
Dynamic Acceleration of Parallel Applications in
Cloud Platforms by Adaptive Time-Slice Control

Song Wu∗, Zhenjiang Xie∗, Haibao Chen∗, Sheng Di†, Xinyu Zhao∗ and Hai Jin∗
∗ Services Computing Technology and System Lab, Cluster and Grid Computing Lab

School of Computer Science and Technology, Huazhong University of Science and Technology

Wuhan, 430074, China
Email: {wusong, xiezhenjiang, chenhaibao, zhaoxinyu512, hjin}@hust.edu.cn

† Argonne National Laboratory, USA

Email: sdi1@anl.gov

Abstract—Tightly-coupled parallel applications in cloud sys-
tems may suffer from significant performance degradation
because of the resource over-commitment issue. In this paper,
we propose a dynamic approach based on the adaptive control
over time-slice for virtual clusters, in order to mitigate the
performance degradation for parallel applications in cloud and
avoid the negative impact effectively on other non-parallel appli-
cations meanwhile. The key idea is to reduce the synchronization
overhead inside and across virtual machines (VMs) in cloud
systems, by dynamically adjusting the time-slices of VMs in
terms of the spinlock latency at runtime. Such a design is
motivated by our experimental finding that VM’s time slice is a
key factor determining the synchronization overhead as well as
the parallel execution performance. We perform the evaluation
on a real cluster environment deployed with XEN, using five
well-known benchmarks with 10+ applications. Experiments
show that our approach obtains 1.5-10× performance gain
for running parallel applications, than other state-of-the-art
solutions (including Credit Scheduling of Xen and the well-
known methods like Co-Scheduling and Balance Scheduling),
with nearly unaffected impact on the performance of non-
parallel applications.

I. INTRODUCTION

With the ever-increasing demand of high performance com-
puting (HPC) power, virtual clusters in cloud platforms have

been explored to help run tightly-coupled parallel applications

[1], because of their high flexibility and cost-effectiveness.

Virtual clusters are constructed using a number of virtual
machines (VMs) in a cloud system based on user’s demand on

resources. The parallel applications running in virtual clusters,

however, may suffer from huge performance degradation due

to the inevitable synchronization overhead [2]. What is even

worse is that the cloud providers often provide much more

executable Virtual CPUs (VCPUs) than available Physical

CPUs (PCPUs) on purpose [3], in order to maximize the

profit. Such an over-commitment situation will aggravate the

performance degradation issue when running tightly-coupled

parallel applications in cloud.

There are already some existing strategies proposed for

mitigating the synchronization overhead, including balance

scheduling [4], dynamic switching-frequency scheduling [5],

and co-scheduling [6, 7]. Such approaches, however, are

mainly focused on multi-threaded applications under the sin-

gle symmetric multiprocessing (SMP) virtual machine (VM)

model. They are not suitable for a large-scale cloud platform,

in which many parallel applications would be hosted by

multiple virtual clusters across physical machines.

The performance issue induced by the synchronization

operations inside a virtual cluster is very challenging. Firstly,

there are many different parallel models designed for various

scientific problems. It is hard to estimate beforehand how

much communication and computation a parallel application

would require at runtime. Hence, it is impossible to opti-

mize the run-time parallel execution performance based on

the static analysis of application’s particular characteristics.

Secondly, it is hard to characterize the mutual performance

influence among the parallel applications running in virtu-

alized clusters across different physical machines. Thirdly,

it is non-trivial to avoid the performance impact on non-

parallel applications when running parallel applications in a

multi-tenant cloud, due to their substantially different running

characteristics. Finally, implementation and improvement of

virtual clusters in cloud requires the in-depth understanding

of virtual machine monitor (VMM) as well as the related

fundamental technologies.

In this paper, we carefully investigate the critical issue

of how to mitigate/avoid the performance degradation when

running parallel applications with many synchronization op-

erations in virtual clusters. Based on our careful experiments

with well-known benchmarks running over a real cluster,

we observe that shortening time slices of VMs is able to

improve the parallel execution performance significantly. The

key reason is that shortening the time slice of VM can

effectively mitigate the spinlock latency, which is a critical

factor (as indicated by [4]) that determines the application

performance. Accordingly, we propose an Adaptive Time-slice
Control (ATC) model, under which the time slice of each

VM is adjusted properly at run-time, such that the parallel

execution performance can be improved a lot.

The main contributions are listed as follows:

• We carefully analyze the execution of parallel applica-

tions in virtual clusters, and discover that short time

slices of VMs usually lead to short spinlock latencies for

parallel applications in a cloud environment. This will

2016 IEEE International Parallel and Distributed Processing Symposium

1530-2075/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPS.2016.77

343

further lead to relatively low synchronization overhead

(both in VM and across VMs), and thus the performance

of parallel applications will be improved.

• We devise an adaptive VMM time-slice control model

that can adaptively adjust the time slice of VMs accord-

ing to their spinlock latency at runtime. We characterize

the overhead of short time slices and exploit a minimum

time slice threshold to prevent over-shortened time slices.

• We implement a prototype based on XEN and Linux,

and evaluate the solution by running 5 benchmarks with

10+ different types of applications over a real cluster.

Experiments show that our solution can achieve 1.5-10×
performance gain for the parallel applications, compared

with XEN’s Credit Scheduler and many other state-of-

art approaches. Moreover, experiments show that our

solution incurs little impact on the performance of non-

parallel applications in cloud system.

II. BACKGROUND AND MOTIVATION

A. Research Background

In what follows, we present the performance degradation

of the existing approaches with increasing scale of parallel

applications on virtual clusters and the impact of the parallel

execution performance on the non-parallel applications.

1) Performance Degradation of Parallel Applications with
Existing Scheduling Approaches: Although cloud platforms

can effectively run tightly-coupled parallel applications, such

applications still suffer from performance degradation because

of the inevitable synchronization overhead [2], which is

composed of two parts: the synchronization overhead inside

VMs and the synchronization overhead across VMs.

The key reason the existing scheduling approaches (such as

hybrid scheduling [6], dynamic Co-scheduling [7] and Bal-

ance Scheduling [4]) are not suitable for parallel applications

in virtual clusters is that they are focused only on concurrent

workload processing (i.e., multi-threaded applications) within

an SMP VM. Their design objectives are to reduce the

synchronization overhead caused by lock holder preemption
(LHP) [8], instead of that of parallel applications across VMs

in a virtual cluster. In fact, asynchronous schedule of VMs

inside a virtual cluster will suffer huge synchronization over-

heads across VMs for tightly-coupled parallel applications.

