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Abstract Applications in High Performance Computing (HPC) cloud are charac-
terized by large cache resource consumption due to large-scale inputs and intensive
communications, which creates serious Shared Last Level cache (SLLC) performance
bottleneck. Current system software stacks are not efficient in addressing this issue
among virtual machines at the hypervisor level or the threads at the operating sys-
tem level. In this paper, we investigate performance interference due to contention
for SLLC in the HPC cloud. We employ an enhanced reuse distance analysis tech-
nique with an accelerated cyclic compression algorithm to identify application’s cache
interference intensity. Based on reuse distance analysis, we propose a practical Cache
Contention-Aware virtual machine Placement approach (CCAP). CCAP dispatches
virtual machines according to their cache interference intensities to avoid cache pollu-
tion and interference, thus alleviating negative effects of cache contention. We imple-
ment CCAP in the Xen hypervisor. Evaluation of NPB workload reveals that CCAP
can improve performance of cache sensitive applications when they are co-scheduled
with cache pollution programs. For a 2-workload system, it reduces execution time
by 12 %, as well as cache miss rate by 13 %, while increasing throughput by 13 %,
on average. Moreover, CCAP also improves the average performance of the cache
pollution programs by 5 %. For a 4-workload system, CCAP brings more significant
performance improvement to cache sensitive applications, an average increase of 20 %.
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1 Introduction

The Shared Last Level Cache (SLLC) is pervasively employed in today’s Chip Multi-
Processor (CMP) architecture [5]. By increased cache space and bandwidth utiliza-
tion, SLLC plays an important role in improving system performance. However,
SLLC also incurs cache pollution and interference problems due to contention for
shared resource [4,25]. Interference with cache access results in more cache misses
and degrades the performance of co-scheduled applications. Not only conventional
processes in operating systems but also Virtual Machines (VMs) residing in a hyper-
visor [12,27,29] suffer from performance interference due to SLLC contention. As
cloud computing has been the infrastructure of the modern computing ecosystem,
increasing number of advanced academic and research institutes are migrating their
applications to the High Performance Computing (HPC) cloud. Many of the virtual
applications in the HPC cloud are characterized by large cache resource consump-
tion due to their large-scale data inputs and intensive communications [1]. When
multiple VMs holding virtual HPC applications are running separately on differ-
ent physical cores, the problem of SLLC contention also arises and becomes even
worse among the VMs that are located on cores belonging to the same chip. Cache
contention breaks the inherent protection and isolation [6,30] provided by virtual-
ization thus directly interferes performance of applications running within VM. It
is no wondering that co-scheduling such HPC VMs causes significant performance
degradation.

To study the performance interference caused by contention for SLLC quantita-
tively, we select workloads from the NAS Parallel Benchmark (NPB) suite [2] to per-
form various kinds of co-scheduling. Given its weak-locality and large cache working
set, we deem CG as a cache pollution program and co-schedule it with other workloads.
We compare the performance disparities between running the workload solo and co-
scheduling them with CG. Figure 1 normalizes the observed performance disparities.
Some workloads, such as LU and MG, present serious performance degradation with
cache miss rates increased by approximately 15 %, execution time increased by more
than 10 %, and throughput reduced by more than 11 %, respectively. In contrast, some
workloads, including EP and SP, have less obvious performance degradation (less than
4 %).

(a) (b) (c)

Fig. 1 Normalized performance degradation of NPB workloads when co-running with CG compared to
running solo
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Although SLLC contention is a serious problem for the HPC cloud, current system
software stacks are not efficient in addressing this problem among virtual machines at
the hypervisor level or threads at the operating system level. To alleviate performance
degradation problem due to contention for SLLC, prior researchers proposed many
solutions [15], including scheduling of threads [11,33] and partitioning cache [7,
21,26]. However, these approaches either need additional hardware support or have
limitations in programming language or present high implementation complexities.
Considering the effectiveness of commodity-virtualized systems, a practical software
approach to address SLLC contention among applications in the HPC cloud that could
be easily integrated into existing commodity-virtualized systems is required.

