nodes discourages further

reduction of the total event processing latency, especially

when the proportion of intra-node IPC traffic to total IPC

traffic is very low. Therefore, we propose a general coarse-

grained scheduler, which uses the data dependencies in

topology and the runtime traffic information to consoli-

date the communicating operator instances (tasks) before

scheduling. BFS-based algorithm is designed to assign the

consolidated tasks to achieve the reduction in inter-node

IPC traffic. Besides, this scheduler can achieve load-balance

at the same time. As a result, inter-operator latency is

further reduced in TurboStream. It is important to men-

tion that in order to guarantee correct execution after the

(re)deployment, TurboStream keeps the same approach, as

in JStorm, Storm [20], T-Storm [13]. It shuts down the old

workers and starts new workers when a new assignment

is needed. This unfortunately brings unavoidable overhead

of 10-20s [13, 20, 21]. What’s more, the coarse-grained

Figure 4: Memory-to-memory data flow when using Java socket, Netty socket, and
OSRBuffer

scheduler can operate in an off-line mode, which avoids the

above-mentioned overhead but may sacrifice a bit the latency

reduction contributed by the scheduler (It uses the data

dependencies in topology to consolidate the communicating

operator instances off-line).

IV. IMPROVED IPC FRAMEWORK FOR DSP

Fig. 4 compares the data-flow between two JVMs when

using Java socket, Netty socket, and our OSRBuffer. In

Java socket, there are three memory-copy operations in both

sender and receiver and two times of switching between user

space and kernel space. Netty has improved the Java socket

in two aspects: (1) Netty uses off-heap memory to buffer

the data directly without the unnecessary memory copy. (2)

There is no need to switch between user space and kernel

space. However, we reduce both memory-copy operations

and the waiting time of message in intra-node IPC by using

OSRBuffer.

Although works [14–16] have achieved significant per-

formance improvement in intra-node IPC, it is still hard to

share data between workers under high concurrency. Most

DSP systems are JVM-based frameworks, where user can

not manage the memory space explicitly because JVM has

its own Memory Manager. We use off-heap memory to

break through the limitation of Memory Manager in JVM.

However, there are some key issues in message transmission

through off-heap memory: (1) There is no Java object but

only raw byte array in off-heap memory. (2) We need to

handle the failure of messages. (3) There are synchronous

and asynchronous issues among workers.

A. Producer-Consumer Model

To solve the problems above, we first design a novel

producer-consumer model for OSRBuffer. For each tuple, we

add a head including the key information for it, with which

consumer can consume the continuous tuples (message)

from boundless raw bytes. The structure of the head is shown

in Fig. 5(a). The producer pushes the byte array of the

tuple with a head to OSRBuffer while the consumer will

process the byte array according to the head information.

The head has three fields: status, target task, length.
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(a) The structure of byte array (b) Sliding window of consumer (c) The structure of byte array in batch model

(d) The barrier of OSRBuffer (e) The producer catches the consumer in the next cycle

Figure 5: The design of OSRBuffer in improved IPC framework

status tells consumer the status of current tuple, which has

five types: isWriting, isReady, hasRead, flush, other.

target task is the id of the task that current tuple will be

sent to. length is the length (byte) of the byte array. When

consumer reaches a new tuple, it first checks the status. If the

status is isReady, it will read the byte array and push to the

target task. If the status is isWriting, it can not consume

the byte array, because the current tuple is being written or

it has failed. Our producer-consumer model also supports a

batch model, the structure of which is shown in Fig. 5(c).

In batch model, we serialize each tuple to byte array with

an inner head which only contains the length of tuple. Then,

the byte arrays of all tuples will be merged as a whole byte

array.

B. Sliding Window

When the current tuple is being written or has failed,

the status will be isWriting and the consumer can not

consume it. If it has failed, the consumer just skips it.

However, the consumer should wait on the tuple when it

is being written. In order to distinguish between these two

cases without impacting the speed of consumer, we provide

a sliding window for consumer. Fig. 5(b) depicts the details

of our design. When the consumer reaches a new tuple

in OSRBuffer, it first checks the status. If the status of

current tuple is isWriting, the left side of the window

will wait on the tuple while the right side will keep on

consuming the following tuples. When the status of current

tuple turns isReady, the left side will consume it and reach

the following tuple. If the status of current tuple remains

unchanged, the left side will wait until the window reaches

the maximum size and then skip to the following tuple. The

following tuple has three kinds of status: 1) isWriting, it

will repeat the step of waiting. 2) isReady, it will process

the tuple. 3) hasRead, which means the tuple has been

processed by the right side before, it just skips the tuple.