Figure 1 illustrates the performance degradation caused

by the synchronization overheads of Co-Scheduling (CS)

method [7] (a well-known method of reducing synchroniza-

tion overhead for parallel applications). There are 32 physical

nodes adopted in the experiment (more detailed experimental

settings like the size, number, placement of virtual clusters,

can be found in Section IV-B). We compare the normalized

execution time of the Co-Scheduling (CS) and XEN’s Credit

scheduler (CR) by using the following 6 parallel applications,

sp, bt, cg, is, mg, and lu, which are all from NASA Parallel
Benchmark (NPB) [9]. Normalized execution time refers to

the ratio of the execution time to that of the approach CR.

We just present the result of lu as a typical example to show

the scalability issue in Figure 1 due to space limit. More

experimental results can be found in Section IV-B.

2 4 8 16 32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Virtual Cluster Size N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

 CR CS

Fig. 1. Performance of CR & CS when running lu on 2, 4, 8, 16, 32 VMs

Through Figure 1, it is clearly observed that the execution

time of parallel application lu under CS will increase, as

the virtual cluster size (the number of VMs) increases. In

particular, under CS, its normalized execution time in a virtual

cluster is 0.3 when the virtual cluster consists of only two 8-

VCPU VMs, while the normalized execution time increases

up to 0.44 if we set the virtual cluster size to 32 8-VCPU

VMs. Apparently, compared with CR, CS lacks scalability

when running parallel applications on virtual clusters.

2) Performance Impact on Non-parallel Applications with
Existing Scheduling Approaches: Most of the existing ap-

proaches reduce the synchronization overhead by simply

promoting the scheduling priorities of the VMs involved,

which may influence the execution of other non-parallel ap-

plications with latency-sensitive operations (such as request-

response operations of web applications), as indicated by the

experimental results shown in Figure 2. In this experiment, we

run some parallel applications from the NPB benchmark and

some non-parallel applications simultaneously in the same

virtualized cloud system. Two physical nodes are used, and

each is deployed with four 8-VCPU VMs, so there are totally

eight 8-VCPU VMs. Three virtual clusters are constructed,

and each consists of two 8-VCPU VMs from the two physical

nodes respectively. The remaining two VMs are used to run

non-parallel applications as shown below:

• bonnie++: bonnie++ is a benchmark that is aimed at the

performance of hard drive and file systems.

• sphinx3: sphinx3 is a CPU-intensive application from

SPEC CPU 2006.

• stream: stream is memory-intensive benchmark to mea-

sure the sustainable bandwidth of memory.

• ping: ping is a latency-sensitive application designed for

measuring the round trip time.

Figure 2 clearly shows that CS does lead to the performance

degradation for some types of non-parallel applications. The

ping latency under CS, for instance, is 1.75 times longer than

that of CR, the normalized execution time of sphinx3 is 1.11

times longer than that of CR, and the throughput of stream

under CS is slightly lower than that of CR. The reason for

the experimental results is that co-scheduling promotes the

scheduling priorities of the VMs running parallel applications,

leading to the performance degradation of latency-sensitive

applications (such as ping). Moreover, the additional context

switches under the co-scheduling method would cause more

cache flushes, introducing the negative impact on the appli-

cations like sphinx3 and stream.

344

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

ping sphinx3

N
o
rm

a
li
z
e
d
 T

im
e CR

CS

(a) ping and sphinx3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

bonnie++ stream

N
o
rm

a
li
z
e
d
 T

h
ro

u
g
h
p
u
t

CR CS

(b) bonnie++ and stream

Fig. 2. Normalized performance of different applications under CR and CS

B. Design Motivation

Before exploring an effective solution to mitigate the

parallel performance degradation, it is necessary to have

an in-depth understanding of its root cause, i.e., synchro-

nization overhead, and how it would impact the execution

performance. In what follows, we analyze the synchronization

overhead of parallel applications in virtual clusters, which is

a fundamental basis of our design.

As mentioned previously, when a parallel application (e.g.,

an MPI program) runs in a virtual cluster composed of

multiple VMs, the synchronization operations can be split into

two types: (1) the synchronization among the processes inside

a VM via shared memory; and (2) the synchronization among

the processes across VMs by network communications. We

will discuss them in details and explain why short time slices

generally lead to low synchronization overhead.

1) Synchronization Overhead inside a VM: Prior research

has identified that the synchronization overhead in SMP

VM is mainly caused by LHP [8]. Figure 3 illustrates such

overhead by using a simple scheduling example. In this figure,

VCPU0 and VCPU1 belong to the same VM running parallel

processes with mutual synchronization on different PCPUs.

The time slices marked with ‘X’ are occupied by other

VMs. When lock-holder VCPU0 (on PCPU0) is preempted

by certain VCPU of another VM, the lock-waiter VCPU1 (on

PCPU1) will keep spinning the lock due to the synchroniza-

tion operation of the application and the preemption of lock-

holder VCPU0. The lock-waiter VCPU1 cannot acquire the

synchronization lock until VCPU0 is rescheduled with its lock

released. The spinlock latency of VCPU1 here is 3LTS , where

LTS denotes the length of time slice. Intuitively, shortening

the time slice of VMs (no matter what types of applications

they host) may reduce the spinlock latency of VCPU1.

Fig. 3. The lock latency of VCPU1 when LHP occurs, where VCPU0
and VCPU1 belong to the same VM, and run parallel processes with
synchronization operations

2) Synchronization Overhead across VMs: The synchro-

nization across VMs is through network communications. In

this section, we take Figure 4 as an example to illustrate the

synchronization overhead across VMs, where VM1 and VM2

belong to a virtual cluster and run parallel processes with

synchronization operations.

Fig. 4. An example of synchronization overhead between two VMs (VM1
and VM2) running parallel processes with synchronization operations

As shown in Figure 4, it takes 11 steps for VM1 to send

network packets to VM2. The detailed process is presented

as follows, with highlighted overhead sources.

In the first place, VM1 waits for being scheduled by VMM

(overhead source 1). As VM1 is scheduled to PCPUs by

VMM, it will notify dom0 using an event channel (step 1)

and put the network packets in I/O ring (step 2). After that, the

dom0 of physical node 1 needs to wait for being scheduled by

VMM (overhead source 2). As the dom0 of physical node

1 is scheduled to PCPUs, it will get an event notification

regarding VM1 sent from event channel (step 3). Then, the

dom0 of physical node 1 copies the network packets sent

by VM1 to netback (step 4) and sends the network packets

through Network Interface Card (NIC) on physical node 1

(step 5). The network packets will be transferred to VM2

hosted in physical node 2 via physical network (step 6).

Before conducting step 7, the dom0 of physical node 2 waits

for being scheduled by VMM (overhead source 3). When

dom0 of physical node 2 is scheduled to PCPUs, it will copy

the network packets from NIC card to netback (step 7). Then,

dom0 will notify VM2 using the event channel (step 8) and

copy the network packets to I/O ring (step 9). The process

will not go to the step 10 until VM2 gets scheduled (overhead
source 4). Once VM2 is scheduled onto some PCPUs, it will

get a notification from the event channel (step 10) and copy

network packets from I/O ring to netfront (step 11).

