
Dependency-aware Maintenance for Dynamic Grid Services*

Hai Jin, Li Qi, Song Wu, Yaqin Luo, Jie Dai
Cluster and Grid Computing Lab

Service Computing Technology and System
Huazhong University of Science and Technology

hjin@hust.edu.cn

Abstract

Any mistaken maintenance for the complicated
and distributed grid can bring unpredictable
disaster. Here we focus on the system availability
issues caused by service dependencies during the
maintenance in grid. A novel mechanism, called
Cobweb Guardian, is proposed in this paper. It
provides multiple granularities (service-, container-,
and node-level) maintenance for service components
in grid. By using the Cobweb Guardian, grid
administrators can execute the maintaining task
safely in runtime with high availability. The
evaluation results show that our proposed
dependency-aware maintenance can make the grid
management more automatic and available.

1. Introduction

Today’s web or grid services are usually composed
by several standalone services that encapsulate and
present useful functionalities. Examples include simple
storage services, online digital album, execution
management system, and virtual data centers. Within
these complex services, the service components are
partitioned, replicated, and aggregated to achieve high
availability and incremental scalability, especially
when the system experiences high growth in service
evolution and user demands.

From the experience of ChinaGrid Support Platform
(CGSP) [11] and VEGA [12], the scale and complexity
of Virtual Organizations (VO) [5] make them
increasingly difficult and expensive to manage and

 * This work is supported by the NSFC under grant 60673174,
90412010 and the National 863 Hi-Tech project under grant
No.2006AA01A115

deploy. A system update at even a moderate scale data
center in a VO can require changes to more than 1,000
machines, some of which might have
interdependencies among their services. That means
any maintenance to a service component must be
propagated or contained so that the services using that
component continue to function correctly. Furthermore,
the availability of global management units for service
requests during the maintenance should be maximized.
Because services have to be paused in the traditional
procedure of software maintenance, however some
system such as bank services must provide services
continuously in 24 hours, any unpredictable pause will
make great lost.

For the grid administrators, the maintenance task is
running through the whole lifecycle of service
components. As shown in Figure 1, each service
component in a grid has the lifecycle of: released,
deployed, initialized, activated, and destroyed.
Responding to these stages, the maintenance tasks
include: publish, deploy, undeploy, redeploy, configure,
activate, and deactivate. Especially, these tasks should
face the challenges in grid environment.

Figure 1. Lifecycle of Service Component

This paper recognizes the importance of distributed
service maintenance and its challenges. The main goal
of this study is to answer the following question. How
to promise the higher availability for a global system
when a maintenance operation happens on a service
component with the complicated dependencies?

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

For higher availability during maintenance
procedure in dynamic grids, we propose a new
mechanism, called Cobweb Guardian, which supports
multiple granularities (service-, container-, and
node-level) maintenance for service components. The
Cobweb Guardian manages different service
dependencies map that is initially provided by the
administrator. When a maintenance request arrives, it
recognizes the related dependency to generate an
optimized maintenance solution and reduce the affects
from dependencies. In addition, a Cobweb Guardian
provides the session management for maintenance to
avoid the possible failures by dependency hierarchy.

The rest of this paper is as follows. In section 2 we
describe the problem statement and the motivations. In
section 3 we present an overview of architecture and
some details about design, and implementation. In
section 4 we evaluate our approach in different stages.
In section 5 we explore the former and related works,
and in section 6 we conclude with a brief discussion of
future research.

2. Motivations

2.1 Concepts

Before further discussion, we introduce some basic
concepts:

Service Components in a grid or web-based system
are hosted in some specific container such as
Globus Toolkit 4 Java WS Core [2] and provide a
set of operations in public that can be used to
compose some new services. The communications
among them are always encapsulated in a Message
by some protocols such as SOAP. In addition, we
define the service that depends on other service
components as Composite Service.
The Dependency discussed in this paper denotes
that the correct execution of a service component is
always depending on the hosting environment, the
dependent calling services, and the dependent
deployment service respectively.
The Maintenance to a grid or distributed web
services based system includes the operations (e.g.
deploy, undeploy, and so forth) to some particular
service components distributed in grid. Normally
the maintenance requests are delivered by the
administrators.