In this paper, we employ the reuse distance analysis technique to identify appli-
cations’ cache interference intensity. Reuse distance analysis measures a program’s
memory reuse distance profile to characterize its cache behavior [10,23]. However,
on-line reuse distance analysis is quite time consuming and sacrifices effectiveness.
To reduce reuse distance complexity, we design an off-line cyclic compression algo-
rithm to accelerate reuse distance computing. Based on this enhanced reuse distance
analysis we classify HPC applications into three categories: cache pollution programs,
cache sensitive programs, and cache friendly programs. Further, we propose a practical
software solution, Cache Contention-Aware virtual machine Placement (CCAP), to
address performance interference due to contention for SLLC in the HPC cloud. CCAP
dispatches virtual machines according to their cache interference intensities. VMs
running cache pollution applications are scheduled to cores that do not share cache
with VMs running cache sensitive applications, therefore avoiding cache interference
and pollution. We implement CCAP in an in-house virtual machine management kit
based on the Xen [3] hypervisor. Evaluation of NPB shows that CCAP significantly
improves the performance of cache sensitive applications when they are co-scheduled
with cache pollution applications. For the 2-workload system, it reduces execution
time by 12 % and the cache miss rate by 13 %, as well as increases throughput by
13 % on average. Moreover, for cache pollution applications, CCAP also has a 5 %
performance improvement. For the 4-workload system, CCAP brings more significant
performance improvement to cache sensitive applications (on average, more than 20 %
improvement).

In summary, the main contributions of this paper are:

– We enhance conventional reuse distance analysis via a cyclic compression algo-
rithm. The cyclic compression algorithm employs slice computing to accelerate
reuse distance histogram computing. Compared with prior work, it decreases the
spatial complexity due to large-scale memory accessing in data computing.

– We propose a classification for HPC cloud applications based on cache interference
intensity. Cache interference intensity characterizes cache access behavior of the
HPC cloud applications accurately. Evaluations show that such classification is
especially useful for virtual machine placement to achieve performance isolation.

– We design a CCAP to address contention for SLLC. Based on cache interference
intensities, CCAP captures applications’ cache behavior, thus dispatching virtual
machines to distinct cores and protecting cache sensitive applications from inter-
ference of cache pollution applications.
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– We implement CCAP in an in-house virtual machine management kit based on
the Xen hypervisor and carry detailed performance study on the popular NPB
workload. CCAP is a practical software solution and does not need any extra
hardware support. Evaluations reveal that by implicit partitioning SLLC among
virtual machines, CCAP significantly improves performance.

The rest of the paper is organized as follows. Section 2 describes the enhanced reuse
distance analysis technique with the cyclic compression algorithm to reduce reuse
distance histogram complexity. Section 3 presents our application classification for
the HPC cloud based on cache interference intensity. The main components of CCAP
are also introduced in this section. Section 4 explains how to implement CCAP in a real
system based on the Xen hypervisor. Section 5 reports our experimental methodology
and performance evaluation on the NPB. Section 6 summarizes the work most closely
related to ours. Section 7 concludes this paper and discusses our future work.

2 Enhanced Reuse Distance Analysis

2.1 Reuse Distance Analysis

Reuse Distance (RD) was originally called Least Recently Used (LRU) stack distance.
RD is the number of distinct cache line accesses between two consecutive references
to the same cache line. It is commonly used to characterize cache access behavior
of applications through measuring the length of intervening data between two cache
accesses. Further, we can construct a Reuse Distance Histogram by sorting all mem-
ory accesses based on their reuse distances. The reuse distance histogram indicates
the distribution of reuse distances with different memory access percentages. We can
exploit the reuse distance histogram to calculate cache hits and misses on different
cache configurations and by distinct program input. Moreover, reuse distance his-
togram can be used to distinguish and classify different cache behaviors in shared
last level cache (SLLC) as well. As an example, Fig. 2 presents the reuse distance
histogram of programs from the NPB benchmark suite [2] with inputs of class S. The
horizontal axis indicates different reuse distances (measured per kilobytes); the verti-
cal axis records the corresponding distribution percentage of that reuse distance. The
larger the percentage it occupies, more data a program will access at the corresponding
reuse distance, which is another measurement of cache working set.

