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Abstract. Mobile edge computing (MEC) extends cloud computing by
deploying edge servers with computing and storage resources at base sta-
tions within users’ geographic proximity. The networked edge servers in
an area constitute an edge storage system (ESS), where edge servers coop-
erate to provide services for the users in the area. However, the potential
of ESSs is challenged by edge servers’ constrained storage resources due
to their limited physical sizes. A straightforward method to tackle this
challenge is to reduce data redundancy in the ESS. The unique char-
acteristics and constraints in the MEC environment, e.g., edge servers’
geographic coverage and distribution, render conventional data dedupli-
cation techniques designed for cloud storage systems obsolete. In this
paper, we make the first attempt to study this novel Edge Data Dedupli-
cation (EDDE) problem. First, we model it as a constrained optimization
problem with the aim to maximize data deduplication ratio under latency
constraint by taking advantage of the collaboration between edge servers.
Then, we prove that the EDDE problem is NP-hard and propose an app-
roach named EDDE-O for solving the EDDE problem optimally based
on integer programming. To accommodate large-scale EDDE scenarios,
we propose a lnα+1-approximation algorithm, namely EDDE-A, to find
sub-optimal EDDE solutions efficiently. The results of extensive exper-
iments conducted on a widely-used dataset demonstrate that EDDE-O
and EDDE-A can solve the EDDE problem effectively and efficiently,
outperforming four representative approaches significantly.

Keywords: Mobile edge computing · Edge data storage · Data
deduplication · Integer programming · Approximation algorithm

1 Introduction

In recent years, the world has witnessed an exponential growth of network traffic
produced by mobile and internet-of-things (IoT) services [12]. The transmission
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of massive mobile and IoT data incurs heavy network traffic and consumes exces-
sive network resources. In the meantime, the cloud computing paradigm is failing
to fulfill various services’ demand for low latency [5]. To tackle these challenges,
mobile edge computing (MEC) as a new computing paradigm has emerged, which
extends the cloud’s computing and storage capabilities to the network edge in
close proximity to mobile and IoT devices.

In the MEC environment, edge servers with computing and storage resources
are deployed at base stations. The networked edge servers in an area constitute
an edge storage system (ESS). Service providers like Facebook and YouTube can
cache popular data on edge servers to enable low-latency data retrieval for their
users [13,15]. Data produced by mobile and IoT devices can also be stored on
the edge storage system to be shared or processed in real time. However, unlike
cloud servers, edge servers’ storage resources are highly constrained due to their
limited physical sizes [5]. This unique capacity constraint sets an upper bound
on the performance of an ESS and the services deployed on the system. It is
a major challenge that service providers have never encountered before in the
cloud computing environment. Many approaches have been proposed in recent
years to explore the potentials of ESSs under this constraint [6,14,19].

Reducing data redundancy in the ESS is an effective way to alleviate the
capacity constraint. Shared by various application vendors, as well as mobile
and IoT devices, an ESS is often subject to data redundancy. For example,
the real-time communication between vehicles and edge servers can lead to a
large number of duplicate video frames on the same or different edge servers
in an ESS. Reducing data redundancy in the ESS by removing duplicate data
can effectively save on the storage resources on the system. A similar problem
named data deduplication has been investigated intensively in the context of
cloud storage systems with the aim to maximize data redundancy reduction [11,
18]. However, this cloud data deduplication (CDDE) problem is fundamentally
different from the edge data deduplication (EDDE) problem. To reduce data
redundancy, most CDDE approaches first split the data stored on all the storage
nodes in the system into multiple fine-grained chunks of a specific size, e.g., 4KB
and 8KB. Then, they identify and remove duplicate data chunks across all those
storage nodes. A user requesting a data can, from a metadata server, retrieve
the locations of all the required data chunks for building the data. In the MEC
environment, a user can only access its nearby edge servers directly, i.e., edge
servers that cover the user [5]. This proximity constraint disables all the CDDE
approaches because they commonly assume that a user can access any of the
storage nodes in the system. In addition, the extra time taken to build a data
from data chunks undermines MEC’s pursuit of low data retrieval latency. Thus,
unlike CDDE that reduces data redundancy at the data chunk level, EDDE aims
to reduce data redundancy at the file level by removing duplicate data across
edge servers in the system.