Through the above steps, we can see that there are mainly

four synchronization overheads, which are all caused by VM

scheduling of VMM. The overhead source 1, for instance,

depends on the total length of time slice of VMs that wait

ahead of VM1 in the PCPU run queue. Assume there are

N−1 VMs (VM1, · · · , VMN−1) waiting ahead of VMN , then

the synchronization overhead source 1 is
∑N−1

i=1 T imeSlicei,
where T imeSlicei is the length of time slice of VMi. To

minimize this synchronization overhead, the time slice of

each VM that is ahead of VMN is supposed to be set as

short as possible. Therefore, it is viable to adjust the time

slices of other VMs (no matter what types of applications

they host) to achieve low synchronization overhead across

the VMs running parallel applications.

In the well-known Bulk Synchronous Parallel (BSP) mod-

el [10], parallel application executes computation phases

and synchronization phases alternatively. In synchronization

phases, spinlock is commonly used for data sharing. The

spinlock latency reflects how long it takes a VM to complete

synchronization phases. Therefore, the spinlock latency has

345

 0

 0.2

 0.4

 0.6

 0.8

 1

3
0

2
4

1
8

1
2

6 1 0
.6

0
.3

0
.1

5

0
.1

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Scheduling Time Slice (ms)

Execution time
Spinlock latency

(a) lu

 0

 0.2

 0.4

 0.6

 0.8

 1

3
0

2
4

1
8

1
2

6 1 0
.6

0
.3

0
.1

5

0
.1

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Scheduling Time Slice (ms)

Execution time
Spinlock latency

(b) is

 0

 0.2

 0.4

 0.6

 0.8

 1

3
0

2
4

1
8

1
2

6 1 0
.6

0
.3

0
.1

5

0
.1

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Scheduling Time Slice (ms)

Execution time
Spinlock latency

(c) sp

 0

 0.2

 0.4

 0.6

 0.8

 1

3
0

2
4

1
8

1
2

6 1 0
.6

0
.3

0
.1

5

0
.1

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Scheduling Time Slice (ms)

Execution time
Spinlock latency

(d) bt

 0

 0.2

 0.4

 0.6

 0.8

 1

3
0

2
4

1
8

1
2

6 1 0
.6

0
.3

0
.1

5

0
.1

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Scheduling Time Slice (ms)

Execution time
Spinlock latency

(e) mg

 0

 0.2

 0.4

 0.6

 0.8

 1

3
0

2
4

1
8

1
2

6 1 0
.6

0
.3

0
.1

5

0
.1

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Scheduling Time Slice (ms)

Execution time
Spinlock latency

(f) cg

Fig. 5. Performance when running lu, is, sp, bt, mg, or cg with different time slices

a significant influence on parallel application’s performance,

which is confirmed in [4].

In order to verify how time slice affects the spinlock latency

and spinlock latency’s influence on parallel application’s

performance, we conduct a set of experiments with two

physical nodes, each of which consists of four 16-VCPU

VMs. Four identical virtual clusters are constructed in the

platform, and the four VMs on each physical node belong

to them separately. We gradually shorten XEN’s scheduling

time slice from 30 ms to 6 ms with the decrement step of 6

ms, and also evaluate much shorter time slices (such as 1ms,

0.6ms, 0.3ms, 0.15ms, and 0.1ms). The experimental results

are shown in Figure 5.

From Figure 5(a) through Figure 5(f), we can see that

shortening the time slice of VMs is able to reduce spinlock

latency effectively, and improve the performance of each

parallel application significantly (even up to about 10×).

Meanwhile, we can also observe that there exists a strong pos-

itive correlation (all pearson correlation coefficients are larger

than 0.9) between the spinlock latency of applications and

its performance under the settings of this experiment, which

means that spinlock latency is probably a fairly effective

indicator for identifying the parallel application performance.

Summary. Through the above analysis, we conclude that

shortening time slice of VMs can reduce synchronization

overhead of parallel applications running in virtual clusters

effectively, improving the performance significantly.

III. ADAPTIVE TIME-SLICE CONTROL

In this section, we propose a novel adaptive time-slice con-
trol (ATC) model that can dynamically adjust the time slices

of VMs for improving the parallel execution performance in

cloud systems. We will answer the following three questions:

• How to adaptively adjust the time slice of VMs that are

running parallel applications in each scheduling period

of VMM (such as 30ms of XEN’s Credit scheduler),

according to the monitoring information about average

spinlock latency at runtime?

• When we adjust the time slice of parallel applications,

how to prevent over-shortened time slice which may

cause additional overhead?

• Since various types of applications coexist in real-world

multi-tenant cloud platforms, how can we avoid the

performance impact on other non-parallel applications?

A. Dynamically Adjusting Time Slice for VMs Running Par-
allel Applications

In this subsection, we describe how to compute the time

slices of the VMs running parallel applications based on

their average spinlock latency adaptively. In particular, if the

average spinlock latency of a VM running parallel application

exhibits an increasing trend, we will shorten its time slice in

the coming schedules. If the average spinlock latency of the

VM exhibits a decreasing trend, the time slice will be set

based on its historical information and spinlock latency. The

time slice computation process is performed at the beginning

of each scheduling period of VMM based on the mean values

of the spinlock latency and the time slice in the most recent

three scheduling periods.

Fig. 6. Adjusting time slice length for VMs running parallel applications

As shown in Figure 6, at the end of a scheduling period

(i.e., the (i − 1)th scheduling period), the average spinlock

latency of VM during the (i − 1)th scheduling period will

be used to determine the time slice of that VM in the next

scheduling period, i.e., ith scheduling period. Specifically, to

determine the time slice of a VM in the ith scheduling period,

we use the historical information of last three scheduling

periods to infer the changing trend of average spinlock

latency, i.e., (i− 3)th, (i− 2)th, and (i− 1)th.

The pseudo-code of adjusting time slice for the VMs

running parallel applications is shown in Algorithm 1. The

key idea is to guarantee the parallel execution performance

by adaptively controlling the time slices in terms of the

spinlock latency information. The scheduling time slices of

the VMs running parallel applications will be shortened when

the spinlock latency is becoming longer. Specifically, if the

average spinlock latency of a VM in the (i− 1)th scheduling

period is larger than that in the (i − 2)th scheduling period

(e.g., case 1 in Figure 7), the spinlock latency in the next

period (i.e., the ith scheduling period) will likely increase

according to this trend. In order to reduce the spinlock latency

in the ith scheduling period, the time slice of this VM in the

ith scheduling period is supposed to be shorter than that in

the (i− 1)th scheduling period (lines 1-8 of Algorithm 1).

