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Abstract—Overhead caused by data consistence issue in
inter-thread synchronization probably degrades the perfor-
mance of parallel applications. Non-Uniform Memory Access
(NUMA), as the mainstream architecture in today’s multicore
processor, further exacerbates this issue due to the signifi-
cant overhead incurred by Remote Memory Reference (RMR).
Therefore, to reduce synchronization overhead, it is important
to solve the data consistence issue. In this paper, we classify the
overhead into two kinds: (1) overhead incurred by algorithms
themselves, and (2) overhead incurred by critical sections.
To reduce two kinds of overhead on NUMA machine, we
present two optimization strategies called search and backtrace
(SAB) and reorder critical section and non-critical section
(RCAN), respectively. In SAB, a server thread tries to search
a thread coming from master NUMA node, and designates
it as the new server thread. In this way, most of the time,
shared data resides in the cache of master NUMA node,
resulting in lower overhead caused by data consistence issue
in critical section. In RCAN, each thread consecutively posts
synchronization requests, followed by consecutively executing
non-critical section. In this way, server threads could serve
enough requests, resulting in better data locality. We design
an algorithm named R-Synch based on SAB, while designing
an algorithm named H-STA based on RCAN. Our evaluation
with representative synchronization algorithms demonstrates
the effectiveness of R-Synch and H-STA.

Keywords-NUMA; data consistence; synchronization; algo-
rithm

I. INTRODUCTION

The prevalence of multicore results in a popularity of
parallel programming to improve the application perfor-
mance. Unfortunately, it is not true for applications that
frequently access shared data, because shared data must
be accessed mutually exclusive by threads under the aegis
of synchronization algorithms. Therefore, a highly efficient
synchronization algorithm plays an important role in parallel
programming, especially for applications that need signifi-
cant synchronization.

Processor manufacturers quickly shift from simple bus-
based designs to NUMA and Cache Coherent NUMA (CC-
NUMA) architectures due to the growing size of multicore
machines [1]. Typically, a NUMA machine contains several
nodes connected by an interconnect. Each node consists of
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several cores, independent cache, and shared local memory.
Accessing of data missed in the local cache can incur off-
chip memory access [2] and interconnect traffic which are
significantly costly on CC-NUMA machines. According to
[1, 3], access by a core to its local memory (e.g. its private
or shared last level cache) can be much faster than access to
the remote memory located on another node. These features
complicate the design of highly efficient synchronization
algorithms.

Synchronization technique walks a long way from the
traditional simple lock algorithms to the state-of-the-art
algorithms such as CC-Synch and H-Synch [4]. Queue locks
are proposed to reduce the overall cache coherence traffic
by forming queues of threads [5-8], and each thread spins
on a separate local memory location [1]. However, queue
lock may not work well on CC-NUMA machines because
threads executing instructions may alternately come from
different NUMA nodes, resulting in non-trivial overhead of
cache misses and interconnect communications.

Combining technique [4, 9, 10] is a compelling approach
to design lock algorithms by preventing the shared re-
source from bouncing back and forth among multiple cores.
However, it still works not so well on NUMA machines,
because communication between threads would incur lots
of cache misses. Hierarchical locks originally presented by
Radovic [11] is a good idea for designing NUMA-aware
lock algorithms [1, 4], but it still faces a challenge that
how to make threads coming from the same NUMA node
consecutively access shared resource as many as possible.

In summary, queue lock eliminates the hot spot [12]
problem that causes the overhead inside algorithm itself;
combining lock reduces the overhead occurring in critical
section by using combining policy in serving synchroniza-
tion requests; hierarchical lock tries to reduce the overhead
occurring both in the critical section and algorithm itself.
This paper presents two more efficient policies to reduce the
overhead in critical section and algorithm itself, respectively.