To state the problem clearly, two metrics are defined
for the maintenance.

Maintenance Time. In the distributed environment,
the maintenance time is decided by the transferring
time of critical packages (e.g. installing packages,
patches, or configuration files), deploying time,

reloading time (marked as tr) of essential components
or container, and the pending time (marked as tp) for
executing requests or reloading of remote depending
components. In particular, the reloading and pending
time are issued in runtime. For instance, the
maintenance services are definitely unavailable during
reloading and pending.

For a specific maintenance, we suppose that the task
covers n service components distributed in m resources.
Ideally, the shortest maintenance time is to deploy n
services to those resources in parallel. The most cost
maintenance is to maintain the service components in
different resources in serial. The actual maintenance
time is as Formula 1.

⋅<<
n

i

ii
n

i
tmtt)(max (1)

ti means the average maintenance time for the ith
service in the collection of maintenance task.

Availability. The availability (marked as A) that we
introduced is the proportion of time a system is in a
functional condition in the watching period. More
specifically, we define the availability (in Formula 2)
of the system during the maintenance is the ratio of
system’s available time to the longest maintenance
time (i.e. watching period). In particular, the symbol U
means the combination of pending and reloading time
instead of the sum of them since the pending and
reloading operations can be overlapped during the
transferring or deploying of other components.

+
−=

i

i
i

i
r

i
p

t

tt
A

)(
1 (2)

It denotes the better solution for maintenance is with
less maintenance time and higher availability. To
achieve that, some analysis should be done for the
different dependencies. We also introduce the Loss
Rate, the ratio of failure requests to the total requests
during the longest maintenance time. Actually, it
denotes the inverse proportion to the availability.

2.2 Dependencies in Grid

As mentioned in section 1, service dependency is
very complicate in grids. From the viewpoint of
development, each service component depends on a
bunch of service components in logic. On other side,
from the viewpoint of deployment, service components
also depend on the target hosting containers. Based on
the literature [4][10], and our experience, we conclude
the dependencies into three main types.

Invocation Dependency. This kind of dependency
represents the trend of SOA that happens among

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

composite services [4][11]. We describe three kinds of
invocation dependency as examples. (i)
AND-dependency describes the aggregating relation of
other service components. The typical scenario is the
executing system in grid. The execution managers (e.g.
Grid Resource Allocate and Management, GRAM [2])
are always AND depending on the information systems
(e.g. Monitoring and Discovery System, MDS [2]) and
data file-transfer (e.g. Reliable File Transferring
service, RFT [2]). (ii) XOR-dependency means the
replication relations. It can be explained as switch-case
logic. It is popularly seen in data centers. (iii)
OR-dependency means that the invocations to related
services can be ignored. It can be mapped to the
try…catch…finally logic. The cache service is its
classic use case. Most of web systems provide the
caches for front end service. System tries finding cache
first and then dispatch to the real database if the former
failed.

Deployment Dependency. The deployment of
specific services always requires other related services
deployed first in target executing container. In addition,
the versioning problem during the maintenance also
drives us to focus more on this kind of dependency.
The typical example is that a deployment of a service
component (e.g. wikipedia website) requires a database
component in a specific version (e.g.
MySQL-server-4.0.20-0) installed in the remote site for
initializing purpose. If we consider nothing about this,
the maintenance work will fail. The deployment
dependency includes the configuring dependency
discussed in literature [10].

Environment Dependency. The maintenance for one
specific service could jointly affect other services’
maintenance in the same environment when some
functional services are deployed into the same hosting
computational node. For example, if the Data and the
Info service have been deployed on a same container,
despite they are neither deployment nor invocation
depended on each other, when maintaining the Data
service, the availability of Info service is also affected
because the maintenance requires restarting the node.