The inputs of reuse distance analysis are the applications’ memory access address
records. Different inputs may result in different memory access numbers, and thus
determine the size of records directly. The size is usually very large. For example,
even fed with inputs of class S, workloads from the NPB suite still have memory
access address records in sizes of millions or even billions of bytes.

2.2 Cyclic Compression Algorithm

Considering the huge size of memory access address recording, it is impossible to
compute reuse distance histograms online in a reasonable interval without any extra
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Fig. 2 Reuse distance histogram of applications from the NPB suite with input of class S

hardware support. Even conventional off-line computation is time consuming featured
with both CPU and memory intensive. Given the large scale of data computing, we
propose a cyclic compression algorithm to release memory store pressure and CPU
processing loads. Based on the application’s memory access address record size, this
algorithm splits the record file into slices of equal size. Each slice is associated with a
unique identity number and a specified slice length Kmin (e.g., 10s thousand). Then, it
forks multiple threads, which equals to available free CPU core counts, to generate the
computing results of all file slices in parallel. The final computing result contains the
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reuse distance and a group of new memory access address records without any dupli-
cate addresses. Finally, it reduces each file slice’s computing result and summarizes
the reuse distance results. The new memory access address records are also merged
to a new memory access address record. The above operations are repeated through a
loop until the most recent two numbers of file slices are equal. At this time, no dupli-
cate memory accesses exist in this file slice length, which means that the next reuse
distance to be computed is above the slice length. Thus, the file slice length needs to
be upgraded for larger reuse distance calculation. Then, the algorithm increases file
slice length, and starts with new cyclic processing until the number of file slices is one
or reaches millions. The number that equals millions means that the reuse distance is
more than 512K. At this time, it is enough to determine the application’s reuse distance
histogram. We choose 512K as a threshold because we learn from the reuse distance
distribution fed with inputs of class S, as we will note in Sect. 5.2.

Algorithm 1 shows the detailed computation process of the reuse distance histogram
enhanced by the cyclic compression algorithm described above. We denote the length
of the applications’ memory access address record as N , the maximum length of the
file slice as Kmax , and the number of threads as t . Thus, it is easy to conclude that
the temporal and spatial complexity of this algorithm is O(N 2) and O(t ∗ Kmax ),
respectively. Parameters of t and Kmax can be tuned to optimize memory usage.

3 Cache Contention-Aware VM Placement

3.1 HPC Cloud Application Classification

The reuse distance histogram indicates the distribution of each individual reuse dis-
tance. Therefore, it is accurate and easy to distinguish different applications’ cache
behaviors when they contend for SLLC. We define cache interference intensity from
the reuse distance histogram to indicate the length of reuse distance. Based on cache
interference intensity, we propose a HPC cloud application classification to character-
ize cache access behavior in contending for SLLC. According to this classification,
we cluster HPC cloud applications into three categories:

– Cache pollution applications, which refer to those applications that occupy large
cache capacity and features with a relatively high percentage large reuse distance.
Cache pollution applications waste cache resources and incur frequent cache line
replacement, thus undermining cache hit rate and impairing performance of co-
runners.

– Cache sensitive applications, which represent those applications that are strongly
dependent on available cache resources. If the required cache capacity decreases,
performance of cache sensitive applications will be degraded substantially.

– Cache friendly applications, which achieve good performance but consume rela-
tively less cache capacity. Cache friendly applications do not take over extra cache
capacity; therefore, it is safe to co-run cache friendly applications with other appli-
cations.