We first present a search and backtrace (referred to as
SAB) policy. In SAB, a server thread tries to search a thread
coming from the master NUMA node, and designates it



as the new server thread. In this way, most of the time,
shared data reside in the cache of master NUMA node, thus
reducing the overhead caused by data consistence issue in
critical section. Then, we present a policy called reorder crit-
ical section and non-critical section (referred to as RCAN).
In RCAN, a thread consecutively posts synchronization
requests, followed by consecutively executing non-critical
section. In this way, a server thread could serve enough
requests, thus enhancing data locality.
The main contributions of this paper are listed below.

« We present two optimization strategies, namely SAB
and RCAN, to reduce the synchronization overhead
incurred by algorithms themselves and critical sections,
respectively.

o To make the two strategies into practice, we design
an algorithm named R-Synch based on SAB, while
designing an algorithm named H-STA based on RCAN.

¢ We conduct comprehensive experiments to demonstrate
the effectiveness of R-Synch and H-STA. R-Synch
works better when the main overhead occurs in critical
section. H-STA works better when the main overhead
occurs in algorithm itself.

II. MOTIVATION AND DESIGN

In this section, we first introduce synchronization over-
head. Then, we analyze the locations of synchronization
overhead. Next, we analyze how such overhead is generated.
Finally, we design two optimization strategies to reduce the
overhead.

A. Overview of Synchronization Overhead

As shown in Figure 1, there are three situations, where
a thread executes a task containing subtasks: Task1, Task2,
Task3. In the first situation, a single thread takes 3*T, 2*T,
3*T to complete Taskl, Task2, and Task3, respectively. In
the second situation, if there are three threads and the task
can be totally parallelized, then the time taken to complete
all three subtasks is 2*T. The third situation is shown in
Figure 1(c), which involves the synchronization overhead. In
this situation, multiple threads access shared data. To ensure
data security, threads must access shared data one by one. As
a result, the time taken to complete three subtasks increases
to 3*T*a, 2*¥T*b, 3*T*c, respectively (a>1, b>1, c>1).
Therefore, when the synchronization overhead is involved,
the efficiency of parallel execution is probably even worse
than the serial execution.

B. Locations of Synchronization Overhead

Figure 2 describes the execution overview of a multi-
threaded application. This multithreaded application con-
tains three kinds of executions as mentioned above. The
left and the right of Figure 2 describe the serial execution
part. The middle mixes the parallel and synchronization
execution, which are the main topic. In the middle of Figure
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Figure 1. Threads execute a task in three kinds of situations
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Figure 2. Execution overview of a multithreaded application

2, parallel parts are marked with non-CS, and critical section
parts are marked with CS.

In parallel parts, threads execute simultaneously without
interacting with each other. In critical section, threads must
first try to acquire the lock. If a thread successfully acquires
and obtains the lock, it enters into the critical section
and operates the shared data. The thread will release the
lock after leaving the critical section. Actually, it is hard
for a thread to acquire and obtain the lock because other
threads also compete for the lock. So a thread must pay
some efforts between acquiring and obtaining the lock.
This effort means the overhead caused by the process of
acquiring and obtaining the lock. We call this overhead as
synchronization overhead inside the algorithm because the
size of the overhead depends on how a programmer designs
the algorithm.

Once entering into a critical section, threads access or
operate shared data, causing some overhead due to the
data consistence issue. This overhead affects the time for
a thread to complete the critical section work. If the time
gets longer, it will increase the difficulty for other threads
to enter into the critical section [13]. We call this overhead
as synchronization overhead inside critical section.

C. Data Consistency Issue

As analyzed above, there are two locations that cause the
synchronization overhead: (1) synchronization overhead in-
side algorithm itself, and (2) synchronization overhead inside
critical section. Two kinds of synchronization overhead are



Figure 3. Overview of NUMA architecture.

caused by data consistency issue, especially on NUMA ma-
chines. Figure 3 is an overview of NUMA architecture. On
the left of the figure, there is a CMP (Chip Multiprocessors)
chip containing four cores. On the right of the figure, four
CMP chips make up the NUMA architecture, where each
CMP is a NUMA node and has its private/shared cache. As
multiple caches can hold the same memory location, data
consistency issue arises.