2.3 Traditional Maintenance Solution

In this section, the affects from dependencies during
maintenance for traditional approaches will be
demonstrated. As mentioned in Section 2.1,
administrators always maintain the distributed systems
in serial (e.g. using the Bash shell scripts in Linux) or
in parallel (e.g. using Java or C’s threads).

Language-based Maintenance in Parallel. In this
solution, if there are no considerations about the
dependencies, the maintenance can be finished in one

step. However, if there is a deployment dependency,
the availability will drop to zero and is unable to
recover even after the maintenance. The reason is that
the failure of deployment dependency crashes the
maintenance to the depending service component while
the depended services are maintained as normal. The
result is unique that the system is unavailable forever.
Meanwhile, this approach is not suitable for invocation
dependencies (e.g. OR- and XOR-dependency) either.
Because whatever the composite service or its service
components finish maintenance firstly, the availability
of the system is sacrificed. Actually, the availability
could be higher if we just maintain the service
components one by one.

Script-based Maintenance in Serial. As the other
frequently used approach for the daily maintenance, it
finishes the maintenance one by one in sequence.
Although the serial approach can resolve the
deployment dependency problem, it is not acceptable
for most maintaining cases for its poor availability and
efficiency.

2.4 Objectives

The shortages of the traditional maintenance
approaches bring the inconvenience for administrating
the large scale service grid when introduce the service
dependencies. The objectives of our design include: (i)
improve the global availability during the maintenance,
(ii) reduce the possible failures of maintenance, and (iii)
improve the efficiency of maintenance.

3. Design of Cobweb Guardian

3.1 Maintenance Granularity

Maintaining the complicated dependencies among
the services and hosting environment in a grid is a huge
engineering work. The efficient reduction of
maintenance granularity can help improving the
efficiency of maintenance. Three-layer architecture is
proposed in Cobweb Guardian to reduce the affects
from dependency hierarchy.

1. Service Level. It exists as a manager in the target
hosting environment. The service-level maintenance
means that all the maintenance tasks are for service
component. The reloading or pending operations are
also executed as the unit of services.

2. Container Level. It also exists in the hosting
environment. Unlike service-level maintenance, the
reloading or pending operations are for the whole
container. Namely, if a service in a container needs the
maintenance, the other services are also put into the
maintaining states.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

3. Node Level. The maintenance in node level is
from the global view. The reloading or pending
operations in this level will issue a bunch of computing
nodes. It balances the maintaining policies among the
different containers. By communicating with the
service- and container-level maintenance manager
separately, it can promise that the optimized and safe
maintenance solutions are adopted. For instance, we
can avoid the affects from environment and
deployment dependencies.

3.2 Architecture

As shown in Figure 2, the Cobweb Guardian is a
two-tier model, the Cobweb Guardian (CG) and
Atomic Guardian (AG). A CG communicates with
multiple AGs to execute the node-level maintenance
for the grid. It is composed of four main functional
modules: Session Control, Dependency Optimizer,
Authorization center, and Policy controller.

Figure 2. Lifecycle of Service Component

The Policy module is designed for administrator to
execute on demand maintenance. The Session Control
module is mainly in charge of the progress of the
maintenance. In addition to that, it also propagates the
maintenance tasks to the target replica Atomic
Guardian. Dependency Optimizer is the kernel of CG.
It parses administrator’s input and matches the
requirements to existing dependency maps. Meanwhile,
the Authorization module is designed for checking all
the maintenance requests to avoid unpredictable
dangers (e.g. the requests to deploy Trojan viruses).

The Atomic Guardian, the actual maintainer, is
implemented based on our former works [8]. By
invoking AG, the Guardian system can support
container- and service-level maintenance. AG also
consists of four parts.