When the spinlock latency decreases, we will check

whether it is caused by the decrease of time slice before

adjusting the time-slice. If the average spinlock latency in the

most recent three scheduling periods (i.e., (i−3)th, (i−2)th

and (i − 1)th scheduling periods) keeps decreasing, and the

time slice of this VM in the (i − 2)th scheduling period is

longer than that in the (i−1)th scheduling period (see the case

2 in Figure 7), we can infer that the smaller average spinlock

346

latency is likely due to the shorter time slices. Accordingly,

we will use a shorter time slice (e.g., decrease by 1ms) for

this VM in the ith scheduling period (lines 1-8 of Algorithm

1). Otherwise, the time slice of the VM will stay the same

as the last scheduling period (lines 9-10 of Algorithm 1). If

the average spinlock latency of a VM remains zero in the last

three scheduling periods, indicating that the VM is performing

less synchronization operations, then the time slice of this VM

will be increased by a tiny increment (e.g., 1ms) (lines 12-20

of Algorithm 1) to reduce the possible overhead of short time

slices. (see details in Section III-B).

Algorithm 1 Computing time slice for a VM running parallel

applications

Input: 1) The historical information (e.g., average spinlock latency:
sLatency and time slice: timeSlice) of the VM in last three scheduling
periods of VMM (i.e., (i − 3)th, (i − 2)th and (i − 1)th); 2) The
minimum time slice threshold minThreshold of parallel applications
(see details in Section III-B); 3) α and β, which are different granularities
of time-slice adjustment, and the former is larger than the latter.

Output: The time slice of a VM will be used in the ith scheduling period.
1: if {sLatency(i−2) < sLatency(i−1)} or {(sLatency(i−3)

> sLatency(i−2) > sLatency(i−1) and timeSlice(i−2) >
timeSlice(i−1))} then

2: if timeSlice(i−1)>α and timeSlice(i−1)−α≥minThreshold
then

3: timeSlicei = timeSlice(i−1) − α
4: else if timeSlice(i−1)>β and timeSlice(i−1)<α and

timeSlice(i−1)−β≥minThreshold then
5: timeSlicei = timeSlice(i−1) − β
6: else
7: timeSlicei = timeSlice(i−1)
8: end if
9: else

10: timeSlicei = timeSlice(i−1)
11: end if
12: if the spinlock latency remains zero in last three scheduling periods then
13: if timeSlice(i−1)> DEFAULT − α then
14: timeSlicei = DEFAULT
15: else if timeSlice(i−1)>α and timeSlice(i−1)< DEFAULT − α

then
16: timeSlicei = timeSlice(i−1) + α
17: else
18: timeSlicei = timeSlice(i−1) + β
19: end if
20: end if
21: return timeSlicei

(a) case1 (b) case2

Fig. 7. Two cases when adjusting the time slices of VMs, where sLatencyi
and timeSlicei denote the average spinlock latency and the time slice of a
VM in ith scheduling period, respectively

B. Optimizing Time Slice Threshold for Parallel Applications

As mentioned previously, time slice is supposed to be set

to a small value, however too short time slice will induce too

frequent context switches with additional cache flushes [11],

leading to low performance unexpectedly. Thus, time slice

has to be optimized with both of the above two factors. In

what follows, we discuss the overhead introduced by short

time slices, and then we explore a bestfit threshold that can

optimize the performance for all parallel applications.

In order to deeply understand the overhead introduced by

short time slices, we conduct an experiment by gradually

shortening time slice of parallel applications. We collect

samples of last-level cache (LLC) misses by using Xenoprof
[12], in order to measure cache flushes. The experimental

settings are the same as we used in Section II-B1. In addition,

we adopt four virtual clusters each of which consists of two

VMs (from two physical nodes respectively). The parallel

applications are all from NPB with class C, because they

have long execution length, such that there are enough cache

misses and spinlock latencies for us to study the overhead.

The experimental results are presented in Figure 8. From

Figure 8(a) through Figure 8(f), we can observe that the

execution time does not always decrease with decreasing

time slice length (though the spinlock latency always keeps

decreasing), because of the increasing cache miss rate. In

Figure 8(a), for example, when the time slice is shorter

than 0.2 ms, the performance of lu.C starts declining with

decreasing time slice. This is because of too frequent context

switches and many cache misses introduced, though the

synchronization overhead can be mitigated more or less with

short time slices. Thus, for a parallel application running in

a virtual cluster, there must exist a performance inflection

point (e.g., 0.2ms for the aforementioned lu.C), after which

the performance improvement gained by spinlock latency will

be totally canceled out by the cost of cache misses. Obviously,

the best parallel execution performance can be represented by

the performance inflection point, differing with applications.

Considering that the VMM is unaware of what exact

parallel applications are running on the VMs, we exploit

a uniform time slice threshold to achieve nearly optimal

performance for all parallel applications, which is also for the

sake of low computational complexity. In order to explore an

optimized uniform time slice threshold, we adopt Euclidean

metric [13] in Euclidean space to assess how close the

performance of parallel applications under a given time slice

is to the optimal performance each parallel application can

achieve. Specifically, we use this metric in an n-dimensional

Euclidean space. As shown in Equation (1), n is the number of

applications, Oi represents the minimal normalized execution

time of ith application, while Pi stands for the normalized

execution time of ith application under a specified time slice.

The closer D(O,P) is to 0, the more optimized overall

performance to be gained. The short time slices we used to

calculate the Euclidean metric include 0.5ms, 0.4ms, 0.3ms,

0.2ms, 0.1ms and 0.03ms (shorter time slice intervals leads to

tiny performance differences, so they are not presented in the

figure). The Euclidean metrics under these short time slices

are 0.034, 0.020, 0.018, 0.049, 0.039, 0.069, respectively.

Obviously, the minimum Euclidean metric value is 0.018,

thus the minimum time slice threshold is supposed to be set

to 0.3ms.
D(O,P) =

√∑n
i=1(Oi − Pi)2 (1)

347

Execution Time Spinlock Latency Cache Miss Rate

3
0

1
0 3 1

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
a

rl
iz

e
d

 P
e

rf
o

rm
a

n
c
e

Scheduling Time Slice (ms)

(a) lu.C

3
0

1
0 3 1

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o

rm
a

rl
iz

e
d

 P
e

rf
o

rm
a

n
c
e

Scheduling Time Slice (ms)

(b) is.C

3
0

1
0 3 1

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

3

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

N
o

rm
a

rl
iz

e
d

 P
e

rf
o

rm
a

n
c
e

Scheduling Time Slice (ms)

(c) sp.C

3
0

1
0 3 1

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
a

rl
iz

e
d

 P
e

rf
o

rm
a

n
c
e

Scheduling Time Slice (ms)

(d) bt.C

3
0

1
0 3 1

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o

rm
a

rl
iz

e
d

 P
e

rf
o

rm
a

n
c
e

Scheduling Time Slice (ms)