We perform reuse distance analysis enhanced with the cyclic compression algorithm
on the NPB suite. Here, we only enforce inputs of class S to validate the effectiveness
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Algorithm 1 The cyclic compression algorithm
Require: length() returns the length of f , threads.start () starts thread to accomplish its tasks and

threading. join() waits for all threads in threadlist to finish tasks.
1: sliceLength ← Kmin
2: access Address Rec← Rawaccess Address Rec
3: while sliceLength lg Kmax do
4: record Length ← length(access Address Rec)
5: sliceNumber ← record Length/sliceLength
6: f lag← T rue
7: while f lag do
8: slice access Address, give each slice a identify number,

produce record Slice[sliceNumber ]
9: thread Num ← memSpace/sliceLength
10: tasks PerT hr ← sliceNumber/(thread Num − 1)

11: for numin[0..thread Num − 1] do
12: tasks of calculate record Slice[num ∗ T asks PerT hr, (num − 1) ∗ tasks PerT hr − 1]

assign to thread List[num]
threadsList[num].start ()

13: end for
14: thread List. join(), producesliceR D[sliceNumber ], sliceA A[sliceNumber ]
15: for numin[0..sliceNumber − 1] do
16: summarize sliceR D[num] to reuseDistanceRec

merge sliceA A[num] to Newaccess Address Rec
17: end for
18: access Address Rec← Newaccess Address Rec
19: record Length ← length(access Address Rec)
20: NewsliceNumber ← record Length/sliceLength
21: if NewsliceNumber = 1 then
22: calculate reuse distance of access Address Rec,

summarize result to reuseDistanceRec
return reuseDistance

23: end if
24: if NewsliceNumber = sliceNumber then
25: f lag← False
26: else
27: sliceNumber ← NewsliceNumber
28: end if
29: end while
30: sliceLength ← sliceLength ∗ 10
31: end while
32: return reuseDistanceRec

of CCAP quickly. If time allows, relative large inputs can be fed to programs as well.
Figure 2 lists the total reuse distance histograms for all programs.

Considering the impact of data input size on cache behavior, in our study, we can not
guarantee programs in the NPB suite present the exact same reuse distance histograms
as with inputs of class S when fed with ordinary inputs such as class A or class B. Such
a case is possible, especially for cache sensitive applications. However, we can infer
the estimated reuse distance distribution curve trends from small-scale behavior. We
feed a cyclic compression algorithm with inputs of class W and class S individually and
find that the accuracy of estimation of S from W is reasonable. Moreover, we enforce
measuring of cache miss rates with inputs of all possible class not only class S and
class W, thus preventing estimation from misclassification due to disparities between
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Fig. 3 Reuse distance
histogram of programs from 3
categories. FT, MG, and BT are
cache pollution, cache sensitive,
and cache friendly applications,
respectively

the reuse-distance histogram and various inputs. However, quantitative estimation of
cache behaviors of large input from small input is beyond the scope of our study.

We correlate the cache miss rate and reuse distance distribution described below.
When the size of the input data-set increases, the cache sensitive application has an
obvious increase in cache miss rate. The increase of cache miss rate means that the
percentage of several middle reuse distances substantially improved with the input
data size. When using the ordinary input data size, these applications would suffer
more cache misses from interference of co-schedulers. Cache friendly applications
have small reuse distances, and more than 60 % of accesses falls in the low reuse
distance block. As the input data size changes, these applications maintain stable low
cache miss rate.

The typical reuse distance histograms of three categories are shown in Fig. 3.
Based on our classification, CG and FT are cache pollution applications. Their reuse
distances are as large as approximately 512 KB. LU and MG belong to cache sensitive
applications. They have reuse distances of medium size and have large performance
variations, even with little change of cache size. The remaining IS, BT, EP and SP
share the same cache friendly application group. They all have small reuse distances
within 100 KB.