In recent years, researchers are beginning to investigate data deduplication
in the MEC environment [8,9]. However, existing studies have followed the same
idea and design as CDDE approaches. Making the same assumptions as CDDE
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approaches, the approaches proposed in [8,9] cannot solve the EDDE problem
in the real-world MEC environment for the same reasons discussed above. In
addition, these approaches have failed to leverage the ability of edge servers to
communicate and transmit data over the edge server network connecting the
edge servers in the ESS, which has been widely acknowledged as a promising
way to enable collaboration among edge servers [6,16,19]. To serve a user’s data
request, the requested data can be delivered to the user from an edge server
multiple hops away over the edge server network under the latency constraint.
Thus, an EDDE approach is urgently needed that reduces data redundancy in an
ESS at the file level under the proximity constraint and the latency constraint.

This paper makes the first attempt to study the Edge Data Deduplication
(EDDE) problem in realistic MEC environments, with the aim to maximize
data deduplication ratio while fulfilling the proximity constraint and the latency
constraint. Its major contributions include:

– We motivate the EDDE problem and present its fundamental differences from
the traditional data deduplication problem in cloud storage systems.

– We formulate the EDDE problem as a constrained optimization problem and
prove that it is NP-hard.

– We propose an optimal approach named EDDE-O for solving small-scale
EDDE problems based on integer programming, and an approximation app-
roach named EDDE-A for solving large-scale EDDE problems efficiently with
a proven lnα + 1-approximation ratio.

– We comprehensively evaluate the effectiveness and efficiency of EDDE-O and
EDDE-A against four representative approaches through experiments con-
ducted on a real-world dataset.

The remainder of this paper is organized as follows. Section 2 motivates the
EDDE problem with an example. Section 3 formulates the EDDE problem and
theoretically analyze its NP-hardness. Section 4 presents EDDE-O and EDDE-
A in detail. Section 5 shows the experimental results of EDDE-O and EDDE-A.
Section 6 reviews the related work. Section 7 summarizes this paper and points
out the future work.

2 Motivating Example

Video streaming services accounted for 75% of the total internet traffic in 2017,
and this proportion is expected to increase to 82% by 2022 [10]. This emphasizes
the importance of data deduplication for ESSs. Figure 1(a) presents an ESS
comprised of 13 edge servers {s1, s2, ..., s13} deployed in a specific area, e.g.,
Melbourne CBD. Assuming that a popular video d1 is stored on edge servers s1,
s2, s4, s5, s11, and s13 to serve the users within the area marked by the yellow
line. This area is referred to as the data coverage hereafter. In this example,
we assume that the application-specific latency constraint is two hops - the

1 Multiple data can be deduplicated individually and independently.
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video can be delivered to a user from an edge server within two hops over the
edge server network. In real-world EDDE scenarios, the latency constraint is
application-specific and and the communication latency between edge servers
may not always be the same. To study the EDDE problem in a generic manner,
the latency constraint is measured by the number of hops over the edge server
network, similar to [6,16]. Our approaches can easily handle latency constraints
measured in milliseconds easily.

Fig. 1. Example EDDE scenario. In this example, data replicas are removed from s1, s4,
and s13. The data coverages before and after deduplication, as shown in (a) and (b),
respectively, are the same.

As shown in Fig. 1(a), from the perspective of the edge infrastructure
provider, e.g., T-Mobile or Amazon, this ESS does not need all the six video
replicas to serve all the users within the data coverage. Some video replicas
can be removed to save on system storage resources. Based on the data storage
information collected from the system, an EDDE strategy can be formulated
that indicates which video replicas can be removed. It will be sent to the edge
servers for implementation. This process is edge data deduplication (EDDE). The
latency constraint must not be violated - the system must still be able to deliver
the video to all the users within the data coverage within 2 hops. For example, if
we retain only one video replica on the system, say the one on s1, and remove all
the other video replicas, most of the users in the original data coverage will not
able to retrieve the video within 2 hops. Specifically, the video can be delivered to
serve only the users covered by s1, s2, s3, and s6. This EDDE solution is appar-
ently not feasible. Figure 1(b) presents another EDDE solution that removes the
data replicas on edge servers s1, s4, and s13 while keeping those on s2, s5, and
s11. As presented in Fig. 1(b), this solution offers the same data coverage as
Fig. 1(a). The users within the data coverage can retrieve the video under the
latency constraint. Compared with Fig. 1, the EDDE solution stores only three
video replicas in the ESS, 50% fewer than Fig. 1(a). Apparently, EDDE can save
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on system storage resources significantly. In the real world, the sizes of ESSs
may be much larger, and there may be many possible EDDE solutions. Finding
the optimal EDDE solution can save on the most system storage resources but
may not be easy. An effective and efficient EDDE approach is needed.