(e) mg.C

3
0

1
0 3 1

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o

rm
a

rl
iz

e
d

 P
e

rf
o

rm
a

n
c
e

Scheduling Time Slice (ms)

(f) cg.C

Fig. 8. The performance impact on parallel applications when adjusting the time slices of VMs

C. Setting Time Slice for Non-Parallel Applications

Various types of applications (e.g., parallel applications and

non-parallel applications) from different users often coexist in

the same virtualized cloud systems. In this section, we focus

on how to avoid the performance impact of short time slices

on non-parallel applications. We first conduct an experiment

(using the same setting as in Section II-A2) to explore how

time slice affects the non-parallel application’s performance in

the virtualized system, and then introduce our ATC algorithm,

which can effectively solve the problem.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3
0

2
4

1
8

1
2

6 1 0
.6

0
.3

0
.1

N
o
rm

a
li
z
e
d
 T

im
e

Scheduling Time Slice (ms)

sphinx3
ping

(a) ping and sphinx3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

3
0

2
4

1
8

1
2

6 1 0
.6

0
.3

0
.1

N
o
rm

a
li
z
e
d
 T

h
ro

u
g
h
p
u
t

Scheduling Time Slice (ms)

bonnie++ stream

(b) bonnie++ and stream

Fig. 9. The performance impact on non-parallel applications when adjusting
the time slices of VMs

As shown in Figure 9, the performance of sphinx3 de-

clines as the length of time slice decreases, because of the

overhead of the additional context switches especially for

CPU-intensive applications. For ping, the average round trip

time decreases as time slice decreases, since more context

switches offer more choices to deal with network packets.

For stream, the memory bandwidth suffers from slight per-

formance degradation as the time slice decreases, in that the

additional context switches will result in more cache flushes.

In order to boost the performance of parallel applications,

we devise the adaptive time slice control approach, which

adjusts the lengths of time slices for the VMs running parallel

applications and the VMs running non-parallel application

separately. Specifically, we first calculate the time slice of

each VM that is running parallel application by Algorithm

1. For the purpose of not introducing additional computa-

tional complexity and better ensuring fairness, we choose the

minimum one among the calculated time slices for all VMs

running parallel applications. In order to avoid the negative

impact on the performance of non-parallel applications, we set

the time slice of the VMs running non-parallel applications

to the default value of XEN VMM. Besides, for the sake of

higher flexibility, we design an interface that allows system

administrators to specify the time slice of the VMs running

non-parallel applications on demand.

Algorithm 2 Adjusting time slice for VM separately

Input: 1) the list of VMs in a physical node: vmList; 2) the type of vm
Output: the time slice for each VM
1: tempvmList = []
2: for each vm in vmList do
3: if the type of vm is set to PARALLEL then
4: vm.timeSlice = compute timeSlice(vm)/* call Algorithm 1 */
5: Add vm into tempvmList
6: end if
7: end for
8: if tempvmList is empty then /* There are no VMs that are running

parallel application */
9: for each vm in vmList do

10: vm.timeSlice = DEFAULT
11: end for
12: else
13: tempT imeSlice = min timeSlice(vmList)
14: for each vm in vmList do
15: if the vm is running parallel applications then
16: vm.timeSlice = tempT imeSlice
17: else if system administrator specifies the time slice for VMs

running non-parallel application then
18: vm.timeSlice = SPECIFIED
19: else
20: vm.timeSlice = DEFAULT
21: end if
22: end for
23: end if

The pseudo-code is shown as Algorithm 2, and its input

information is the list of VMs queried on a physical machine

and the types of VMs. We use tempvmList to denote the list

of VMs running parallel applications on the physical node

(line 1). Then, the algorithm traverses all of the VMs. If a

VM is running parallel application, compute_timeSlice
is called to compute its time slice and this VM is added

into tempvmList (lines 2-7). If there is no VM running

parallel applications in the system, the time slice of each

VM is set to the default value of VMM (lines 9-11). If

there exists at least one VM running parallel application,

the algorithm will perform the following two steps: (1)

call function min_timeSlice to get the minimum time

slice (denoted as tempTimeSlice) of all VMs running parallel

applications (line 13); and (2) find all of the VMs that are

running parallel applications and set their times slices to

the minimum time slice tempTimeSlice (lines 15 and 16).

If the VM is running non-parallel application and system

administrator already assigned its time slice a value, the time

slice of this VM is set as the specified value (lines 17 and

18). Otherwise, its time slice will be set to the default value

(lines 19 and 20).

As depicted in Algorithm 2, the time slice of all VMs

348

running parallel applications will be set to the minimum value

from all of the time slices calculated by Algorithm 1 at

the beginning of each scheduling period of VMM. For the

VMs running non-parallel applications, the time slices will

be determined on demand by the system administrator to set

to the default values otherwise. Suppose there are N VMs,

then the time complexity of our algorithm is O(N) because

that of compute_timeSlice for each VM is O(1).

IV. PERFORMANCE EVALUATION

We describe the experimental setting in Section IV-A, and

then present the experimental results thereafter.

A. Experimental Setting
(1) Experimental Platform. We adopt 32 nodes with

totally 256 cores connected by a 1Gbps Ethernet. Each

physical node is equipped with two Intel Xeon E5620 Quad-

Core CPU and 24 GB RAM, and deployed with Xen-4.2.1.

Each VM booted up on top of the VMM is running the Linux-

3.9.3 kernel.
(2) Scheduling Approaches. We compare our ATC ap-

proach to well-known scheduling approaches, as listed below:
• Credit (CR). CR is the default scheduler implemented

in XEN [14] VMM.

• Co-scheduling (CS). CS [7] dynamically sets the type of

VM according to spinlock wait time, and co-schedules

the VM as the spinlock wait time exceeds the minimum

spinlock wait time threshold.

• Balance Scheduling (BS). BS [4] ensures at most one

VCPU in a VM runs in the same PCPU run queue.

• Dynamic Switching-frequency Scaling (DSS). DSS

[5] sets the length of time slice for each VM running

concurrent workload according to their I/O behaviours.

• vSlicer (VS). VS [15] is a differentiated-frequency CPU

microslicing approach to accelerate latency-sensitive ap-

plications, especially when latency-sensitive applications

and latency-insensitive applications coexist.
(3) Classification of Experiments. Our experiment is di-

vided into two categories. The first category is conducted with

only parallel applications running in the system. There are

two evaluation types in the first category. The evaluation type

A runs the same parallel application in four virtual clusters

with different scales (different numbers of physical nodes).