3.2 Components of CCAP

To address contention for SLLC in the HPC cloud, we design a CCAP based on the
above cache interference intensity classification from reuse distance analysis. CCAP
computes the reuse distance histogram of each application from sampled memory
access address records. It classifies applications into three categories based on reuse
distance analysis and finally schedules virtual machine according to optimal placement
solution. The purpose of CCAP is to reduce cache interference and minimize the
impact of serious cache contention among different HPC cloud applications. As Fig. 4
shows, CCAP consists of two key processes, reuse distance analysis process and
virtual machine placement process. Four modules are designed to implement the two
processes. We describe these modules as follows.
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Fig. 4 The overview diagram of CCAP components. CCAP contains two key processes, reuse distance
analysis and virtual machine placement. The rectangles inside each process describe the workflow

3.2.1 Reuse Distance Sampling Module

This module captures applications’ reuse distance sampling. Two small test trainings
in different sizes are fed to this module. The final sampled data consists of memory
access addresses and cache misses.

3.2.2 Reuse Distance Analysis Module

This module plays a key role in the reuse distance analysis process. It computes appli-
cations’ reuse distance histograms with the enhanced cyclic compression algorithm on
the memory access address records provided by the reuse distance sampling module.
Cache interference intensity is computed automatically from the generated reuse dis-
tance histograms and sampled cache miss rate, which directs application classification
later.

3.2.3 Virtual Machine Placement Module

This module is responsible for dispatching the virtual machine to optimal cores. From
application classification type, it responds to requests from the HPC cloud application
by producing optimal virtual machine mapping to the cores. This mapping attempts
to alleviate contention for SLLC to the minimum possible.

3.2.4 Virtual Machine Allocation Module

This module executes direction of the optimal virtual machine placement solution
drawn from the virtual machine placement module. Through enforcing core bind-
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ing to distinct fixed physical cores, it achieves virtual machine isolation, alleviating
contention for SLLC.

3.3 Scheduling Virtual Machines in CCAP

We explain how CCAP schedules virtual machines in details in this subsection. CCAP
relies on virtual machine placement module to select VMs and virtual machine allo-
cation module to allocate virtual processors to the corresponding VMs.

CCAP selects virtual machines according to their scheduling priorities which are
correlated with their cache interference intensities. From the classification in reuse
distance analysis, we observe that different categories have different impacts on con-
tention for SLLC. The cache pollution applications affect co-runners seriously. The
cache sensitive applications have a strong dependency on cache resources, but they
have little impact on others. The cache friendly applications are always friendly to
others. Based on this observation, we assign virtual machines of different categories
with corresponding scheduling priorities. The cache pollution applications have the
highest priorities, the cache sensitive applications have the medium priorities, and the
cache friendly applications have the lowest priorities. The virtual machine placement
module schedules VMs from high priority to low priority. It picks the cache pollu-
tion applications first. Then, it locates cache sensitive applications and finally handles
cache friendly applications.

On the other hand, to minimize the entire system’s cache contention, CCAP allo-
cates virtual processors in the following sequences. For the cache pollution applica-
tions, the empty processors come first, followed by processors that already have cache
friendly programs located, processors that already have cache pollution applications
loaded are utilized subsequently, followed by processors that co-run cache sensitive
applications. This allocation sequence guarantees the minimization of the probability
that both cache pollution co-runners would be affected. Since this category affects oth-
ers mostly in cache contention, we prefer to reduce its cache interference to others. In
contrast, for the cache sensitive category, the virtual processor allocation sequence is
empty, the cache friendly category, the cache sensitive category and finally the cache
pollution category. For the cache friendly category, the virtual processor allocation
sequence is empty, the cache friendly category, the cache pollution category, and the
cache sensitive category follows.