When the sliding window reaches the maximum size, the

left side will have to skip the current tuple no matter what

the status is. Therefore, the right side will never wait. Such a

design of sliding window can reduce the number of missing

tuples without impacting the consuming speed of consumer.

C. Asynchronization and Synchronization Issues

We use asynchronous communication in OSRBuffer for

data transmission between the producer and consumer. Usu-

ally, the length of tuple byte array is different, so there

might be some blank bytes in OSRBuffer (bytes between

barrier and end of the ring buffer in Fig. 5(d)). When the

producers reach the end of the buffer or the remaining space

is not enough to hold a whole tuple, they have to jump

to the starting position. The producer (producer 1 in Fig.

5(d)), which is the first one to detect that the remaining

space is not enough, will put the status flush to the current

position to inform the consumer about the barrier of the ring

buffer. The design of sliding window has accelerated the

speed of consumer, but there might be a special situation

when producer is still much faster than consumer. In this

situation, the producer might catch the consumer in the next

cycle, as shown in Fig. 5(e). When the producer is going

to overwrite the unconsumed tuples, it needs to wait on the

current position until there is enough blank space. Thus,

there is no need for synchronization between producer and

consumer.

In our design, every task in a worker can push byte

array to OSRBuffer. Thus, OSRBuffer needs to handle the

synchronization issues among producers. To synchronize

access to shared OSRBuffer, a simple and direct approach

is to use locks. However, the lock-based approaches cause

many problems, such as diminished parallelism caused by

mutual exclusion and lock contention. We use a lock-free

synchronization algorithm for producers. It relies on well-

known hardware synchronization primitive, that is Compare-
And-Swap [22] (CAS). We use a global shared variable to

record the write address where the new byte array can be
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Figure 6: The architecture of coarse-grained scheduler

pushed to. Each time the producer is going to push byte array

to OSRBuffer, it will fetch the write address and reserve

enough space (This is a CAS-based atomic operation). Such

design can prevent the attempt to push byte array to an

address where a previously invoked producer has yet to

complete its writing. Thus, producers can push byte arrays to

OSRBuffer concurrently, which is very efficient in writing.

V. COARSE-GRAINED SCHEDULER

We first present an overview of the coarse-grained sched-

uler and then describe in details its key components.

A. Overview

The architecture is shown in Fig. 6. The key components

of the scheduler are on-line monitor, TaskConsolidation,

and TaskAssignment. On-line monitor gets both

the traffic and workload information of each task.

TaskConsolidation takes into account the communication

patterns among operator instances (tasks) to consolidate

the tasks before scheduling. The consolidated tasks will

be assigned to the same node by the scheduler. As

they do not bring inter-node IPC traffic overhead, the

inter-operator latency will further decrease. After the

step of TaskConsolidation, TaskAssignment chooses

available nodes for the consolidated tasks. As the step

of TaskConsolidation has tried to consolidate the

communicating tasks together, TaskAssignment mainly

targets balancing the load among nodes. We design a

BFS-based algorithm in TaskAssignment to assign

consolidated tasks, which can achieve both load balance

and reduction in the inter-node IPC traffic. The scheduler

only needs to assign the consolidated tasks to nodes rather

than workers, so our scheduler is coarse-grained.

B. Task Consolidation

Before scheduling, we first get the relationship of tasks

and then begin the step of TaskConsolidation. The con-

solidation algorithm is shown in Algorithm 1. In this al-

gorithm, the communicating tasks will be consolidated to

a parentTask. Tasks of the same parent will be assigned

to the same node in TaskAssignment. The parentTasks
will be consolidated in the same way until the task number is

smaller than taskNumThreshold, which is a parameter in

our algorithm. There will be multi-level task consolidation

when the topology is very large. For each task: First, sort

its neighbour tasks in descending order by the amount of

traffic between them (line 4-5 in Algorithm 1). Second,

Algorithm 1 Consolidation of tasks

Input: the set of tasks of the topology taskSet; the set of data streams
of the topology dataStreams;

Output: the set of parent tasks parentTaskSet
1: parentTaskSet ← Φ, parentDataStreams ← Φ
2: for v in taskSet do
3: if v hasn’t been visited then
4: neighbors ← getInputOutputTasks(v)
5: sort(neighbors)
6: consolidated ← false
7: for u in neighbors do
8: if u hasn’t been visited then
9: consolidate u and v to a parent task p

