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ABSTRACT

Live migration has been proposed to reduce the downtime for migrated VMs by pre-copying the
generated run-time memory state files from the original host to the migration destination host.
However, if the rate for such a dirty memory generation is high, it may take a long time to accomplish
live migration because a large amount of data needs to be transferred. In extreme cases when dirty
memory generation rate is faster than pre-copy speed, live migration will fail. In this work we address
the problem by designing an optimization scheme for live migration, under which according to pre-
copy speed, the VCPU working frequency may be reduced so that at a certain phase of the pre-copy the
remaining dirty memory can reach a desired small amount. The VM downtime during the migration can
be limited. The scheme works for the scenario where the migrated application has a high memory
writing speed, or the pre-copy speed is slow, e.g., due to low network bandwidth between the migration
parties. The method improves migration liveness at the cost of application performance, and works for
those applications for which interruption causes much more serious problems than quality
deterioration. Compared to the original live migration, our experiments show that the optimized

scheme can reduce up to 88% of application downtime with an acceptable overhead.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Virtualization abstracts the resources such as CPU and memory
through generating virtual machines (VM) to better support
resource assignment (Rosenblum and Garfinkel, 2005). In modern
data center (DC) or Cloud environment, virtualization has been
considered to be by fault the basic resource management
technology because through virtualization the resources can be
easily consolidated, partitioned, and isolated. In particular, VM
migration has been applied for flexible resource allocation or
reallocation, by moving applications from one physical machine
to another for stronger computation power, larger memory, fast
communication capability, or energy savings.

Primary migration relies on process suspend and resume. This
forces the migrated application to stop until all the memory states
have been transferred to the migration destination where it is
resumed, which severely undergrads user experience in particular
for applications that cannot be interrupted. To reduce the
migration downtime, live migration has been proposed (Nelson
et al., 2005; Clark et al, 2005) where pre-copy mechanism
(Theimer et al., 1985) has been used to support seamless process
transfer. In each round of pre-copy, the original host machine
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copies the memory data of the VM that will be migrated, and
sends the data to the receiving machine (i.e., destination host). In
the mean time, the host records the changed bits of memory
during that copy/send phase. These dirty bits are generated by the
running applications in the VM and have to be delivered to the
destination in next rounds. By repeatedly pre-copying these
dirtied bits, if data delivery is faster than new dirty bit generation,
after a number of rounds, there will be only a small amount of
dirty memory left. The host machine then can suspend the
applications running in the VM and deliver all the remaining dirty
data to the destination. Because the amount of memory data to be
delivered in this final round is small, the delivery takes little time
before the VM (including the applications) can be resumed at the
destination machine. The overall downtime of the VM or
applications, including dirty data delivery time and process
resume time, is short and may not be perceived by users.

The key to the success of a live migration is that at the last
round of pre-copy the outstanding dirty memory size should be
small. The speed of dirty memory generation then becomes the
most important parameter that determines the performance of a
live migration. If the dirty memory generation rate is high, at each
round of pre-copy a large amount of new dirty memory is
generated. This will lead to an increased number of rounds of pre-
copies, and consequently much more data to be transferred
between migration parties. In cases where dirty data generation
rate is faster than memory copy, e.g., either because the
application is memory writing intensive or the network between
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the host and destination has a low bandwidth, a large amount of
dirty memory will remain no matter how many rounds of pre-
copy has been executed. This results in a relatively long time for
the final round of pre-copy and normally causes perceivable
interruption for the migrated applications. The live migration thus
fails.

To mitigate the problem, in the work we propose to optimize
live migration through reducing the rate of dirty memory
generation (or dirty rate). This can be achieved by adjusting
VCPU, i.e., the CPU allocated to the VM during live migration, to
control the memory writing speed. When the VM writes memory
too fast, the VCPU will be slowed down. The amount of newly
generated dirty bits during each round of pre-copy can be
reduced, and the overall data to be transferred at the final round
of pre-copy can be controlled under a desired value. Thus a
technique not only can reduce the interruption time of a migrated
application, but also can reduce the overall live migration time
because the overall memory to be delivered between migration
parties will be reduced as well.

Reducing dirty memory by trading off computation power
does result in application performance degradation. Our targeted
applications are those of which moderate performance degrada-
tion is tolerable, while interruption may cause much more serious
performance issues. Typical applications that may apply the
proposed live migration optimization technique are visual
applications, e.g., game application. Slowing down VCPU to reduce
rendering frame rate can only impact visual results for while.
However, if the game has to be interrupted for a relative long
time, e.g., hundreds of millisecond due to migration, the game
results may change.