3 Problem Statement

In this section, we formulate the EDDE problem and prove its hardness theo-
retically.

3.1 Problem Formulation

Let us model the n connected edge servers in an ESS as an undirected graph
G(S,E), where each edge server si ∈ S is represented by a vertex in G and the
link between two edge servers si and sj is represented by an edge ei,j in G.

Let Sd ⊆ S denote the set of edge servers where data d is stored and ai is
the binary variable indicating whether d is stored on edge server si:

ai =

{
0 if d is not stored on si, si ∈ S

1 if d is stored on si , si ∈ S
(1)

Sd = {si| ai = 1, si ∈ S} (2)

Let h denote the latency constraint, representing the maximum number of
hops that data can be delivered from an edge server to a user over G. It is
application-specific. A low h value indicates that a low latency is required. Let
N(si) denote the set of si’ neighbor edge servers, i.e., those within h hops over
G, and Ŝd (Sd ⊆ Ŝd ⊆ S) denote the set of edge servers2 that can retrieve d
from Sd under the latency constraint:

N(si) = {sj | hij ≤ h, sj ∈ S} (3)

Ŝd = {N(si) | si ∈ Sd} (4)

Equation (3) is employed to identify si’s neighbor edge servers when h is
measured by the number of hops. If the latency constraint is measured in mil-
liseconds, say 20 ms, Eq. (3) can be replaced with N(si) = {sj | latencyj

i ≤
20, sj ∈ S}, where latencyj

i is the communication latency between si and sj .
To represent an EDDE strategy B, let binary variable bi denote whether d

is removed from edge server si ∈ Sd by B (Table 1):

bi =

{
0 d not removed from si, si ∈ Sd

1 d removed from si, si ∈ Sd

(5)

2 The edge server covering a user will retrieve a data from other edge servers if it does
not have the data requested by the user. Thus, we refer to edge servers instead of
users here for ease of exposition.
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Table 1. Summary of notations

Notation Description

ai Binary variable representing whether si has d

B EDDE strategy

bi EDDE decision representing whether d is removed from si

d Data to be deduplicated

E Set of connections between edge servers

G Graph representing connected edge servers in ESS

hij Minimum hops from si to sj

h Latency constraint

N(si) Set of neighbor edge servers of si under latency constraint

n Number of edge servers in ESS

R Deduplication ratio

S Set of edge servers in ESS

Sd Set of edge servers with d before deduplication

Sd+ Set of edge servers with d after deduplication

Sd− Set of edge servers not with d after deduplication

Ŝd set of edge servers covered by Sd under latency constraint

Ŝd+ Set of edge servers covered by Sd+ under latency constraint

si ith edge server in ESS

Let Sd+ ⊆ Sd denote the set of edge servers with d after d is deduplicated
from Sd:

Sd+ = {si| bi = 0, si ∈ Sd} (6)

Similar to Sd+, we employ Sd− ⊆ Sd (Sd+ ∪ Sd− = Sd) to denote the set of
edge servers where d is removed.

As illustrated and discussed in Sect. 2, over-deduplication will reduce the
coverage area of Sd and stop some users from being able to retrieve d under
the latency constraint. To ensure the same data coverage, the users that could
retrieve data before data deduplication must also be able to retrieve it after data
deduplication. This coverage constraint is defined below:

Ŝd = Ŝd+ (7)

The deduplication ratio produced by an EDDE strategy B, denoted by R, is
calculated as follows:

R = 1 −
∑n

i=1 bi∑n
i=1 ai

(8)

The optimization objective of the EDDE problem, i.e., to maximize the data
deduplication ratio under the latency constraint (3) and the coverage constraint
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(7), can be expressed as follows:

maximize R (9)