For the evaluation type B, considering it is very common

for cloud systems (e.g., Amazon EC2) to host various types

of applications with different sizes, we synthesize the size

and number of virtual clusters launched in cloud environment

based on the job traces of a Linux cluster (Atlas) at Lawrence

Livermore National Laboratory (LLNL) [16]. For the second

category, we perform an experiment with a mixture of parallel

and non-parallel applications, running parallel applications

and other types of applications simultaneously.
(4) Benchmarks. The benchmarks used here are NPB [9],

Httperf [17], bonnie++ [18], SPEC CPU 2006 [19], and

stream. NPB, bonnie++ and stream have been described in

Section II. Httperf is for measuring the performance of web

servers. SPEC CPU 2006 is a CPU-intensive benchmark suite.

B. Scenarios with Parallel Applications

In this section, we adopt parallel applications (i.e., lu, is,

sp, bt, mg, cg) from NPB benchmark. For the evaluation type

A, we run the same parallel applications in all virtual clusters.

Evaluation type B runs various parallel applications based on

the job traces of a Linux cluster (Atlas) at LLNL [16].

1) Running the Same Parallel Applications: In this evalua-

tion, we scale the number of physical nodes from 2 to 32 (2, 4,

8, 16, and 32), and four 8-VCPU VMs are booted up on each

physical node. Four identical virtual clusters are constructed

using all VMs in the platform, and the four VMs on each

physical node belong to them separately. We run lu on these

four virtual clusters simultaneously for ten times, and record

the execution time of lu on each virtual cluster. The same test

procedures also go to sp, bt, cg, is and mg, respectively.

Figure 10 shows the average execution times of sp, bt,
lu, cg, is and mg running on virtual clusters with different

solutions: BS, CS, DSS and ATC (we do not test VS in

this experiment because it is designed for the scenario where

latency-sensitive applications and latency-insensitive applica-

tions coexist, we will compare our ATC to VS in Section IV-C

with various types of applications). The execution times are

all normalized by comparing to that of traditional approach

CR. We can see that our ATC achieves the best performance

and scalability among these approaches. For example, the

normalized execution time of lu under BS and CS approaches

are 0.85/0.15= 566.7% and 0.38/0.15=253.3% times long of

which runs under our ATC approach when the number of

physical nodes is 8. The reasons for this result are discussed

as follows:

• For parallel applications, our ATC approach exhibits bet-

ter performance and scales better than other approaches,

because it can automatically adjust the time slice of VMs

according to the information of their spinlock latency.

• BS is a probabilistic co-scheduling approach [4], and the

probability of co-scheduling VCPUs of virtual cluster

will become lower and lower with increasing number of

physical nodes (VMs of virtual cluster). Thus, BS has

a slight performance gain over CR when the number of

physical nodes is small (e.g., 2), while the performance

gain is not clear with large number of nodes (e.g., 32).

• Although CS schedules the VCPUs of a SMP VM simul-

taneously, all VMs belonging to the same virtual cluster

are scheduled asynchronously (i.e., not co-scheduled)

from the perspective of virtual cluster, which degrades

the performance of tightly-coupled parallel applications.

Therefore, the performance and scalability of CS are

between BS and ATC.

• Since DSS adjusts the length of time slice for each VM

separately according to its I/O behaviour, time slices of

all VMs under DSS are probably different from each

other. The VMs with long time slices will result in long

spinlock latency of other VMs. By contrast, ATC sets a

minimum time slice obtained by comparison for all VMs

uniformly. Therefore, ATC outperforms DSS.

349

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Virtual Cluster Size

CR

BS

CS

DSS

ATC

(a) sp

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Virtual Cluster Size

CR

BS

CS

DSS

ATC

(b) bt

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Virtual Cluster Size

CR

BS

CS

DSS

ATC

(c) lu

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Virtual Cluster Size

CR

BS

CS

DSS

ATC

(d) cg

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Virtual Cluster Size

CR

BS

CS

DSS

ATC

(e) is

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Virtual Cluster Size

CR

BS

CS

DSS

ATC

(f) mg

Fig. 10. Performance comparison of approaches (CR, BS, CS, DSS and ATC) when running sp, bt, lu, cg, is or mg on 2, 4, 8, 16, and 32 VMs

2) Running Mixed Parallel Applications: In real-world

cloud systems (eg., Amazon EC2), it is very common to

host different types of applications with different sizes. So in

order to simulate an environment close to the real-world cloud

systems, we synthesize the size and the number of virtual

clusters based on the job traces of a Linux cluster (Atlas)

at Lawrence Livermore National Laboratory (LLNL) [16]. In

this experiment, there are 128 8-VCPU VMs hosted on 32

physical nodes (each node hosts four 8-VCPU VMs).
(1) The configuration of virtual clusters. According to the

total number of VMs in our platform, we set the size of each

virtual cluster in the platform to be in the range between 16

and 256 VCPUs. Specifically, we try to make the distribution

of virtual clusters be consistent with the trace in Table I.
TABLE I

THE PERCENTAGE (P) OF THE NUMBER OF JOBS WITH DIFFERENT SIZES

(S) (I.E., PROCESSOR COUNTS) BASED ON THE TRACES OF LLNL ATLAS

S 8 16 32 64 128 256 others
P 31.4% 12.6% 4.5% 12.6% 6.1% 4.5% 28.3%

For example, the number of virtual clusters with 16 VCPUs

(12.6%) is about 3 times as large as that of the ones with 256

VCPUs (4.5%). Specifically, among the 128 VMs, ninety are

used to build the 10 virtual clusters with different sizes, and

the remaining 30 VMs act as independent VMs. Thus, the 10

virtual clusters are organized as below.
• One 256-VCPU virtual cluster (denoted as VC1)

• Two 128-VCPU virtual clusters (VC2 and VC3)

• Three 64-VCPU virtual clusters (VC4 ∼ VC6)

• One 32-VCPU virtual clusters (VC7)

• Three 16-VCPU virtual clusters (VC8 ∼ VC10)

• Thirty 8-VCPU independent VMs
(2) Benchmarks. Each virtual cluster randomly runs a

parallel application selected from lu.B, bt.B, cg.B, is.B, mg.B,

and sp.B. Each independent VM runs an application randomly

selected from lu.B and is.B. The execution times of the

applications may differ from each other, so multiple appli-

cations may not finish at the same time, though they start the

execution simultaneously on corresponding virtual clusters

and independent VMs. Thereby, we run each application

repeatedly with a batch program. The number of repetitions

is set large enough to ensure that other applications are still

running when each application finishes its 10th round.
(3) Experimental results. Figure 11 shows the normal-

ized execution time of applications running in ten virtual

clusters and two randomly selected independent VMs. From

Figure 11, we can see that ATC achieves the best performance

among all approaches. For example, the normalized execution

time of sp running in VC1 with ATC, DSS, CS, BS, and CR

are 0.25, 0.45, 0.49, 0.9, and 1, respectively. The performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

VC1(sp)
VC2(lu)

VC3(is)
VC4(bt)

VC5(mg)
VC6(cg)

VC7(lu)
VC8(sp)

VC9(bt)
VC10(cg)

Ind(lu)
Ind(is)

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

CR BS CS DSS ATC

Fig. 11. Normalized execution time of lu, bt, cg, is, mg, and sp running on
ten virtual clusters with different sizes and independent VMs

trends of all approaches are similar to those in Figure 10 due

to the same reasons for Figure 10.