10: put p to parentTaskSet
11: consolidated ← true
12: break
13: end if
14: end for
15: if consolidated ≡ false then
16: u will produce a parent task p for itself
17: put p to parentTaskSet
18: end if
19: end if
20: end for
21: for e in dataStreams do
22: source ← e.source task, target ← e.target task
23: p1 ← source.parent(), p2 ← target.parent()
24: if p1 �= p2 then
25: put e to parentDataStreams
26: end if
27: end for

Figure 7: One-level task consolidation

get the first unvisited neighbour task and consolidate them

to the parentTask (line 7-14 in Algorithm 1). If all its

neighbour tasks have been visited before, it will consolidate

itself alone to a parentTask (line 15-18 in Algorithm 1).

Once two tasks have been consolidated to a parentTask,

the traffic overhead between them can be ignored (line 21-27

in Algorithm 1).

Fig. 7 is a simple example of one-level task consolidation.

Numbers between operators refer to inter-operator traffics

and ones in bold refer to the traffic between parent tasks.

We assume that the parallelism of each operator is one

in current example. After each level of consolidation, the

relationship will be established like Fig. 7. When the scale

of topology is very large, there might be multiple levels

of consolidation. After multiple levels of consolidation, the

mapping between the origin tasks and parent tasks will

become a relational binary tree, which will be used in the

next step of TaskAssignment.
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Algorithm 2 Split the set of parent tasks into two subsets

Input: taskSet, used node number N , dataStreams
Output: RES SET
1: totalWeight of the tasks in taskSet
2: N1 ← Math.ceil(N/2), N2 ← Math.floor(N/2)
3: target ← N1/N , minDataStream;
4: for task in taskSet do
5: travelQueue ← Φ, gatherTasks ← Φ
6: unvisited.putAll(taskSet), visited ← Φ
7: balance ← 0, gatherWeig ← 0
8: travelQueue.put(task)
9: while travelQueue && balance < target do

10: c task ← travelQueue.poll()
11: tempWeig ← c task.weight+ gatherWeig
12: tempBlance ← tempWeig/totalWeight
13: dif1 ← |tempBlance− target|
14: dif2 ← |balance− target|
15: if dif1 < dif2 then
16: gather c task in gatherTasks
17: update gatherWeig, balance
18: push unvisited neighbors to travelQueue
19: end if
20: update unvisited, visited
21: dif3 ← |balance− target|
22: if !travelQueue && dif3 > factor then
23: put an unvisited task to travelQueue
24: end if
25: end while
26: if |balance− target| < factor then
27: if cutDataStream < minDataStream then
28: minDataStream ← cutDataStream
29: RES SET ← gatherTasks
30: end if
31: end if
32: end for

C. Assignment of Consolidated Tasks

TaskAssignment will assign the consolidated tasks (par-

ent tasks from consolidation algorithm) to available nodes to

achieve workload balance. We first divide the consolidated

tasks into two parts. Each part is assigned a number of

nodes according to its total workload, that is, the nodes

number is proportional to the total workload of each part.

We continue dividing each part until the nodes number of

the part is only one. This is the key step of the algorithm

of TaskAssignment, so we show its details in Algorithm

2. Every time we visit a task, we try to gather the task

in the gatherTasks and check if it will result in better

load balance (line 10-14 in Algorithm 2). If it will get a

better load balance, we put current task in the gatherTasks
and put all its unvisited neighbour tasks in the travelQeue,

otherwise we skip to the next task in travelQeue and repeat

the steps until reaching the balanced partition result (line 15-

25 in Algorithm 2). We can get a balanced partition result

in each iteration and check whether the current balanced

partition result has the least inter-node traffic (line 27-30 in

Algorithm 2). With the balanced partition result that has

the least inter-node traffic, and the relational binary tree

in consolidation algorithm, the scheduler will know exactly

which node each task should be assigned to. The total cost of

these two algorithms is O(|N |3). N is the number of tasks

in topology. As the intra-node IPC has been improved by

our IPC framework, the intra-node transfer is no longer the

bottleneck. Thus, we use a simple round-robin strategy to

assign the tasks to available workers within corresponding

node. Note that, to simplify the description of Algorithm 2,

we assume that the number of available workers is the same

in each node. However, our implementation considers that

the number of available workers in each node is different.

This is important as it is common to have multiple con-

current topologies deployed in a cluster, and therefore the

number of available workers for current topology in each

node might be different.