4 System Implementation

We implement CCAP in an in-house virtual machine management kit based on the Xen
[3] hypervisor. This kit consists of one central management node and a group of com-
puting data nodes, both of which are running on physically independent machines. Vir-
tual machines are scheduled to run on the data nodes. The collected total statistics are
stored in the central node, which also controls the entire data nodes as a cluster admin-
istration management node. We integrate CCAP into our prototype system, as Fig. 5
demonstrates. As a high level logic control component, the virtual machine placement
module of CCAP is mainly implemented in the central node to take advantage of the
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Fig. 5 Architecture of the CCAP implementation

stored information to determine the optimal virtual machine schedule solution. The
remaining components of CCAP are deployed on the data nodes. Applications’ reuse
distance files produced from the reuse distance sampling module are analyzed by the
reuse distance analysis module, which generates application classification based on
cache interference intensity. Based on the classification result received, the central
node dictates the virtual machine allocation module listening to the data nodes to
schedule the virtual machine to the corresponding optimal designated cores according
to the determined mapping solution. Core binding is enforced to prevent unexpected
dynamic virtual machine migration from the inherent scheduling algorithm of the Xen
hypervisor until the newly mapping solutions are produced.

The central node is responsible for handling multiple virtual machine requests, and
generating virtual machine placement solutions according to the applications’ classi-
fication. It collects the CPU usage information and virtual machine running statistics
through monitor center component, which communicates with monitor daemon com-
ponents in each data node. The information combined with classification is used to
compute the optimal virtual machine placement solution. The virtual machine mod-
ule repacks requests from virtual machines with physical core allocation information,
which is then sent to the virtual machine allocation module on the data nodes. It also
receives feedback information from the data nodes.

Each data node is the platform to load the virtual machines. The data node executes
specific virtual machine commands sent from the central node. It also gains application
classification through the reuse distance sampling module and reuse distance analysis
module, which is transmitted to the central node. When it receives the virtual machine
placement solution from the central node, it allocates virtual machine by invoking the
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virtual machine allocation module. In addition, the monitor daemon on the data node
collects the virtual machine statistics and CPU usage information, which are reported
to the monitoring center.

5 Experiment and Evaluation

5.1 Experimental Setup

We implement CCAP based on Xen 4.0.1. Our physical platform consists of a central
node and a data node, as presented in Sect. 4. The data node is equipped with the Xen
hypervisor. The physical platform is equipped with Intel Xeon E5310 and 24 GB main
memory. It contains 2 quad-core processors. The cores in each processor share a 4
MB, 16-way set associative L2 cache (SLLC) with a 64 bytes cache line. Each core has
a private 32 KB L1 instruction cache and 32 KB L1 data cache. Eight programs from
NPB 3.3, including BT, CG, EP, FT, IS, LU, MG, and SP, are selected to construct our
HPC cloud workloads.

5.2 Methodology

We adopt three performance metrics: execution time, throughput, and cache miss
rate. Specifically, we obtain execution time and throughput from the final statistics
outputs of the NPB suite. We also employ XenOprofile [8], a commonly used per-
formance counter profiling toolkit in the Xen virtualized platform, to collect cache
miss rate. Since XenOprofile does not obtain cache miss rate directly, we sample
the total number of LLC misses (NR_LLC_MISSES) and the total number of LLC

references (NR_LLC_REFS) to compute the cache miss rate
(

NR_LLC_MISSES
NR_LLC_REFS

)
. The

average sampling interval is configured to 1000 cycles.
Considering the time-consuming run of a huge input, we feed the reuse distance

sampling module for each application from the NPB suite with the training inputs of
class S. We use a customized PinTools [22] to record applications’ memory access
address. After several manual experimental measurements, we finally manage to find
that the size of memory accesses record files ranges from 74 MB to 2.1 GB, as well as
the maximum reuse distance is approximately 512 KB. Based on this observation, we
configure the main parameters of the cyclic compression algorithm as follows. The
thread number is set to 8, the available free core counts of our platform. The maximum
slices number is set to 1 million, which is large enough to collect reuse distances of
less than 512 KB.