The Notification module reports the maintenance
states to depending services and the Cobweb Guardian.
With this module, administrators can grasp the progress
of whole maintenance and detect the failures at the first
time. The notifications would only be sent to the peer
which depending on the service under maintenance.
The Validation module is the sink of peer container’s
Notification module. AG will execute pending or
policy defined actions to issue the corresponded
notifications. The Maintenance Interface accepts the
requests from Session Control. It actually executes the
deploying, upgrading, or activating works by talking
with the management module of hosting container, e.g.
HAND [8]. The Axis handler is designed to record the
different invocation dependencies from the input and
output message flow. Any recorded peers would be
notified by the Notification module during the
maintenance. It can efficiently help CG reducing the
overhead.

3.3 Propagating Maintenances with Session
Control

To avoid the affects from the deployment
dependency, the CG will check it before the
maintenance and generate the critical maintenance path
to propagate the operations. Namely, CG provides the
session mechanism to promise the procedure of
maintenance. The idea is from the parallel dynamical
maintenance for k-connectivity graph [6]. CG
propagates the maintenance operations of depended
service first to promise the maintenance be executed
correctly. If the propagations are finished in k steps,
this solution will cost time of:

=
k

i

j
is

j
tt)(max

)(
 (3)

s(i) in formula 3 means the parallel maintenance for
step i. The availability is:

)))((1
00 ==

+−=
n

i
i

k

i

i
p

i
r tttA (4)

It denotes that the maintenance time is longer than
simple parallel solution mentioned in section 2.3. It
promises the correctness of maintenance.

3.4 Grouping Maintenance for Invocation
Dependency

To achieve higher availability during the
maintenance, the different semantic of invocations
should be differentiated. (i) For AND-dependency, the
maintenance for any service in this dependency will
reduce the availability since the unavailability of any

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

component can be transmitted in chain to the whole
system. The best solution is to propagate all of
maintenances to the target containers at the same time.
(ii) For XOR- and OR-dependency, because the
ordinary requests are always dispatched to the
composite services in certain semantic (e.g. round
robin, random, or load balanced policy), if the
maintenance for composite services can be executed in
groups, the availability can be improved to some
extend. Formula 5 describes the improved availability
by using this approach. pi (0<pi<1) means the
possibility of dispatching requests to the maintenance
containers. In addition, t0 means the maintenance to the
front end service component.

)))((1
01

00

==
+⋅++−=

n

i
i

k

i

i
p

i
ripr tttpttA (5)

3.5 Grouping Maintenance with Feedback

Although the grouping solution improves the
availability by sacrificing the maintenance time, it also
brings the unpredictable factors to the system. For
instance, some critical invocations will be rejected
randomly. CG also provides the feedback notifications
for the grid applications. By checking the status of
remote service component, the grid applications can
bypass the requests to the maintenance service
component. In this solution, the availability can be
improved much. Actually, the cost is mainly from the
maintenance of composite service component.

))((1
0

00

=
+−=

n

i
ipr tttA (6)

4. Evaluations

We experiments with our implementation on
ChinaGrid test bed. Services in our experiments are
evaluated on ChinaGrid Support Platform v2.0.1 [11].

Our evaluation has the following objectives: (i)
demonstrate the improved availability by comparing
the traditional maintenance approach with Cobweb
Guardian; (ii) compare the availability and throughput
of different maintenance solutions of Cobweb Guardian
when the maintenance happens in different
dependencies; (iii) demonstrate the effectiveness of
dependency feedback and different granularity in
improving service availability and throughput.

4.1 Test Environment

Unless stated otherwise, experiments in this paper
are conducted on two rack-mounted Linux clusters: one

is with 16 1GHz Pentium III nodes (each with 512MB
memory). Each node runs Redhat Linux with kernel
version 2.4.20-8. The Java runtime version is J2SDK
1.5.0_06-b05 implemented by SUN. The other one
employs 20 dual 1.3GHz Itanium2 servers. The nodes
inside the cluster are connected by a 100Mbps Ethernet
switch. Each node runs Redhat Linux with kernel
version 2.4.0-2. The Java runtime version is J2SDK
1.5.0_03-b07 implemented by BEA. The two clusters
are also connected with bandwidth of 100Mbps.