When data is accessed by a thread, it will enter into
the corresponding cache line. Therefore, the shared data
accessed by multiple threads will enter into several cache
lines and these cache lines will spring over every NUMA
node. Some cache lines may hold the latest valid data, while
some cache lines may hold invalid data. At this time, data
consistency issue arises. Cache coherence protocol is used
to maintain data consistency due to that multiple cache lines
hold the same memory locations. When the data accessed
by a thread is not hit in the cache, it will cause an off-
chip memory access (or RMR as mentioned before). The
off-chip memory access indicates an access to the memory
or a cache line on other NUMA nodes. An off-chip memory
access is several times slower than the access to the local
cache [3]. Two kinds of synchronization overhead are mainly
caused by such off-chip memory accesses. To decrease the
synchronization overhead, it is necessary to decrease two
kinds of off-chip memory accesses.

To investigate two kinds of overhead, we conduct four
experiments on state-of-the-art lock algorithms, namely CC-
Synch and H-Synch [4]. The results are shown in Figure 4.

The first experiment simulates a Fetch&Multiply object
coming from [4], and the experimental results are coincident
with [4]. Clearly, H-Synch outperforms CC-Synch because
H-Synch uses a hierarchical NUMA-aware policy to reduce
off-chip memory accesses. In this experiment, two kinds of
overhead are horse and horse.

To investigate the overhead caused by critical section, we
conduct two other tests and the experimental scheme comes
from [11, 14], where threads in critical section modify each
element of a shared vector. As shown in Figure 4(b), the
results are still coincident with the conclusion of the original
paper. When we increase the size of the shared vector, as
shown in Figure 4(c), the performance of CC-Synch and
H-Synch becomes approximately the same. This is because
the overhead caused by critical section outweigh the benefits
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Figure 4. Average throughput of H-Synch and CC-Synch while running
four motivating experiments. X-axis represents the number of threads, Y-
axis represents throughput in millions operations per second.

brought by H-Synch.

In the last experiment, we make a little changes that a
thread in critical section modifies a fixed number of elements
that scatter across the shared vector. As shown in Figure
4(d), CC-Synch outperforms H-Synch in this experiment,
which is out of our expectation.

Summary. In the first two experiments, as the overhead
occurring inside algorithm itself is the main overhead, the
hierarchical policy used by H-Synch brings performance
promotion. In the last two experiments, we change the
size or the access pattern of the shared data, making the
overhead occurring in critical section become the main
overhead. At this time, the hierarchical policy does not help
H-Synch much. Therefore, we have two points to improve
the performance of synchronization algorithms. One is to
reduce off-chip memory accesses inside algorithm itself,
while another is to reduce off-chip memory accesses inside
the critical section.

D. Optimization Strategies

To reduce two kinds of synchronization overhead, we
present two optimization strategies: SAB and RCAN.

1) Reducing off-chip memroy accesses occurring in criti-
cal section: SAB is proposed to reduce overhead occurring
in critical section. In critical section, multiple threads access
the same shared data, and thus several cache lines may hold
the data. If only one cache of a NUMA node holds the shared
data, the off-chip memory accesses will be significantly
reduced. If threads access shared data coming from the
same NUMA node (we refer to this NUMA node as master
NUMA node), then the shared data would only enter into
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Figure 5. Overview of SAB.

the cache of the same NUMA node. As a result, the data
consistency issue is basically solved.

We use Figure 5 to describe SAB policy. In the figure, A,
B, C, and D represents four different NUMA nodes respec-
tively, and the corresponding subscript number represents
different threads of the NUMA node. SAB is based on a
technique called combining [4]. In combining, the thread
obtaining the lock is called as combiner. When a combiner
completes its request, it will continue to serve the requests
of other threads, then the combiner releases the lock and
chooses a new combiner.

Now we detail the working mechanism of SAB. Threads
that want to execute critical section insert its request node
to the linked list, and then spin on the locked field waiting
to be served by the combiner or be designated as the new
combiner. To be simplicity, we assume A is the master
NUMA node and the thread at the head of the list is the
combiner. When the combiner has served some number
of requests and stops, it will face three situations that are
marked with a number on top of the node. If the combiner
stops at A,, as the next thread A, ; comes from the
same NUMA node, A,+1 will be designated as the new
combiner. If the combiner stops at C,, 42, as there are no
active threads in the list, the combiner writes something
to the node indicating that there are no active requests at
present.