Our HPC cloud classification based on cache interference intensity is enforced to
construct workload. Unlike reuse distance sampling, we feed workloads with a large
input size of class A. Since cache pollution is highly correlated with other co-running
applications sharing the same physical node, we cover all possible combination pairs
to evaluate the effectiveness of CCAP. Specially, we consider pairs towards both a 2-
workload system and a 4-workload system. Through our control switch at the central
node, we determine whether to activate the CCAP component. Compared pair runs are
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Table 1 Performance
comparison of FT and MG when
co-scheduled with the default
configuration and CCAP,
respectively

Workload Default CCAP

FT MG FT MG

Time (s) 50.79 25.76 43.90 22.13

Throughput (Mop/s) 137.82 759.93 162.45 877.97

L2 cache miss rate (%) 48.14 62.76 45.64 55.45

conducted, one utilizing CCAP and the other without. Average performance metrics
are collected for five runs.

5.3 Performance Evaluation

5.3.1 Spatial Complexity of Cyclic Compress Algorithm

Above all, we discuss the spatial complexity of the cyclic compression algorithm. As
noted in Sect. 2.2, for N bytes memory access records, the conventional reuse distance
analysis procedure is featured with spatial complexity of O(N ). In contrast, our cyclic
compression algorithm consumes space of only O(t∗Kmax ), where t and Kmax denote
computing number and slice file size, respectively. Configured with the parameters
mentioned in the above methodology, for an average 8 bytes of memory access records,
the average memory consumption is reduced from 2.1 GB to 62 MB (8 × 1,000,000
× 8 bytes). It alleviates the memory pressure to the hypervisor significantly, servicing
more memory requests from the upper virtual machines.

5.3.2 Performance of 2-Workload System

For a 2-workload system, we are mostly concerned with workloads consisting of a
cache pollution program and a cache sensitive program. Therefore, we study how
CCAP improves performance of a cache sensitive application when it is co-scheduled
with a cache pollution program. According to our classification based on cache inter-
ference intensity, we select MG from the cache sensitive category and FT from the
cache pollution group and co-schedule them. Performance statistics for the default
run without any shared cache control (default) and the run with CCAP are presented
in Table 1. The normalized performance improvements are also presented in Fig. 6.
With the shared cache control from CCAP, MG’s performance is improved, which
reduces execution time by 14.09 % and cache miss rate by 11.66 %, while increasing
throughput by 15.53 %. We also find that CCAP could improve FT (a cache pollution
application) as well, via reducing execution time by 13.57 % and cache miss rate by
5.19 %, while increasing throughput by 17.15 %.

Beyond co-scheduling of FT and MG, we also explore performance for other co-
scheduled programs. We find that for the combination of a cache sensitive program
and a cache pollution one, CCAP has a more observable performance improvement.
Figure 7 presents the typical performance improvement for applications matching such
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(a) (b) (c)

Fig. 6 Normalized performance improvement when co-schedule a cache sensitive application MG and a
cache pollution program FT with the shared cache control from CCAP

(a) (b) (c)

Fig. 7 Normalized performance improvement of typical cache sensitive applications (LU, MG) when
co-scheduled with cache pollution applications (CG, FT) with shared cache control from CCAP.

a combination case. On average, it reduces execution time by 12 % and cache miss rate
by 13 %, while increases throughput by 13 %. Our approach prevents cache sensitive
applications from suffering serious performance degradation due to contention from
cache pollution applications.

Besides cache sensitive applications, we also find that CCAP has unexpected per-
formance improvement for cache pollution applications. For example, Fig. 8 shows
the performance improvement of FT when it is co-scheduled with other workloads.
On average, it reduces execution time by 11 % and cache miss rate by 5 %, while
increasing throughput by 12 %.

5.3.3 Performance of 4-Workload System

In the scenario of 4-workload system, we study how the number of VMs per node
affects the performance of applications sharing the same physical node. We measure
several combined pairs where workloads consist of programs classified in three differ-
ent categories: 2 cache pollution programs plus 1 cache sensitive program plus 1 cache
friendly program (CG, CG, MG, and EP), 1 cache pollution program plus 2 cache sen-
sitive programs plus 1 cache friendly program (CG, MG, LU, and EP), and 1 cache
pollution program plus 1 cache sensitive plus 2 cache friendly programs (CG, MG, BT,
and EP). We do not include the performance statistics of cache pollution applications
and cache friendly applications due to page limits. We show the performance results of
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(a) (b) (c)