Abbreviations. Here is a list of the abbreviations
that we will use in the rest of this section: (1) NonD
denotes the maintenance solution without dependency
consideration; (2) SRL maintains the services by
calling shell scripts in serial; (3) CG-0 is the simple
propagating solution without optimization for
invocation dependency; (4) CG-1 means the grouping
maintenance for different invocation dependencies; (5)
CG-2 is the grouping maintenance with feed back; (6)
REQ in the diagram denotes the fixed requesting rates
for particular service components.

Figure 3. Service Dependencies in CGSP’s
Execution System

Application for benchmark. Our experiments are
based on the typical executing system, called General
Running Service (GRS), from CGSP. As shown in
Figure 3, GRS includes six service components:
authentication service (Auth), information service
(Info), data management service (Data), cache service
(Cache), collecting service (Collect), and replication
service (Replica). When a request arrives, GRS parses
it and then contacts with the Auth component to check
the validity, the Info component to get job’s executing
information, and the Data component to fetch the
staging data, respectively. More particularly, the Info
component will fetch the job information from the
Cache firstly, if failed then invoke the Collect to select
in backend database. On the other hand, the Data
adopts a replication to store and load staging data.
There can be multiple partitions for Info and GRS. The

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

detailed semantic about CGSP’s execution system can
be investigated in literature [11]. By injecting the
maintenance to these services, we can inspect the
capability of Cobweb Guardian.

4.2 Propagation and Deployment Dependency

To investigate the efficiency of the propagation
feature and the affects from deployment dependency,
In this experiment, we drive the GRS service at 6
requests per second. We run the experiment for 140
seconds. At second 15, we inject the maintenance to
the GRS (including upgrades of Auth, Info, Data
service components, and itself) which then becomes
unresponsive for a while. We try three solutions: NonD,
SRL, and CG-0 in this experiment.

Figure 4 shows the throughput of three solutions
during the 30-second watching period. When there is
no maintenance, all systems work well. When
maintenances start at second 15, the throughputs of the
system with different approach are all falling down to
zero. Although the NonD solution finishes the
maintenance earliest, it can not work correctly any
more. Because it does not consider the deployment
dependencies among the service components, the
maintenance for GRS component fails. The SRL
solution costs longest time to finish the maintenance.
CG-0 provides the highest efficiency. It loses 49.1%
requests because the AND-depended service
components are unavailable when any related service
(i.e. Auth, Info, and Data) is under the maintenance.

Figure 4. Throughputs of Execution Service
during Maintenance for Different Approaches

4.3 Optimization for Invocation Dependency

In the next two experiments, we use the Info service
to evaluate the effectiveness of Cobweb Guardian for
improving service availability upon different
invocation-dependencies. We drive the system at 10

requests per second to Info service.
OR-Dependency. As shown in Figure 5, at second

15, we start maintenance solutions CG-0 and CG-1,
respectively. CG-0 propagates the maintenance tasks to
the target containers that deployed Cache and Collect
service components and then to the one with Info
service. The whole procedure costs 62.97 seconds.
However, from Table 1, we can find that the
throughput during executing CG-0 is falling down near
to zero. In addition, there are 57.9% requests are lost in
the watching period (defined in section 2).

Figure 5. Maintenance for the Information Service

TABLE 1 COMPARISON OF EXPERIMENTAL RESULTS

Appr Maintain RespTime
(ms)

Throughput
(req/s)

LossRatio
(%)

Before 443.9 9.51 0 CG-0
During N/A 0.86 57.9
Before 463.8 9.92 0 CG-1
During 929.8 7.08 25.6

Compared with CG-0, CG-1 optimizes the solution
for OR-dependency. The Cobweb Guardian maintains
the target containers one by one in groups with
different priorities. The improvement is obvious: first,
the throughput during the maintenance is improved to
7.08 requests per second. Although the average
response time is 929.8 ms which is about double of that
before maintenance, the loss rate is reduced from
57.9% to 25.6%. Meanwhile, the 25.6% is the
minimum cost for all solutions because the
maintenance for Info service is the key maintenance
and is hard to avoid. From the figure, we can identify
that the throughput of CG-1 is falling down to about
7.3 from second 57. The reason is that the requests to
Cache services are failed when Cobweb Guardian are
maintaining them. The requests are sent to the Collect
service forcedly.