D. Online Monitor

In order to obtain the runtime information of the workload

and the traffic of every task, we add a monitor module

with a timer in each worker. The monitor is a long-running

thread and in charge of runtime information of all the tasks

in current worker. During each cycle time T, the monitor

records two information for each task: (1) The number of

messages sent to every output task. (2) The usage of CPU

resource (Hz), which includes the CPU resource used for all

the threads in current task. With the runtime information, the

on-line strategy will start the step of TaskConsolidation
and TaskAssignment. Once the on-line strategy gets a bet-

ter assignment, the redeployment will start. As mentioned in

Section III, similar to JStorm, Storm [20], and T-Storm [13],

we shut down the old workers and then start up workers

with new assignment in current implementation. Another

approach is to use task migration, however, it – if successful

– also brings a noticeable overhead due to the migration

time [23–26]. Moreover, if a failure in the on-line messaging

occurs during the migration, the job fails. It is one of our

future works to reduce the overhead of the redeployment.

VI. EVALUATION

We use the same experimental setup as in Section II. The

experiments are divided into three parts: (1) We first evaluate

the performance of the improved IPC framework in the

context of end-to-end message transmission. (2) We conduct

two groups of experiments on JStorm and TurboStream to

measure the reduction in the total event processing latency.

(3) We evaluate JStorm against TurboStream under different

input rate.

A. Performance of Improved IPC Framework

We use the same server-client application in Section II to

evaluate the performance of improved IPC framework. We

conduct three groups of experiments to evaluate the impact

of message size, transmission rate, and OSRBuffer size on

the average message latency. In order to show the impact of

message size on the latency, we vary the size of message

from 10KB to 320KB. The size of OSRBuffer is set to 2MB

and the transmission rate is set to 100 messages/s. Though

the latency increases as the size of message increases, our
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(a) The impact of message size on the latency (b) The impact of transmission rate on the latency (c) The impact of OSRBuffer size on the latency

Figure 8: Experimental analysis of (a) the impact of message size on the latency, (b) the impact of transmission rate on the latency, and (c) the impact of OSRBuffer size on
the latency

improved IPC framework still achieves better performance

compared to Netty. As shown in Fig. 8(a), the average

message latency of Netty remains about two times that of our

improved IPC framework when the message size varies from

10KB to 320KB, which is caused by the multiple memory-

copy operations.

As we increase the transmission rate in Fig. 8(b), our

improved IPC framework is still able to sustain low average

message latency, with the OSRBuffer, which not only re-

duces memory-copy operations but also reduces the waiting

time in buffer. In contrast, Netty suffers of high average

message latency when the transmission rate reaches 3,000

messages/s. This is due to the long waiting time as messages

are queued in the send buffer when the transmission rate

is very high. This in turn aggravates the latency of each

single message. In summary, we observe that improved IPC

framework reduces the end-to-end latency of intra-node IPC

by 45.64% to 99.30% as shown in Fig. 8(a) and Fig. 8(b).

In the third group of experiments, we try to find out the

most suitable OSRBuffer size for different sizes of message.

We fix the transmission rate as 3,000 messages/s. As shown

in Fig. 8(c), a small size of OSRBuffer results in high latency

due to the overhead of the frequent waiting of the Consumer

and Producer. On the other hand, large size of OSRBuffer

will obviously waste a lot of memory space. Our results in

Fig. 8(c) indicate that an appropriate size of the OSRBuffer

is about 50-100 times the size of the message.

B. Processing Latency

We conduct two groups of experiments on two commonly-

used benchmarks that represent the characteristics of a broad

class of topologies. The first group of experiments is on

SOL Benchmark [19]. It is one of the most commonly-

used network sensitive benchmarks, which has one Spout

and five Bolts. We configure the topology with 5 tasks for

each Bolt. The input rate is about 5,000 tuples/s. The average

processing latency, shown in Fig. 9(b) and Fig. 9(d), is the

average value of messages in 10 minutes while the average

processing latency, shown in Fig. 9(a), Fig. 9(c), and Fig.

9(e), is the average value of messages in every 10 seconds.

Fig. 9(a) shows a comparison between the inter-node

transfer and the intra-node transfer in TurboStream. As

shown in Fig. 9(a), assigning one worker per node (i.e,

2N2W, as in T-Storm [13]) results in higher latency com-

pared to the case when multiple workers are assigned per

node (i.e., 1N2W, 1N4W). This is due to the inter-node

transfer. More importantly, TurboStream achieves even lower

latency when operators are distributed to 4 workers inside

each node (i.e., 1N4W) as the intra-node IPC is no longer

the bottleneck in TurboStream.