The last and most complicate situation occurs when the
combiner stops at A, 41, as the next thread B; comes from
a different NUMA node, the combiner travels the linked
list and tries to find a thread of the same NUMA node. If
one such thread is found, then the old combiner designates
it as the new combiner and tells it the backtrace position
from which it should start to serve the requests in the next
execution round. If not finding one, the combiner either
simply designates the thread next to it as the new combiner
or does the same as in the second situation.

In this way, the shared data almost resides in the cache
of master NUMA node, and threads accessing the shared
data also come from master NUMA node. When threads
access the shared data, the shared data are already in the
local cache in most cases, resulting in less off-chip memory
accesses occurring in critical section.

critical section
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Figure 6. Overview of RCAN.

2) Reducing off-chip memory accesses occur in algorithm
itself: Figure 6(a) shows an execution sequence of a thread.
For simplicity, we assume that there is only one critical
section in the code executed by threads. Therefore, we can
use the critical section as a boundary to divide the code into
three sections. The first: Critical Section (CS for short), the
second: Result of Critical Section (ROCS for short) and the
last: The Parallel Part (TPP for short).

We propose a method called RCAN that can accelerate the
velocity of posting requests for a single thread. According to
combinatorics, there are totally three kinds of relationships
between CS and TPP (here we regard CS and ROCS as
a whole). Namely CS vs. CS, TPP vs. TPP, CS vs. TPP.
We first analyze the three relationships under the condition
of multiple threads by observing the execution behavior of
multiple threads, then we try to apply the feature to a single
thread. First, synchronization requests posted by threads can
be served by combiner in sequence generally or not, and we
maintain the default sequence semantics for a single thread.
Second, the parallel parts do not access shared resources, so
they can be executed simultaneously, and thus the execution
order of TPPs does not matter for a single thread. Finally,
as to CS and TPP, the parallel parts must be executed
according to the results of critical section, that is to say,
the parallel parts must be executed after the corresponding
critical section.

According to the analysis, we can reorder the execution
sequence in Figure 6(a) and get a new execution sequence as
shown in Figure 6(b). By doing this, we can accelerate the
velocity of posting requests for a single thread. Hence the
combiner can consecutively serve enough requests resulting
in enhanced data locality. This is because inter-thread com-
munications caused by synchronization mostly occur in the
same NUMA node, so as to reduce the off-chip memory
accesses occurring in algorithm itself.

ITII. APPLYING SAB AND RCAN TO SYNCHRONIZATION
ALGORITHMS

In this section, we show how to employ SAB and
RCAN to design synchronization algorithms. Based on SAB
policy we design a synchronization algorithm called R-
Synch. Based on RCAN policy, we design a synchronization



algorithm called H-STA. When overhead in critical section
dominates, R-Synch works better. When overhead in algo-
rithm itself dominates, H-STA works better.

A. R-Synch

Before describing R-Synch algorithm, we first introduce
some data structures. Each thread has a request node consist-
ing of several fields: (1) arg is used to store arguments and
results; (2) locked indicates whether the lock is held; (3)
completed indicates whether the request has been served;
(4) node represents the serial number of the corresponding
NUMA node; (5) btr indicates the backtrace position; (6)
next points to the next node. For simplicity, some details
are omitted from Algorithm 1.