3.2 Problem Hardness

In this section, we prove the NP-hardness of the EDDE problem by reducing
it from the classical NP-hard uncapacitated facility location (UFL) problem [3].
Given a weighted bipartite graph G < F,C,E,W >, where F represents the
candidate locations for opening facilities, C represents the clients that need to
be served by facilities, E represents the connections from clients to facilities, and
W is the connection cost matrix from C to F . The UFL problem aims to find
a set of locations, denoted as F ′ ⊆ F , for opening facilities with the minimum
overall cost, including the cost of opening all the facilities in F ′ and the cost
of connecting clients to F ′, while ensuring that all clients can be served. Let
cost(f) denote the cost of opening up a facility f . The formulation of this UFL
problem can be expressed as follows:

min(
∑
f∈F ′

cost(f) +
∑

c∈C,f∈F ′
xc,fwc,f ) (10)

s.t.
∑
f∈F ′

wc,fxc,f ≥ 1 (11)

xc,f ∈ {0, 1} (12)

where xc,f is the connection decision from client c to opened facility f and wc,f

is the cost of connecting client c to facility f .
Now we reduce the EDDE problem to the UFL problem: 1) removing edge

servers not in Sd and the corresponding edges; 2) connecting each edge server
and its neighbor edge servers within h hops; 3) setting the same cost of storing
d on individual edge servers. This reduced EDDE problem can now be equally
converted to minimize the storage cost, i.e., the cost of storing d in the system,
while ensuring that all the edge servers can retrieve d within 1 hop. Since the
cost of each edge is 0, the objective to maximize the data deduplication ratio
in the EDDE problem is equivalent to selecting the fewest edge servers in Sd

to minimize the storage cost, the same as Objective (10) in the UFL problem.
Moreover, Constraint (7) is converted to cover all the edge servers in the reduced
EDDE problem, equivalent to Constraint (11). Constraint (12) denotes whether
client c can connect to the opened facility f . Thus, it is obvious that constraint
(12) is equal to constraint (1).

In conclusion, any solution that satisfies the UFL problem can be reduced
to the corresponding EDDE problem after the above discussion in polynomial
time. Thus, the EDDE problem is NP-hard.

4 EDDE Approaches

In this section, two approaches are proposed to solve the different scales of EDDE
problem correspondingly.
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4.1 Optimal Approach

The optimal solution to the EDDE problem must maximize the data deduplica-
tion ratio while fulfilling the same data coverage before and after deduplication
under the latency constraint. As introduced in Sect. 3.1, Sd donates the set of
edge servers that have data d before deduplication, and bi ∈ {0, 1} denotes
whether d is removed from si ∈ Sd. Thus, this EDDE problem can be modeled
as a constrained optimization problem (COP) as follows:

max (1 −
∑

si∈Sd

bi/|Sd|) (13)

hi,j ≤ h,∀si ∈ Sd, sj ∈ N(Sd) (14a)
∪{bi=0|si∈Sd} N(si) = N(Sd) (14b)

where constraint (14a) ensures the latency constraint and Constraint (14b)
ensures the coverage constraint.

EDDE-O can be implemented by employing some classic integer program-
ming solvers such as CPLEX3 and Gurobi4 for solving the COP presented above.
The solution is an assignment of 0 or 1 to each bi, where si ∈ Sd, that maximizes
the data deduplication ratio (13) while fulfilling the latency constraint (14a) and
the coverage constraint (14b). According to the solution, the data replicas are
removed from the edge servers whose corresponding bi values are 1.

4.2 Approximation Approach

Due to the NP-hardness of the EDDE problem proven in Sect. 3.2, it is unre-
alistic to find the optimal solutions of large-scale EDDE problems. In such sce-
narios, it takes EDDE-O a lot of time to explore the possible solutions and find
the optimal one. This can easily incur a significant delay in the implementation
of edge data deduplication and lower the utilization of ESSs. Thus, this section
introduces EDDE-A, an efficient approximation approach for finding sub-optimal
solutions to large-scale EDDE problems efficiently. The pseudo-code of EDDE-A
is presented in Algorithm 1.