XOR-Dependency. We repeat the experiment for
Data service component (XOR-dependency). This time
we add solution CG-2. The maintenance solution will

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

feed back the maintenance status to the user-level.
Similarly, we start the three maintenances at second 15.

Figure 6 describes the whole procedure: The CG-0
solution acts similarly like before. It blocks all the
requests to the Data service during the maintenance.
Hence the throughput for CG-0 is lowest. However the
CG-1 solution acts also not well. Although it improves
the throughput to some extend (from 0 to 4.71), the loss
rate is about 52.1% which is a minor improvement to
CG-0’s 53.9%. The main reason is that CG-1 costs
more time to finish the maintenance than CG-0 but the
Data service is always trying to deliver the requests to
the Replicas during maintenance. These requests are
failed definitely. Unlike CG-0 and CG-1, CG-2 works
far better. It costs same time to finish maintenance like
CG-0. However it gives better throughput (6.56), lower
loss rate (25.9%), and better response time for normal
requests (478ms).

Figure 6. Throughputs of the Virutal Data Center
Service during Maintenance

Table 2 lists the response time, throughput, and loss
rate respectively for the three solutions in different
stages (before and during) of maintenance. It reflects
the variations discussed above. The results prove that
Cobweb Guardian can find the best solution for
different dependencies.

TABLE 2 COMPARISON OF EXPERIMENTAL RESULTS

Appr Maintain RespTime
(ms)

Throughput
(req/s)

LossRatio
(%)

Before 552.5 9.21 0 CG-0
During N/A 0.01 53.9
Before 405.6 9.43 0 CG-1
During 933.2 4.71 52.1

CG-2 Before 405.1 10.07 0
 During 478.5 6.56 25.9

4.4 Optimization for Environment Dependency

To demonstrate the enhancement on environment

dependency, we execute the upgrade for Info service
component deployed with Data service component in a
same container. Figure 7 describes the results. A
denotes container-level maintenance and B is
service-level. In the container-level maintenance, the
Data service is also unavailable when Info service is
under upgrading. However, the maintenance in service
level does not affect the accessing to Data service. In
addition, the maintenance time in service-level (14.6
sec) is also shorter than that in container-level (23.6
sec). This result proves that the availabilities for Data
and Info service components are enhanced.

Figure 7. Maintenance in Different Gruanularities
for Environment Dependency

5. Related Works

Neeraj et al [9] invented a dependency structure
matrix to describe the dependencies among legacy
software. It is efficient for exploring the software
architecture from the viewpoint of software
engineering. But they did not discuss the dynamic
dependencies which are common in distributed and
dynamical grids. The dependency structure matrix is
not convenient for dynamic deployment in grid.

Service capsule proposed by Lingkun et al. [4] is a
new mechanism to support automatic recognition of
dependency states and per-dependency management
for thread-based services. Nevertheless capsule focus
more on fault tolerant instead of maintenance. In
addition, it works for the multi-threading cluster
servers and can not process complicated dependencies.

System availability is an important issue for
distributed systems, which has been addressed
extensively in the literatures [4][8][10]. Typical metrics
for measuring the overall system reliability are MTBF
(mean time between failures) and MTTR (mean time to
recovery). It often takes a long period of time to
measure these metrics. Recently, the fault injection has
been proposed as an effective but less time-consuming
means to assess the system availability [7].

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

In our former work [8], the two approaches (named
service- and container-level) of dynamic deployment
were proposed to enhance the availability of service
infrastructure. The result proved that choosing the
smaller granularity deployment (in service-level) can
improve the system availability to some extend.
However, whatever service- or container-level, the
improvement is limited in infrastructure layer. It can
not promise the global availability with invocation
dependencies among the services.