Algorithm 1 Pseudocode for R-Synch

1: struct request node{arg, pid, locked, completed, node, btr, next}
2: function APPLYOP(request req, ...)
: my_new_node = SW AP(tail, my_current_node);

3

4 my_new_node — next = my_current_node;

5: some other work like parameter setting;

6: while my_new_node — locked do/*busy waiting*/
7- .
8

9

5

end while

if my_new_node — completed then
10: return my_new_node — arg;
11: end if
12: if master = —1 then
13: master = my_new_node — node,
14: end if
15: p = my_new_node;
16: if p — btr # null then
17: tmp = p;
18: p =p — btr,
19: tmp — btr = null;
20: end if
21: while p — next # null and help_num < max do
22: temp_next_node = p — next;
23: serve the request which is stored in node p;
24: p — completed = true;
25: p — locked = false;
26: p = temp_next_node;
27: end while
28: if p — node = null or p — node = master then
29: p — locked = false;
30: else
31: pl = p;
32: while p — next # null and p — node # master do
33: p = p — next;
34: end while
35: if p — node = master then
36: p — btr = pl;
37: p — locked = false;
38: else
39: pl — locked = false;
40: end if
41: end if
42: return my_new_node — arg;

43: end function

When a thread has a synchronization request, it inserts
its request node to the tail of the linked list by using an
atomic SWAP operation (lines 3-4). Then, it spins on locked
field of my_new_node until the lock is released by the
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Figure 7. Overview of H-STA.

combiner. Once released, the thread decides what to do next
by checking the value of completed field. If the filed is true,
it means that its request has been served by the combiner.
Then, the thread will return; If the field is false, the current
thread becomes the new combiner.

Once becoming combiner, the thread will set the value
of master according to its initial value. Then, the new
combiner starts to work by first checking the btr field. If
btr is not NULL, then it sets the backtrace position to the
value of btr. The combiner travels the linked list of requests,
and serves its own request and a predefined number of
requests of other threads (lines 21-27). When it completes
a request, it sets the locked field and completed field of the
corresponding thread to false and true, respectively. Once
the combiner completes its work, it chooses the next new
combiner according to the SAB policy (lines 28-41). If the
next thread comes from the same NUMA node, or there is
no active thread, it simply writes a false value to locked
field of the next thread node or dummy node. Otherwise,
it will travel the linked list to find a thread of the same
node to be designated as the new combiner and tell it the
backtrace position. If not finding an appropriate thread, it
can only designate the thread next to it in the list as the new
combiner.

B. H-STA

H-STA is a hierarchical version of RCAN as shown in
Figure 7. We assume there are totally four NUMA nodes.
For each NUMA node, there is a request buffer and control
buffer. A request buffer contains several request nodes. Each
request node consists of several slots which implements
STA. Each slot is defined as a struct with three fields: (1) arg
is used to store arguments of critical section or the results of
it; (2) pid is used to distinguish threads in a NUMA node;
(3) completed is used to identify whether there is an active
request waiting to be served.

Each control buffer contains several nodes of a size
equal to the number of cores in that NUMA node, and
each node is also defined as a struct with several fields:



(1) _up and _low presents the upper and lower bound
of the corresponding request node in the request buffer,
respectively; (2) _combiner_index is used by combiner; (3)
_thread_index is used by common threads.

The lock policy is a hierarchical version. As shown in
Figure 7, there are multiple local locks, and each lock is for
a NUMA node. Besides, the policy contains a global CLH
lock. In each NUMA node, threads compete for the local
lock, the winner becomes combiner of that node. Then, all
the local combiners compete for the global lock. Only the
winner owns the right to access shared resource.

Thread posts synchronization requests by writing essential
information in the corresponding slots. When a thread has
an request, it first judges whether the _thread_ index field
reaches the end of the corresponding request node. If not, it
posts this request in the slot of the request node and increases
the value of _thread_index by one. Otherwise, the thread will
compete for the local lock. If failing in acquiring the lock,
the thread will wait until its requests are served or the lock is
released. In the former situation, the thread will execute the
corresponding parallel parts and then returns. In the latter
situation, it will try to acquire the lock. If succeeding in
acquiring the lock, the thread becomes the combiner of this
NUMA node. Then, it will try to acquire the global lock
repeatedly until it succeeds. Then, it will travel each slot
of the control buffer. According to _up and _low fields,
the combiner will find the corresponding request node and
check each slot of it. If there are active requests that have
not been served, combiner serves them. When the combiner
completes its work, it will execute its parallel parts according
to the results stored in arg fields.