In this algorithm, it first initializes the value of Sd−, S′
d−, the former for saving

the EDDE solution and the latter for saving the set of candidate edge servers
(Line 2). Then, it sets R

′
, R = 0 to record the new deduplication ratio and the

final deduplication ratio, respectively (Line 3). Next, the neighbor edge servers of
si(si ∈ Sd) can be obtained based on the latency constraint h, i.e., Eq. (3). Then,
the algorithm sorts the edge servers in Sd by the number of their neighbor edge
servers within h hops (Line 7). For all edge servers with the fewest neighbors, the
algorithm obtains the one, denoted as smax, with maximum distance(sj), i.e.,
the total distance from sj to each of its neighbor edge servers in N(sj) (Lines

3 https://www.ibm.com/analytics/cplex-optimizer.
4 https://www.gurobi.com/products/gurobi-optimizer/.

https://www.ibm.com/analytics/cplex-optimizer
https://www.gurobi.com/products/gurobi-optimizer/
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Algorithm 1. EDDE-A
Input: G(S, E), Sd, h
Output: EDDE solution Sd−;
1: Initialization:
2: Sd−, S

′
d− ← ∅

3: R
′
, R ← 0

4: End of initialization
5: while Ŝd+ �= Ŝd do
6: identify si’s neighbor edge servers N(si) with Eq. 3, for every si ∈ Sd

7: sort edge servers in Sd by |N(si)| high to low;
8: for sj ∈ arg minsi∈Sd |N(si)| do
9: for each edge server sk ∈ N(sj) do

10: distance(sj , N(sj)) ← distance(sj , N(sj)) + dk,j

11: end for
12: end for
13: smax ← arg max{distance(sj , N(sj)), sj ∈ arg minsi∈Sd |N(si)| }
14: S

′
d− ← S

′
d− ∪ {smax}

15: Sd ← Sd − smax

16: calculate R
′

with Eq. 8
17: if R

′
> R then

18: R ← R
′

19: Sd− ← S
′
d−

20: end if
21: end while
22: return Sd−

8–13). After that, smax can be included into the set of candidate edge servers
S′

d− and removed from Sd (Lines 14–15). Then, the new data deduplication ratio
R′ obtained by including smax in Sd− can be calculated with Eq.(8) (Line 16).
It will then be compared with the current data deduplication ratio R. If it is
higher, it will replace R and Sd− is updated accordingly (Lines 18–21). The
above process iterates until the coverage constraint is fulfilled, i.e., the set of
edge servers covered by Sd+ is equal to the set of edge servers covered by Sd

(Line 5). Finally, Sd− is returned as the final EDDE solution. According to Sd−,
an EDDE strategy B can be formulated by setting the corresponding bi = 1 (if
∃si ∈ Sd−) or bi = 0 otherwise.

Approximation Ratio. Now we analyze the approximation ratio and time
complexity of EDDE-A theoretically. Let S

′
d−(t) denote the set of candidate

edge servers obtained by EDDE-A in the tth iteration. According to Algorithm
1, whether an edge server sj is included in S

′
d− depends on |N(sj)|, i.e., the

number of its neighbor edge servers, and distance(sj , N(sj)), i.e., their distance
from sj . Thus, let us define βt = |N(S

′
d−(t))|/|S′

d−(t)| to represent the average
number of neighbor edge servers covered by each selected edge server in the
tth iteration. Let S∗

d− denote the optimal EDDE solution found by EDDE-O.
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Compared with S∗
d−, the EDDE solution obtained by EDDE-A, denoted with

Sd−, will not be able to remove more data replicas:

1
βt

≤ |S′
d−(1)|

|N(S′
d−(t))| ≤ |S′

d−(t)|
|N(S′

d−(t))| ≤ |S∗
d−|

|N(S′
d−(t))| (15)

Let |Sd−| denote the number of data replicas removed by EDDE-A. After the
final iteration of Algorithm 1, the number of data replicas removed by EDDE-A
follows:

|Sd−| ≤ 1
β1

(|N(S
′
d−(1))| − |N(S

′
d−(0))|) +

1
β2

(|N(S
′
d−(2))| − |N(S

′
d−(1))|)

+ ... +
1
βα

(|N(S
′
d−(t))| − |N(S

′
d−(t − 1))|)

(16)
Based on Eq. (15) and Eq. (16), we can infer the following:

|Sd−| ≤|N(S
′
d−(1))| − |N(S

′
d−(0))|

|N(S′
d−(1))| |S∗

d−| +
|N(S

′
d−(2))| − |N(S

′
d−(1))|

|N(S′
d−(2))| |S∗

d−|

+ ... +
|N(S

′
d−(t))| − |N(S

′
d−(t − 1))|

|N(S′
d−(t))| |S∗

d−|
(17)

Let α denote the maximum number of iteration, i.e., α = |Sd|. Based on
mathematical induction, we can obtain Eq. (18):

|Sd−| ≤ (ln α + 1)|S∗
d−| (18)

Based on Eq. (18), we can find the approximation ratio of EDDE-A as follows:

R

R∗ =
|Sd−|/|Sd|
|S∗

d−|/|Sd| ≤ (ln α + 1)|S∗
d−|

|S∗
d−| ≤ ln α + 1 (19)

Therefore, the approximation ratio of EDDE-A is lnα + 1.