Fig. 9(b) shows the average processing latency in both

JStorm and TurboStream — without enabling the coarse-

grained scheduler. As expected, both DSP systems achieve

the same latency in the 8N8W scenario. However, unlike

JStorm, TurboStream further reduces the average processing

latency when there are more than 1 worker in each node.

In particular, the average processing latency decreases by

12.71% and 36.68% in 4N8W and 2N8W, respectively. This

performance improvement results from our improved IPC

framework with OSRBuffer as it targets only improving the

intra-node IPC and thus it works in the case of 4N8W and

2N8W. Importantly, the performance improvement strongly

depends on the proportion of intra-node IPC traffic to total

IPC traffic. As shown in Table II, the proportions of intra-

node IPC traffic to total IPC traffic are 14.29%, and 42.86%

in 4N8W and 2N8W, respectively. Finally, enabling the

coarse-grained scheduler side by side with the improved IPC

framework further reduces the average processing latency.

As shown in Fig. 9(c), TurboStream reduces the average

processing latency by 59.84% compared to JStorm, when

we configure the topology with 8 workers and distribute

them to 2 nodes.

In the second group of experiments, the test topology

is Storm Throughput Test Topology [27]. We deploy the

topology on JStorm cluster and TurboStream cluster, respec-

tively. In order to see the impact of improved IPC framework

and coarse-grained scheduler, we keep the configuration the

same in JStorm cluster and TurboStream cluster.

The results are shown in Fig. 9(d). Although, the propor-

tion of intra-node IPC traffic to total IPC traffic is 0% in
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(a) SOL Benchmark: the comparison between inter-

node transfer and intra-node transfer in TurboStream

(b) SOL Benchmark: the impact of improved IPC

framework on DSP

(c) SOL Benchmark: comparison between JStorm

and TurboStream
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Figure 9: Processing latency testing in DSP

Table II: The proportion of intra-node IPC traffic to total IPC traffic in different
distributions

�����������IPC type
Distribution

8N8W 4N8W 2N8W 1N1W

Intra-node IPC 0% 14.29% 42.86% 0%
Inter-node IPC 100% 85.71% 57.14% 0%�����������IPC type

Distribution
4N4W 2N4W 2N2W 1N2W

Intra-node IPC 0% 33.33% 0% 100%
Inter-node IPC 100% 66.67% 100% 0%

both 4N4W and 2N2W, there is still a significant decrease

in the total processing latency. In particular, the average

processing latency decreases by 33.85% and 38.90% in

4N4W and 2N2W, respectively. This is due to the coarse-

grained scheduler. However, when there are more than 1

worker in each node, TurboStream results in even more

reductions in the average processing latency compared to JS-

torm. The average processing latency decreases by 47.64%,

83.23% and 71.35% in 2N4W, 1N4W, 1N2W, respectively.

We can also see that the average processing latency of

1N4W is lower than that of 1N2W in TurboStream, which

is consistent with the experimental results in Fig. 9(a).

In summary, the event latency between operators located

in different nodes becomes the bottleneck when the pro-

portion of intra-node IPC traffic to total IPC traffic is very

low, such as 4N4W and 2N2W. Hence, the improved IPC

framework does little work. However, TurboStream reduces

the total processing latency by up to 38.90% compared to

JStorm. This demonstrates the important role of our coarse-

grained scheduler in reducing the inter-node traffic.

All the experiments above use the task consolidation off-

line. Although off-line task consolidation is quite effective

in reducing the inter-node IPC traffic, the on-line task con-

solidation can make further performance improvements as it

can handle traffic and workload changes during the execution

of the DSP application. Precisely, the inter-node IPC traffic

will be reduced as the task consolidation considers the

current traffic information. As shown in Fig. 9(e), in 1N2W,

where there is no inter-node IPC traffic, there is no change

in the observed latency. However, the average processing

latency in 2N2W and 4N4W is decreased by 20.89% and

12.91%, respectively. In both scenarios, the reduction in

latency is observed after the redeployment is completed. The

re-deployment is triggered by the on-line task consolidation

at 600s. Moreover, we can clearly see the impact of the

redeployment, as the processing latency increases sharply

during the redeployment. As we discussed in section V, in

current implementation, we choose shutdown-start approach

to redeploy the topology with new assignment, which will

take about 15-20 seconds.