Of course, not all programs can be divided according to
RCAN policy, such as nested critical section. In future work,
we will extend the applying range of RCAN policy.

IV. EVALUATION

In this section, we evaluate R-Synch and H-STA by
comparing them with other state-of-the-art synchronization
algorithms. We begin with an introduction of the hardware
and software platform, followed by a description of the
experiment methodology. Then, we test the algorithms with
microbenchmarks that are widely used in the literature.
Finally, we further investigate the performance of R-Synch
and H-STA on more complex concurrent objects, namely
shared stack.

A. Platform

We evaluate R-Synch and H-STA on a CC-NUMA ma-
chine consisting of two Intel Xeon E5-2670 processors. Each
processor contains eight cores. Each core has a 32KB L1
private data/instruction cache, and a 256K B L2 private data
cache. All cores within a processor share a fast 20MB L3
data cache. To avoid the bottlenecks in memory allocation,
the Hoard memory allocator [15] is used.
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Figure 8. Average throughput of each implementation when running R-
vector microbenchmark.

B. Experimental Methodology

To evaluate the performance of R-Synch and H-STA, we
compare them with several state-of-the-art synchronization
algorithms, including H-Synch [4], CC-Synch [4], Flat-
combining [10], FC-MCS [1], and CLH [7, 8]. In all exper-
iments, each algorithm executes totally 107 times operations
for different values of n, and n is the number of current active
threads. Besides, we assume that the size of data accessed
to serve the requests is smaller than the size of cache, and
test the cache misses for each experiment.

C. Microbenchmarks

We test all the algorithms by using two microbenchmarks
that are widely used in the literature. The first is a modified
microbenchmark from [11]. As described in Section II, we
make a little changes to it. For simplicity, we call it as R-
vector. The second is a simulated shared Fetch&Multiply
object used in [4].

1) R-vector: The throughput of each algorithm for R-
vector is shown in Figure 8. When the number of thread
is less than eight, the four combining based algorithms
achieve approximately the same performance. When threads
are across multiple NUMA nodes, R-Synch outperforms all
other algorithms. To be specific, R-Synch achieves up to 1.38
times higher throughput than CC-Synch. The performance
of Flat-combining is close to CC-Synch, and they are a
little slower than H-Synch and H-STA. Also, R-Synch
significantly outperforms CLH and FC-MCS by a factor up
to 4.21.

Although FC-MCS is NUMA-aware, it performs worse
on machine with small clusters of cores. Experiments in [4]
proves that FC-MCS performs well on machine with large
clusters of cores. When threads reside in one NUMA node,
there is no interconnect communication and RMRs. There-
fore, all combining based algorithms achieve approximately
the same performance. For CLH and FC-MCS, combining
is not used to serve requests. Therefore, every request may
be applied by a different thread, resulting in a higher L1/L.2
cache miss than other four algorithms (as shown in Figure
9).

When threads are spread across multiple NUMA nodes,
circumstance becomes complex, due to the issues of off-
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chip memory accesses and interconnect communication. The
better performance of R-Synch can be explained by the
lower L3 cache miss as shown in Figure 9(b). However,
when the number of threads is beyond 13, R-Synch does not
have the lowest L3 cache misses. In section II, we classify
the locations that may occur overhead into two kinds. The
first is inside the algorithm itself, which is caused due to
communication between combiner and other threads here.
The second is inside critical section. In this experiment, the
latter is more costly. According to the SAB policy used in
R-Synch, we know that overhead incurred in critical section
could be effectively reduced. Therefore, R-Synch performs
better when multiple NUMA nodes are involved.

2) Fetch&Multiply: Figure 10 depicts the performance of
each algorithm when simulating a Fetch&Multiply object.
H-STA scales significantly better than all other algorithms.
When multiple NUMA nodes are involved, we will mainly
concentrate on the performance differences among all the
algorithms. As a whole, H-STA outperforms H-Synch by a
factor up to 198. The performance of CC-Synch and Flat-
combining are close, and they are all overtaken by H-STA
by a factor up to 2.15. Again, CLH and FC-MCS are the
slowest algorithms.