Computation Complexity. Given an EDDE scenario with n edge servers
S = {s1, s2, ..., sn}, Algorithm 1 takes at most O(n) time to find the edge servers
with minimum |N(si)| in Line 6. Then, in Lines 7–12, the algorithm selects an
edge server from these edge servers based on their distance from their neighbor
edge servers. The distance calculation in Line 8–9 takes O(n2) time in the worst
case because the maximum number of edge servers in any N(sj) (sj ∈ Sd) is
n − 1. Thus, the overall computation complexity of EDDE-A is O(n2).

5 Evaluation

In this section, the experiments are conducted to comprehensively evaluate our
proposed two approaches, i.e., EDDE-O and EDDE-A.
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5.1 Experimental Settings

Dataset. To evaluate the approaches realistically, we conduct the experiments
on a widely-used real-world dataset5 [7], which contains 1,464 edge servers with
their geographic coordinates in Melbourne, Australia.

Competing Approaches. EDDE-O and EDDE-A are evaluated against the
following four approaches:

– Random: This approach randomly removes data replicas from edge servers,
one after another, until no more data replicas can be removed without vio-
lating the latency constraint or the coverage constraint.

– Greedy: This greedy-based approach always removes data replicas from edge
servers with the fewest neighbor edge servers, one after another, until no more
data replicas can be removed without violating the latency constraint or the
coverage constraint.

– EF-dedup [9]: This approach originates from [9] and is adapted in the con-
text of EDDE to remove data replicas instead of duplicate data chunks. It
first creates |Sd| clusters, each comprised of the neighbor edge servers of an
edge server in Sd within h hops. Then, it removes data replicas within those
clusters until there is one data replica within each of the clusters.

– TSC21 [14]: The edge data caching (EDC) problem studied in [14] is slightly
similar to the EDDE problem. This approach finds edge servers for storing
data replicas, aiming to minimize the number of data replicas for fulfilling
the latency constraint under the capacity constraint.

Parameter Settings. A set of small-scale experiments (Set #1) and a set of
large-scale experiments (Set #2) are conducted. The parameter settings in the
experiments are summarized in Table 2. All the experiments are conducted on
a machine equipped with Intel Core i5-8400 processor (8 cores, 8 threads) and
8 GB RAM, running Windows-10. When the value of each of the following four
setting parameters varies, the experiments are repeated for 200 times and the
averaged value is reported.

– Data redundancy rate (θ): This parameter is the redundancy of data d
in the ESS. Studies find that the redundancy of IoT data, e.g., multimedia
and traffic video sequences is generally up to 70% [17,20]. Thus, the value of
θ varies from 30% to 80% in both Set #1 and Set #2.

– Number of edge servers (n): This parameter decides the scale of the ESS,
increasing from 10 to 30 in steps of 5 in Set#1.2, from 50 to 250 in steps of
50 in Set #2.2.

– Edge server density (ds): Defined as ds = |E|/n, this parameter is the
density of the graph that represents the edge servers in the ESS. It varies
from 1.0 to 2.5 in steps of 0.3 in Set #1.3, from 2.0 to 5.0 in steps of 0.6 in
Set #2.3.

5 https://github.com/swinedge/eua-dataset.

https://github.com/swinedge/eua-dataset
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– Latency constraint (h): This parameter enforces the latency constraint,
increasing from 1 to 5 in steps of 1 in both Set #1 and Set #2.