C. Scenarios with Parallel and Non-parallel Applications

In this section, we make experiments in the scenario where

parallel applications and non-parallel applications coexist.

For our ATC approach, we first set the time slice for VMs

running non-parallel applications to be the default time slice

in VMM (denoted as ATC(30ms)). Besides, in order to test the

impact of adjusting time slice of VMs running non-parallel

applications, we set a non default time slice for VMs running

non-parallel applications, specifically, we take 6ms as an

example (denoted as ATC(6ms)) to carry out our experiment.

The experimental settings about virtual clusters and the par-

allel applications are the same as that used in Section IV-B2.

Differently, the application running on each independent VM

is randomly selected from lu, is of NPB benchmark and non-

parallel applications (Apache server, bonnie++, SPEC CPU
2006, and stream). We use httperf to measure average re-

sponse time for web servers, and evaluate I/O throughput and

memory bandwidth for bonnie++ and stream respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

VC1(sp)
VC2(lu)

VC3(is)
VC4(bt)

VC5(mg)
VC6(cg)

VC7(lu)
VC8(is)

VC9(lu)
VC10(sp)

VC11(bt)
VC12(cg)

Ind(lu)
Ind(is)

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

CR
BS

CS
VS

DSS
ATC(30ms)

ATC(6ms)

Fig. 12. Normalized execution time of sp, bt, lu, is, cg, and mg running
on ten virtual clusters with different sizes, and applications selected from
parallel ones and non-parallel ones running on independent VMs

From Figure 12, we can observe that ATC(30ms) achieves

better performance than DSS because of the same reasons

analyzed for Figure 10. Different from Figure 11 presented

in Section IV-B2 where DSS exhibits better performance

than CS, Figure 12 shows that DSS is inferior to CS. The

performance of DSS depends on the time slice adjustment

for latency-sensitive applications. When there exist latency-

insensitive applications in the system, the spinlock latency

350

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

stream bonnie++ httperf

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

CR
BS
CS

VS
DSS

ATC(30ms)

ATC(6ms)

Fig. 13. Performance comparison of stream, bonnie++ and web application
under CR, BS, CS, VS, DSS and ATC(30ms), ATC(6ms)

of parallel application under DSS will become longer, which

results in worse performance. By contrast, the performance of

parallel applications under CS is not affected by the latency-

insensitive applications in the system. DSS exhibits better

performance than VS, because the time slice of VMs running

parallel application under DSS is shorter than that in VS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

gcc bzip2 sphinx3

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

CR
BS

CS
VS

DSS
ATC(30ms)

ATC(6ms)

Fig. 14. Performance comparison of gcc, bzip2, and sphinx3 under CR, BS,
CS, VS, DSS, ATC(30ms), and ATC(6ms)

As shown in Figure 13, we can see that the performance

of bonnie++ with BS, CS, DSS, ATC(30ms), and ATC(6ms)

approximates to those with CR. The performance of stream
with CS and ATC(6ms) is slightly worse than that with CR,

because the additional context switches lead to more cache

flushes. The performance of web server with CS is about

35% of that with CR. The average response time of web

server with CS approach becomes longer due to the additional

VM preemption, which results in performance degradation of

latency-sensitive application. The performance of web server

under VS, DSS, and ATC(6ms) is better than that of CR,

because these approach increase the scheduling frequency of

web server, which leads to shorter average response time.

As depicted in Figure 14, the performance of CPU-

intensive applications (such as gcc, bzip2, and sphinx3) with

CS and ATC(6ms) is worse than that with CR. Meanwhile, the

performance with BS, VS, DSS and ATC(30ms) approximates

to that with CR. The reasons are as follows:

• Because of the VM preemption, the performance of

CPU-intensive applications with CS is worse than that

with CR. For ATC(6ms), the performance degradation in

CPU-intensive applications is due to context switches.

• For BS, VS, DSS and ATC(30ms), the number of context

switches of CPU-intensive VM is almost the same as

CR. Therefore, the performance of these four approaches

approximates to that of CR.

V. RELATED WORK

In traditional systems, the principle of strict Co-scheduling

[20] is to schedule and de-schedule threads belonging to

the same parallel application synchronously. Although this

approach can maximize synchronization efficiency, it suf-

fers from CPU fragmentation (which may lead to reduced

CPU utilization and delayed VCPU execution) and priority

inversion issues [21]. Demand-based scheduling [22] involves

the scheduling of threads that communicate with each other,

which is a relaxed type of Co-scheduling. However, it still

suffers from the issues as strict Co-scheduling does.

With the development of virtualization technology, many

studies [23, 24] have explored the feasibility of running

parallel applications in a virtualized environment, where the

synchronization overhead of a parallel workload running in

SMP VM is significant due to LHP. In such an environment,

Co-scheduling in traditional environment does not perform

very effectively due to the LHP issue. A hybrid scheduling

framework [6] were introduced to mitigate the synchroniza-

tion overhead, but it inevitably affects the performance of

non-parallel applications, which results from promoting the

scheduling priorities of VMs running parallel applications.

Besides, it mainly focused on performance degradation on

SMP VM instead of that across VMs in a virtual cluster.

A dynamic adaptive Co-scheduling [7] were proposed to

deal with the performance degradation of parallel workload

on an SMP VM. With this approach, the performance of

non-parallel application is also degraded due to VCPU pre-

emption. Sukwong et al. [4] presented Balance Scheduling, a

probabilistic type of Co-scheduling, the principle of which is

to balance the VCPU siblings in the same VM into different

PCPU run queues. Since Balance Scheduling is a proba-

bilistic co-scheduling, it has limited application performance

improvement. Rao et al. [2] enforced fairness at VM-level

and improved the efficiency of hosted parallel workloads in

SMP VMs. A demand-based coordinated scheduling scheme

for multi-threaded workloads were proposed in [25]. It is

only applicable to inter-processor interrupt (IPI) based syn-

chronization and cannot detect spin-based synchronization.

Our previous work [26] proposed a communication-driven

scheduling approach for virtual clusters in VMM. It does not

optimize the performance by adaptive slice control and also

has negative performance impact on non-parallel applications.