Our major contributions are summarized as follows:

e Based on the pre-copy for live migration we proposed
mechanism to reduce the downtime of VM migration with
memory intensive application or low network bandwidth
condition, through slowing down the application memory
writing.

e We provide analysis model for analysing key parameters that
affect the performance of migration.

e We implemented a prototype in Xen environment. Experi-
ments show that by making the memory’s dirty rate in a
proper range, this method can expand the pre-copy algo-
rithm’s applicable range and improve the performance of live
migration in restricted condition. We provide experimental
data for performance evaluation in real applications and
explored trade-off of this algorithm with different setups.

This paper is organized as follows. After introducing related works
and giving motivation of our work in Section 2, we describe the
pre-copy model and analyse the factors that influence the live
migration in Section 3. In Section 4, we propose our optimization
method. The experiments and results are presented in Section 5.
We conclude the paper in Section 6.

2. Related work and motivation

VM migration is a hot topic of computing system virtualiza-
tion. Many systems (Sapuntzakis et al, 2002; Kozuch and
Satyanarayanan, 2002; Whitaker et al., 2004) just pause the VM
and copy the state data, then resume the VM on the destination
host. These methods cause the application to become unavailable
during the migration process. ZAP (Osman et al., 2002) could
achieve lower downtime of the service by just transferring a
process group, but it still uses stop-and-copy strategy. To move
the VM between hosts in local area network without disrupting it,

VMotion (Nelson et al., 2005) and Xen (Clark et al., 2005) use pre-
copy algorithm to perform live migration. Based on their works,
Sapuntzakis et al. (2002) and Travostinoa et al. (2006) tried
migrating running VM on a wide area network.

There are many approaches to improving the performance of
service live migration. The most popular technique is Memory
balloon (Waldspurger, 2002; Bradford et al., 2007), which could
eliminate unused memory (reduce the total transferring memory
M) to save time for the first pre-copy round. Hash-Based
Compression (Sapuntzakis et al., 2002) sends the hash of memory
page before transfer the memory data; if the same page exists on
destination host, this page needn’t be copied. Opportunistic replay
(Surie et al., 2008) minimizes the overhead of VM migration by
recording user actions and replaying them on the destination
host. Clark et al. (2005) mentioned some other approaches, such
as Dynamic Rate-Limiting and Rapid Page Dirtying, to improve
live migrating VMs on Xen. However, most of them just passively
adapt to the memory writing behaviour, except Stunning Rogue
Processes, which is an active approach that delays the execution
of processes that write memory is too fast. But it needs to set up a
‘stub handler’ into the OS running service, and it is too simple to
deal with complicated environments. The same strategy was used
in (Bradford et al., 2007) for transferring persistent data.

Keeping service running without much performance loss while
the VM is being moved to another physical machine was
considered as a primary goal to achieve for live migration.
However, many applications are more sensitive to the execution
breaking than efficiency. For example, a web server would rather
reduce respond latency than lose connections already built on;
desktop end users or online game players may feel more comfort
with a slow experience than with a frozen one. This paper tries to
discover the key factors and limits of the live migration process
and then to optimize its performance and available range. We
focus on the downtime of migration process under severe
environments that the traditional pre-copy algorithm does not
work well.

Our solution uses a similar mechanism as the process-pausing
methods, whereas our methods do that at the hypervisor level,
out of VM, and give more dynamic strategy based on the status of
VM and the migration environment. Though scheduling the whole
VM'’s execution is not accurate as doing it to the process, the
reasons why we chose not to implement our strategy inside the
VM are:

e We want to avoid modifying the software environment in the
VM, which may impact application’s performance and con-
strain the optimizing method into the VMs pre-installed
specific program.

e The VM is generally used for isolating independent applica-
tions. That means a VM'’s running processes are tight coupling.
When a memory-over-writing process is paused, the other
processes running in the same VM waiting for which would
slow down the whole application’s performance. So compared
to our solution, the benefit of handling processes is not
significant in practice.

3. Pre-copy model

The basic idea of iterative pre-copy algorithm is, by transfer-
ring dirty data repeatedly, changed memory could be decreased
round by round, which then eventually reaches an acceptable size
to move quickly, so that the downtime of service is negligible. As a
mainstream algorithm used for live migration, pre-copy has been
described in many papers before, yet there is no formal definition
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given. This section presents the basic pre-copy model, and then
analyses the parameters that impact the live migration’s perfor-
mance.