Table 2. Parameter settings

θ n ds h

Set # 1.1 30%, 40%, ..., 80% 20 1.0 1

Set # 1.2 60% 10, 15, ..., 30 1.0 1

Set # 1.3 60% 20 1.0, 1.3, ..., 2.5 1

Set # 1.4 60% 20 1.0 1, 2, ..., 5

Set # 2.1 30%, 40%, ..., 80% 150 2.0 1

Set # 2.2 60% 50, 100, ...,250 2.0 1

Set # 2.3 60% 150 2.0, 2.6, ..., 5.0 1

Set # 2.4 60% 150 2.0 1, 2, ..., 5

Performance Metrics

– Data deduplication ratio (R), calculated with (8), the higher the better.
– Computation time, measured by the CPU computation time that taken to

find the EDDE solution by an approach, the lower the better.

5.2 Experimental Results

Effectiveness. Figures 2 and 3 show the effectiveness of the approaches in
Set #1 and Set #2, respectively. Figure 2 shows that EDDE-O and EDDE-A
achieve the highest and the second highest data deduplication ratios among all
six approaches. Second to only EDDE-O with an average performance gap of
only 8.68% across all the experiments in Set #1, EDDE-A outperforms EF-
dedup, Greedy, TSC21, and Random by an average of 7.82%, 10.33%, 16.24%,
and 24.87% in maximizing the data deduplication ratio. Figure 3 demonstrates
EDDE-A’s superior performance in maximizing data deduplication ratios in Set
#2, which is 9.47%, 16.71%, 20.34%, and 32.03% higher on average than EF-
dedup, Greedy, TSC21, and Random, respectively.

Figures 2(a) and 3(a) demonstrate the impact of data redundancy (θ) on
data deduplication ratio in Set #1.1 and Set #2.1. Given a fixed number of edge
servers in the ESS, a larger θ grows the number of data replicas on the ESS
and the data density measured by the ratio of edge servers in the system with
data replicas. This immediately increases the number of data replicas that can
be removed without violating the latency constraint or the coverage constraint.
For example, if any adjacent edge servers have duplicate data, one of them
can be removed. Thus, the data deduplication ratios achieved by all approaches
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increases. Figures 2(b) and 3(b) demonstrate the impact of the number of edge
servers (n) on data deduplication ratio in Set #1.2 and Set #2.2. Given a fixed
data redundancy rate, a larger n will further distribute data replicas across the
edge servers in the ESS. This decreases the data density in the system, making
it harder to remove data replicas without violating some constraints, i.e., the
latency constraint and the coverage constraint. For example, data replicas are
less likely to be found on adjacent edge servers. Thus, the data deduplication
ratios of all approaches decrease when n increases, opposite to the impact of θ
shown in Figs. 2(a) and 3(a). Figures 2(c) and 3(c) depict the results in Set #1.3
and Set #2.3 where edge server density ds varies. When the edge server den-
sity ds increases, the data deduplication ratios produced by the six approaches
increase. A larger ds connects each individual edge server to connect to more
other edge servers in the system. The data stored on an edge server can be
delivered to users over the edge server network under the latency constraint.
This indicates the importance of leveraging edge servers’ ability to communicate
and collaborate. Figures 2(d) and 3(d) show the impact of latency constraint
(h) on data deduplication ratio in Set #1.4 and Set #2.4. As h increases, the
latency constraint is relaxed. Users can retrieve data from edge servers further
away. This reduces the number of data replicas needed in the system to accom-
modate all the users within the data coverage. Thus, more data replicas can
be removed, and the average deduplication ratios produced by all approaches
increase accordingly.

(a) Set # 1.1 (b) Set # 1.2 (c) Set # 1.3 (d) Set # 1.4

Fig. 2. Effectiveness evaluation in Set #1

(a) Set # 2.1 (b) Set # 2.2 (c) Set # 2.3 (d) Set # 2.4

Fig. 3. Effectiveness evaluation in Set #1
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Efficiency. Figures 4 and 5 demonstrate the efficiency of all approaches in
Set #1 and Set #2, respectively. Figure 4 illustrates the high computation time
obtained by EDDE-O in Set #1 that renders those of other approaches negligible.
This high computational overheads validate the EDDE’s NP-hardness proved in
Sect. 3.2. This tells us that EDDE-O is indeed not suitable for solving large-scale
EDDE scenarios. Compared with EDDE-O, EDDE-A is much more efficient in
solving large-scale EDDE problems. In Set #1, it takes only 1.27 ms on average
to find a solution, only 0.16% of what EDDE-O takes. Please note that EDDE-O
is excluded from Set #2 because it cannot find a solution within a reasonable
amount of time in such large-scale EDDE scenarios. In Fig. 5, EDDE-A always
takes more computation time for finding an EDDE solution than the other four
competing approaches, specifically, 14.67 ms, 19.72 ms, 24.29 ms, and 28.43
ms more than EF-dedup, Greedy, TSC21, and Random, respectively. Overall,
EDDE-A scales with θ and n, taking no more than 125 ms to find a solution
in Set #2. Given its outstanding advantages in maximizing data deduplication
ratios over EF-dedup, Greedy, TSC21, and Random, its extra computational
overhead is worthwhile in most large-scale EDDE scenarios.