An approach in [27] was presented to handle mixed batch

and interactive VMs on the same physical hardware, which

can satisfy constraints on responsiveness and compute rates

for each workload. However, it requires to know each ap-

plication’s compute/communication balance to set the con-

straints. Lin et al. [28] proposed a self-adaptive approach

to time-sharing such machines that provides isolation and

allows the execution rate of an application to be tightly

controlled by the administrator, which overlooked the per-

formance degradation issue in virtualized systems. Chen et

al. [5] proposed a dynamic switching-frequency scheduling
(DSS) approach to improve the performance of concurrent

applications in SMP VMs rather than virtual clusters. In order

to accelerate latency-sensitive applications, Xu et al. [15] pre-

sented a differentiated-frequency CPU microslicing approach

(vSlicer). They also proposed vTurbo [29] to improve I/O

performance by offloading I/O processing to a designated

core, yet it overlooked parallel synchronization requirement.

351

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate the performance degradation

issue of parallel applications running in virtual cluster. We

find that by shortening the VM’s time slice, the spinlock la-

tency can be significantly reduced, therefore synchronization

overhead is mitigated, and the performance can be consid-

erably improved. We propose a novel Adaptive Time-slice
Control (ATC) approach for virtual clusters. We rigorously

implement the ATC scheduler based on XEN and compare it

to state-of-the-art methods in a series of experiments. Exper-

imental results show that our approach can achieve 1.5-10×
performance gains for tightly-coupled parallel applications

compared to traditional time-slice control schemes like XEN’s

Credit scheduler and the scheduling approaches like Co-

scheduling and Balance Scheduling, with unaffected impact

on the performance of co-running non-parallel applications.

In the future, we will exploit a more flexible approach to

adjust the time slice of the VMs running non-parallel appli-

cations, such that the scheduler can be more aggressive and

better meet the demand of the non-parallel applications for

synchronization and interrupt processing. Moreover, similar

to other existing approaches, we used an intrusive monitoring

method in the OS kernel, which may degrade the generality.

A non-intrusive monitoring method is under our plan in the

future work.

VII. ACKNOWLEDGEMENTS

This work was supported by National Science Founda-

tion of China under grant No. 61232008, National 863 Hi-

Tech Research and Development Program under grant Nos.

2015AA01A203 and 2014AA01A302, U.S. Department of

Energy, Office of Science, Advanced Scientific Computing

Research Program, under Contract DE-AC02-06CH11357.

REFERENCES

[1] T. J. Hacker and K. Mahadik, “Flexible resource allocation for
reliable virtual cluster computing systems,” in Proceedings of
Supercomputing (SC). ACM, 2011, p. 48.

[2] J. Rao and X. Zhou, “Towards fair and efficient SMP virtual
machine scheduling,” in Proceedings of PPoPP. ACM, 2014,
pp. 273–286.

[3] V. Soundararajan and J. Anderson, “The impact of management
operations on the virtualized datacenter,” in Proceedings of
ISCA. ACM, 2010, pp. 326–337.

[4] O. Sukwong and H. Kim, “Is co-scheduling too expensive for
SMP VMs?” in Proceedings of EuroSys. ACM, 2011, pp.
257–272.

[5] H. Chen, H. Jin, K. Hu, and J. Huang, “Dynamic switching-
frequency scaling: scheduling overcommitted domains in Xen
VMM,” in Proceedings of ICPP. IEEE, 2010, pp. 287–296.

[6] C. Weng, Z. Wang, M. Li, and X. Lu, “The hybrid scheduling
framework for virtual machine systems,” in Proceedings of
VEE. ACM, 2009, pp. 111–120.

[7] C. Weng, Q. Liu, L. Yu, and M. Li, “Dynamic adaptive
scheduling for virtual machines,” in Proceedings of HPDC.
ACM, 2011, pp. 239–250.

[8] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski, “To-
wards scalable multiprocessor virtual machines.” in Proceed-
ings of Virtual Machine Research and Technology Symposium.
USENIX Association, 2004, pp. 43–56.

[9] NASA Parallel Benchmark, http://www.nas.nasa.gov/
publications/npb.html.

[10] L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[11] J. Ahn, C. H. Park, and J. Huh, “Micro-sliced virtual processors
to hide the effect of discontinuous CPU availability for con-
solidated systems,” in Proceedings of MICRO. IEEE, 2014,
pp. 394–405.

[12] A. Menon, J. R. Santos, and Y. Turner, “Diagnosing perfor-
mance overheads in the Xen virtual machine environment,” in
Proceedings of VEE. ACM, 2005, pp. 13–23.

[13] Euclidean metric, http://en.wikipedia.org/wiki/Euclidean
distance.

[14] P. Barham, B. Dragovic, F. K., S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of SOSP, 2003, pp. 164–177.

[15] C. Xu, S. Gamage, P. Rao, A. Kangarlou, R. Kompella, and
D. Xu, “vSlicer: latency-aware virtual machine scheduling
via differentiated-frequency CPU slicing,” in Proceedings of
HPDC. ACM, 2012, pp. 3–14.

[16] Parallel Workload Trace, http://www.cs.huji.ac.il/labs/parallel/
workload/logs.html.

[17] Httperf, http://www.hpl.hp.com/research/linux/httperf/.
[18] Bonnie++, http://www.coker.com.au/bonnie++/.
[19] SPEC CPU 2006, http://www.spec.org/cpu2006/.
[20] J. Ousterhout, “Scheduling techniques for concurrent systems,”

in Proceedings of ICDCS, 1982, pp. 22–30.
[21] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph,

“Implications of I/O for gang scheduled workloads,” in Pro-
ceedings of IPPS, 1997, pp. 215–237.

[22] A. Dusseau and A. Carol, “Implicit coscheduling: coordinated
scheduling with implicit information in distributed systems,”
ACM Transactions on Computer Systems (TOCS), vol. 19,
no. 3, pp. 283–331, 2001.

[23] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P.
Berman, and P. Maechling, “Data sharing options for scientific
workflows on Amazon EC2,” in Proceedings of Supercomput-
ing (SC). ACM, 2010, p. 9.

[24] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus in-
house cluster: evaluating Amazon cluster compute instances for
running MPI applications,” in Proceedings of Supercomputing
(SC). ACM, 2011, p. 11.

[25] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng, “Demand-
based coordinated scheduling for SMP VMs.” in Proceedings
of ASPLOS, 2013, pp. 369–380.

[26] S. Wu, H. Chen, S. Di, B. Zhou, Z. Xie, H. Jin, and
X. Shi, “Synchronization-aware scheduling for virtual clusters
in cloud,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 26, no. 10, pp. 2890–2902, 2015.

[27] B. Lin and P. Dinda, “Vsched: Mixing batch and interactive
virtual machines using periodic real-time scheduling,” in Pro-
ceedings of Supercomputing (SC). ACM, 2005, p. 8.

[28] B. Lin, A. Sundararaj, and P. Dinda, “Time-sharing parallel
applications with performance isolation and control,” in Pro-
ceedings of ICAC. IEEE, 2007, pp. 28–28.

[29] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu, “vTurbo:
Accelerating virtual machine I/O processing using designated
turbo-sliced core,” in Proceedings of ATC, 2013, pp. 243–254.

352