Fig. 8 Normalized performance improvement of FT (a cache pollution application) when it is co-scheduled
with cache sensitive applications with shared cache control from CCAP

(a) (b) (c)

Fig. 9 Normalized performance improvement of typical cache sensitive workloads on 4-workload system
with shared cache control form CCAP

the typical cache sensitive application (MG) in Fig. 9. The cache sensitive application
achieves performance improvement, including reducing execution time by 21 % and
cache miss rate by 23 %, while increasing throughput by 25 % (at maximum). Cache
pollution is highly correlated with co-running applications. According to this study,
we find that CCAP achieves greater performance improvement for this case, compared
to the 2-workloads system.

6 Related Work

Prior researches have proposed solution to control and alleviate SLLC contention
among threads in operating systems. However, current system software stacks are
weak in addressing this problem for HPC cloud either at the hypervisor level or at the
operating system level. In this section, we summarize the work most closely related
to ours.

Prior cache resource management solutions aim for different goals, including sys-
tem performance improvement [14,31], QoS ensurance [13,17,24] or cache usage
fairness [18,20]. Several studies focus on analysis of the reuse distance histogram,
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which determines program cache access behavior [9,16,28,32]. These approaches
adopt mechanisms such as scheduling resource, partitioning cache to realize cache
allocation and isolation among threads or programs. The reuse distance analysis is
used to measure cache interference, cache misses, or other cache characteristics. The
multiple reuse distance analysis approaches make efforts to migrate cache contention
or improve cache hits, which lead to programs’ performance improvements [4,19].

The pain classification scheme [15] uses stack distance analysis to define cache sen-
sitivity and cache intensity of programs. Cache sensitivity refers to how much impact
a program suffers in cache contention with co-runners. Cache intensity refers to how
much a program affects others in cache contention. The stack distance is used to calcu-
late the two cache interference factors that are combined to compute the co-schedule
“pain”. Based on the pain classification scheme, the scheduler makes decisions on
scheduling of threads. This approach is effective in reducing cache interferences among
co-scheduled threads. However, it has a high implementation complexity due to cache
interference factors computing, making it difficult to integrate into existing systems.

The soft-OLP approach [21] realizes cache partition in data object granularity based
on locality pattern analysis. This approach recognizes each data object’s locality pat-
tern based on its reuse distance histogram and inter-object interference histograms.
It samples smaller test training inputs to improve sampling efficiency. This approach
uses the page coloring software method to partition cache among data objects of one
program. The soft-OLP approach effectively reduces programs’ cache misses and
execution time. However, it is limited on programming languages and programming
modes. Additionally, to collect data objects, it requires pre-scanning of a program
binary file symbol table.

7 Conclusion and Future Work

Contention for SLLC incurs serious performance interference for HPC cloud appli-
cations when they are co-scheduled with others. In this paper, we investigate this
performance interference from SLLC contention. We employ commonly used reuse
distance analysis to characterize HPC cloud applications. The conventional reuse dis-
tance analysis technique is enhanced via an accelerated cyclic compression algorithm
to reduce the spatial complexity of computing reuse distance histograms. Further, we
classify the HPC cloud applications based on cache interference intensity and propose a
CCAP. CCAP dispatches virtual machines according to cache interference intensity to
prevent cache pollution. Finally, we implement CCAP in an in-house virtual machine
kit based on the Xen hypervisor. Evaluation of the NPB shows that CCAP undermines
SLLC contention intensity, thus significantly improving both performance of cache
sensitive applications and cache pollution programs when they are co-scheduled.

In this paper, we construct reuse distance histograms via off-line analysis. To capture
program run time phase changes precisely, a dynamic on-line and lightweight approach
may be more suitable for complicated HPC applications. Our cache contention-aware
classification scheme is not limited in virtual machine placement. We can further
explore an advanced cache capacity management mechanism at the cache block level
for the HPC cloud based on this scheme.
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