H-STA and H-Synch are the two fastest algorithms, be-
cause they have lower cache misses (as shown in Figure 11).
When the number of threads is beyond 13, L3 cache misses
of H-STA is a little higher than H-Synch. However, H-STA
still performs better than H-Synch. This is because H-STA
has a much lower L2 cache misses (as shown in Table I).

Table 1
L2 CACHE MISSES PER OPERATE. THE FIRST ROW REPRESENTS THE
NUMBER OF THREADS.

9 10 11 12 13 14 15 16

FC-MCS 135 131 132 152 134 134 149 139
H-Synch 8.7 9.6 94 93 94 9.1 8.9 8.8
H-STA 6 6.1 6.4 6.6 6.5 6.8 6.8 6.8

Although FC-MCS has a litter lower L3 cache misses than
CC-Synch, it is still outperformed by CC-Synch in terms of
throughput. This is because FC-MCS has a much higher L2
cache misses (as shown in Table I).
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Figure 11. L2 cache misses per operation and L3 cache misses per
operation.

D. Shared stack

Stack is a data structure with a wide range of use. For
example, inter-thread communication is heavily based on
accessing such data structure [4]. Therefore, we further
investigate the performance of each algorithm by applying
them to shared stacks.

As shown in Figure 12, HSTA-Stack achieves the best per-
formance, followed by H-Stack (H-Synch). Throughput of
FC-Stack (Flat-combining), CC-Stack (CC-Synch), and R-
Stack (R-Synch) are approximately the same. Again, CLH-
Stack and FCMCS-Stack are the slowest implementation
of shared stack. Both HSTA-Stack and H-Stack employ
a hierarchical policy to reduce RMRs and interconnect
communication, resulting in enhanced data locality, which
is proven by L3 cache miss curve in Figure 13(b).
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Figure 12. Average throughput of each implementation when apply them
on shared stack.
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V. RELATE WORK

The combining technique has been studied for decades. To
the best of our knowledge, the earliest combining technique
is proposed by [12] to construct a software combining
tree for decreasing memory contention. Another combining
based synchronization algorithm in [9] is presented later.
However, it suffers lots of contention in posting requests
and may cause unbounded RMRs. A hardware technique
called ACS is proposed in [13], which uses an asymmetric
faster core to execute critical sections. Sim [16] and Flat-
combining [10] are two highly efficient implementations
of combining technique, which are proven to significantly
outperform fine-grained thread synchronization.

Hierarchical technique is presented to mainly deal with
issues caused by NUMA architectures, such as RMRs
and interconnect communications among multiple NUMA
nodes. To the best of our knowledge, HBO [11] is the
first hierarchical technique that encourages threads from the
same NUMA node to acquire the lock consecutively for
reducing interconnect communication and achieving strong
data locality. However, HBO is a test-and-test-and-set lock
assisted with a backoff scheme, which are known to incur
lots of invalidation traffic. FC-MCS [1] is another highly
efficient hierarchical locks that outperforms all previous
NUMA-aware or none NUMA-aware locks. Nevertheless,
FC-MCS performs poorly on machines with small clusters
of cores due to the difficulty in building long local list
of requests. H-Synch [4] is the fastest lock algorithm that
employs both combining and hierarchical technique. Unlike
FC-MCS, H-Synch works well on machines with small
clusters of cores.

VI. CONCLUSION

Synchronization overhead limits the performance of par-
allel applications. This paper analyzes the locations that
incur the overhead and presents two strategies to reduce
the overhead: SAB and RCAN. SAB tries to reduce the
overhead occurring in critical section, while RCAN tries to
reduce the overhead occurring in algorithm itself. Finally, we
show how to use the two strategies to design synchronization

algorithms. We use SAB to design an algorithm called R-
Synch, and use RCAN to design an algorithm called H-
STA. Experiments show our strategies effectively reduce the
overhead in critical section and algorithm itself, respectively.
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