The Configuration, Description, Deployment and
Lifecycle Management (CDDLM) specification [1]
proposed by GGF and the Installable Unit Deployment
Descriptor (IUDD) [3] proposed by W3C are all the
specifications to standardize the maintenance works for
distributed software or services. But the two
specifications do not promise the quality of
maintenance operations and the runtime availability
during the maintenance.

Vanish et al [10] compared manual, script-,
language-, and model-based deployment solutions in
terms of scale, complexity, expressiveness, and barriers
for distributed services. Despite the dependency
problem discussed, the affects to the global availability
during deployment was not discussed.

6. Conclusion and Future Works

In this paper, we propose the Cobweb Guardian
which is dependency-aware maintenance architecture
for grids. By investigating affects from the different
dependencies in the runtime of grid (including
invocation-, deployment-, and environment-
dependency), the Cobweb Guardian can automatically
generate the optimized solutions for the maintenance in
distributed grids. The evaluations demonstrate the
effectiveness of the Cobweb Guardian to improve the
availability and throughputs during maintenance.

The further works include the investigation on the
fault tolerance for distributed maintenance because the
cost from failed maintenance affects the availability of
system. In addition, the QoS challenge in runtime is
another important research issue.

Reference

[1] Configuration, Deployment Description Language and
Management, GGF,
http://www.gridforum.org/documents/GFD.50.pdf

[2] Globus Toolkit Project, Globus Alliance,
http://www.globus.org

[3] Installable Unit Deployment Descriptor Specification,
http://www.w3.org/Submission/InstallableUnit-DD/

[4] L. Chu, K. Shen, H. Tang, T. Yang, and J. Zhou,
“Dependency isolation for thread-based multi-tier
Internet services”, Proceedings of the 24th Annual Joint
Conference of the IEEE Computer and Communications
Societies, March 2005, Miami, FL, USA, pp.796-806.

[5] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy
of the Grid: Enabling Scalable Virtual Organizations,”
International J. Supercomputer Applications, Vol.15,
No.3, 2001.

[6] W. Liang, R. Brend, and H. Shen, “Fully dynamic
maintenance of k-connectivity in parallel”, IEEE Trans.
on Parallel and Distributed Systems, Vol.12, No.8, Aug
2001, pp.846-864

[7] K. Nagaraja, X. Li, B. Zhang, R. Bianchini, R. P. Martin,
and T. D. Nguyen, “Using Fault Injection and Modeling
to Evaluate the Performability of Cluster-Based
Services”, Proceedings of the 4th USENIX Symposium
on Internet Technologies and Systems, Mar. 2003.

[8] L. Qi, H. Jin, I. Foster, and J. Gawor, “HAND: Highly
Available Dynamic Deployment Infrastructure for
Globus Toolkit 4”, Proceedings of the 15th Euromicro
Conference on Parallel, Distributed and Network-based
Processing, Naples, Italy, Feb. 2007.

[9] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using
Dependency Models to Manage Complex Software
Architecture”, Proceedings of OOPSLA’05, 2005,
pp.167-176.

[10] V. Talwar, D. Milojicic, and Q. Wu, C. Pu, W. Yan, and
G. Jung, “Approaches for Service Deployment”, IEEE
Internet Computing, Vol.9, No.2, Mar 2005, pp.70-80.

[11] Y. Wu, S. Wu, H. Yu, and C. Hu, “CGSP: An
Extensible and Reconfigurable Grid Framework”,
Proceedings of the 6th International Workshop on
Advanced Parallel Processing Technologies, Hong
Kong, China, October 27-28, 2005, pp.292-300.

[12] Z. Xu, W. Li, L. Zha, H. Yu, and D. Liu, “VEGA: A
Computer Systems Approach to Grid Computing”,
Journal of Grid Computing, Vol.2, No.2, 2004,
pp.109-120.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