C. Throughput Test: JStorm vs. TurboStream under Different
Input Rate

We use the Throughput Test Topology [27] and compare

the latency of both JStorm and TurboStream under different

input rates. The results are shown in Fig. 10. The average

processing latency of JStorm is about 2.16 times that of

TurboStream when the input rate is about 1,000 tuples/s. As

the input rate continues to increase, the average processing

latency increases up to 142.53ms in JStorm, when the

input rate reaches 40,000, while it stays below 20ms in
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Figure 10: Comparison of the average processing latency of JStorm and TurboStream
under different input data rates

TurboStream. However, as the input rate reaches 80,000

tuples/s, JStorm activates the backpressure strategy, which

(by default) controls the input rate at 50,000 tuples/s, and

new messages will be queued in memory. TurboStream,

on the other hand, suffers a slight increase in the average

processing latency (27.90ms) when the input rate reaches

80,000 tuples/s. This experiment result shows that Tur-

boStream can cope with very high input rate and therefore

achieves much better throughput than JStorm. This is due

to the improved IPC framework and the coarse-grained

scheduling which can jointly improve resource utilization

of cluster nodes and the processing latency.

VII. RELATED WORK

A. IPC Improvement

Given that many big data processing systems are based

on JVM, such as Hadoop [28], Spark, Storm, Flink, there

is a rising interest in JVM for high performance. Some

research efforts have demonstrated the inefficiency of Java

socket in delivering high performance data analytics and thus

implement hardware specific solutions, based on Remote
Direct Memory Access (RDMA) to improve the performance

of big data applications [29, 30]. As DSP has a more

stringent requirement for processing latency, Netty [8] has

been introduced as an alternative to Java sockets in many

DSP systems, however, as discussed in section II, it still

leads to suboptimal performance in terms of latency.

Much work has focused on improving intra-node IPC in

MPI. The copy-in/copy-out algorithm is used [31, 32] to

transport the messages between MPI process while kernel

assisted memory copy is used [14–16], it utilizes one-copy

memory and the experimental results show significant bene-

fit in the context of end-to-end communications. Inspired

by these works, we find that intra-node IPC has many

potential optimizations in DSP. However, it is hard to use

the aforementioned technologies directly. Most DSP systems

are JVM-based frameworks, where user can not manage the

memory space explicitly because JVM has its own Memory

Manager. Besides, there are synchronous and asynchronous

issues and fault-tolerant issues in message transmission in

DSP systems.

B. Operator Placement and Task Scheduling in DSP

Operator placement has been extensively studied in DSP

systems [4–6, 10, 13, 21]. SBON [10] introduces a tool for

DSP system to make placement decision in a virtual cost

space and then the space coordinates will be mapped to

physical node. The traffic-based on-line scheduler in [21] re-

duces both inter-worker and inter-node traffic, but it requires

modifications to the user code in spouts and bolts to enable

constant monitoring of the data load. In contrast, our coarse-

grained scheduler is transparent to users. T-Storm [13]

requires that each node has only one available worker for

each topology to avoid the inter-worker traffic inside one

node which is only suitable for lightly loaded topologies.

There is a fair number of research work on addressing

heterogeneity in terms of resource and input rate in DSP

[9, 12, 33, 34]. For instance, Buddhika et al. [33] introduce

an on-line scheduler to mitigate the impact of interference

on the performance of DSP. Liu et al. [12] proposes a

runtime scheduler to redistribute the tasks according to the

changes in the input rate and the computational capability.

In contrast to the above-mentioned work, TurboStream is

the first DSP system to optimize the intra-node IPC and

exploit this feature to enable coarse-grained assignments of

consolidated tasks to nodes.

VIII. CONCLUSION

Inter-operator communication is crucial for the perfor-

mance of DSP applications. We, for the first time, high-

light the two main factors contributing to the inter-operator

latency, specifically the intra-node IPC and inter-node IPC

traffics. We show that the latency of current state-of-the-

art IPC framework is high due to the multiple memory-

copy operations and the buffering mechanism. We there-

fore introduce TurboStream, a new DSP system for low

latency DSP applications. TurboStream reduces the end-

to-end latency of intra-node IPC by reducing memory-

copy operations and waiting time of each single message,

thanks to its novel off-heap buffer design, i.e. OSRBuffer.

Moreover, it exploits the dependencies between operators

to consolidate the communicating tasks before assigning

them to nodes, thus reduces the inter-node IPC traffic. We

implemented TurboStream on JStorm. Experimental results

show that TurboStream substantially improves latency of

DSP applications. As future work, we plan to investigate

alternative approaches to the shutdown-start approach and

to study TurboStream with more applications and on real

cloud platforms.
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