(a) Set # 1.1 (b) Set # 1.2 (c) Set # 1.3 (d) Set # 1.4

Fig. 4. Efficiency evaluation in Set #1

(a) Set # 2.1 (b) Set # 2.2 (c) Set # 2.3 (d) Set # 2.4

Fig. 5. Efficiency evaluation in Set #1

6 Releated Work

A large amount of data are being produced by mobile and IoT devices at the
network edge, e.g., images, video frames, and locality data [12]. It has become
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a trend for application vendors to cache popular data on edge servers to reduce
the cost and latency incurred by transmitting data from the cloud to the net-
work edge [16]. However, the constrained storage resources on edge servers are
a major challenge to explore the potentials of edge storage systems comprised
of networked edge servers [6,14,19]. Reducing data redundancy within an edge
storage system can save up to 70% storage resources overall [8,17]. This can be
achieved through data deduplication.

Cloud Data Deduplication. (CDDE) has been extensively studied for cloud
storage systems [4,11,18]. To name a few, Dubnicki et al. [4] proposed a CDDE
approach capable of deduplicating data at the data chunk level across multi-
ple data centers based on an improved distributed hash table. Yan et al. [18]
proposed a novel data deduplication approach named Z-Dedup. Z-Dedup can
monitor and remove redundancy at chunk-level in compressed back-up data by
exploiting some invariant information contained in the metadata compressed
data. Unlike most data deduplication studies that focus on back-up data, Meis-
ter et al. [11] proposed to deduplicate data for online file systems in HPC centers
with chunking strategies specifically designed based on HPC applications’ data
characteristics. Based on research on data deduplication, cloud service providers
like Amazon and Microsoft have offered and deployed data deduplication services
for their cloud storage servers [1,2].

However, specifically designed for conventional cloud storage systems, these
cloud data deduplication (CDDE) techniques are not suitable to directly employ
in edge storage systems due to the unique characteristics of the MEC environ-
ment, particularly, edge servers’ geographic distribution, limited coverage, and
constrained resources. In recent years, researchers are starting to investigate data
deduplication in edge storage systems [8,9]. Specifically, Li et al. [9] formulated
the data deduplication problem at the network edge as a clustering optimization
problem. They proposed an approximate algorithm for partitioning edge servers
into disjoint clusters so that CDDE approaches can be employed to deduplicate
data within individual clusters. In their subsequent study [8], another approxi-
mation algorithm was proposed to take data popularity into account. However,
these studies have followed the same idea of CDDE and failed to consider the
unique characteristics that differ edge storage systems from cloud storage sys-
tems fundamentally, in particular, the capacity constraint, proximity constraint,
and latency constraint discussed in Sect. 1 and widely acknowledged in state-of-
the-art studies of MEC [5,7,16]. To facilitate EDDE, this paper makes the first
attempt to motivate, model, and solve the EDDE problem with consideration of
the unique characteristics of the MEC environment.

7 Conclusion and Future Work

In this paper, we formulated the novel edge data deduplication (EDDE) prob-
lem in the MEC environment as a constrained optimization problem. We proved
that it is NP-hard and proposed two EDDE approaches. The first one is named
EDDE-O and finds optimal solutions to small-scale EDDE problems based on
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integer programming. The other one is named EDDE-A and finds approximate
solutions to large-scale EDDE problems efficiently. The results of extensive
experiments conducted on a widely-used real-world dataset demonstrate that
EDDE-O and EDDE-A can solve the EDDE problem effectively and efficiently,
outperforming four representative approaches significantly.

This research has first motivated the importance to deduplicate redundancy
in ESSs by fully exploring the characteristic of the MEC environment. As for
further works, we will attempt to devise lightweight mechanisms for detecting
data duplication and dynamic data deduplication.
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