We firstly define parameter M as the total memory of the VM,
and parameter B as the network bandwidth assigned to the
migration task. To describe the speed of memory changing in
iteration i, we introduce a parameter p; as the dirty rate of round i.
Then the time for transferring memory in round i can be
calculated from every dirty rate of previous iterations according
to the following equation:

_Dbiixtig _ Mx it py 1
B B

When the dirty data of a pre-copy iteration is small enough or too
many rounds have been done, the migration process transfers the
remaining changed memory for the last time. In the final round,
VM is stopped and its memory is not writable to ensure that no
more data have to be sent. We define the number of all iterations
n as the following equation:

n=min({i+1|p; x t; <h},N) )

L

where h is the threshold value to begin the last round, and N the
maximum number of iterations.

To describe the performance of the migration, there are two
important parameters usually referred to. One is the total
migration time that counts the time lasting from the beginning
of the migration process to the end of it; the other one is
downtime, which represents the period that service is pausing
before it is resumed at the destination host. The total migration
time indicates the general performance of migration, while in
some circumstances users may prefer the shortest downtime with
tolerant overhead.

From Eq. (1) we can see that the pre-copy mechanism works if
pi < B so the time spent to send dirtied memory could be reduced
during every round. When one round’s dirty rate exceeds the
transfer speed, the time spent for next pre-copy iteration will be
longer than this one’s. To analyse the relations between each
parameters and the performance of the whole process, we sum
the transfer time of all rounds as the following equation:

n i—1
T.=M x Zl % 3)
i=

This equation shows the total pre-copying time T. would be
longer while the migrated VM has more total memory and/or less
available network bandwidth. When M QUOTE QUOTE and B are
fixed, T, could be decreased by slowing down the dirty rates of
every transfer round. For a given p,, when it is increased, the copy
time of all rounds after current one will be extended. In other
words, the dirty rates of earlier rounds affect more rounds than
the latter ones.

As for the downtime, since t,, depends on the ratios of dirty
rates to assigned bandwidth, pi/B, to make the downtime
negligible, it is expected that most of the dirty rates are small
enough, so that remained changed memory reach the threshold h
in Eq. (3) within the N—1 rounds pre-copy, then the time spent
for last round could be limited to be no more than h/B. Apparently
an iteration would get close to this goal only if its ratio p,/B is less
than 1, the iterations with ratio equal or more than 1 would be
wasted, then postpone or even draw back the progress. If the
dirtied memory left by the N—1 round of pre-copy stays over the
threshold h, it means that this algorithm does not work well, and
the last iteration has to transfer them suspending more time. In
the worst case, when the memory writing speed is too fast to
reduce the dirtied pages during all iterations, the pre-copy
algorithm is totally failed, and the last round will take M/B
downtime to finish the process as well as a non-live migration.

The actual data transferred during the migration process is
usually more than the total memory of VM because of the dirtied
part. We use R as the redundancy ratio to describe the trade-off of
the pre-copy algorithm and it could be calculated by the following
equation:

T.xB I py
R=-5= Z:l BT (4)
1=

here R indicates the extended transferred memory when using
pre-copy. Bigger the ratio is, more overhead caused by iteratively
pre-copy dirtied memory.

Memory dirty rate is a key parameter to the performance of
pre-copy mechanism, especially when the bandwidth used for VM
migration is poor. Theoretically, when the VM’s memory writing
speed is stable, say p;=p,=... =p;=p, then the dirty rate p must
be less than B to make dirtied memory decreasing. Furthermore,
to ensure the downtime of migration acceptable, p needs to be

p< "{/h/M x B (5)

so that the dirtied memory can be reduced to h before the Nth
pre-copy iteration. Generally the pre-copy algorithm set N=30
and h=256 kB. Fig. 1 shows the boundary of p/B that makes pre-
copy effective with different total memory size M. In most of the
circumstances, p should be less than 80% of B to achieve short
enough downtime. To explain how dirty rate p affects the
downtime when it exceeds that boundary, we calculated
downtimes of a virtual machine with different memory writing
speeds. The conditions are set as an 800 MB memory VM migrated
on a 200 Mbit/s network, and the results are given in Fig. 2. We
can see that when p reaches 151.4 Mbit/s, which is the biggest
dirty rate that the pre-copy algorithm works well with, the
downtime ¢, starts its exponential increase. We call this
downtime’s fast growing phenomenon the “migration barrier”,
it constraints the available range of live migration. When p is
raised to as fast as the network bandwidth B, the pre-copy is
totally failed and causes downtime equal to the time that
transfers all the memory.

Though pre-copy algorithm keeps VM running during its live
migration, the performance of applications in it will be under-
mined somehow. To quantitatively analyse the pre-copy algo-
rithm'’s trade-off, we introduce a parameter F representing the
numbers of instructions executed by CPU per second, it is a
variable only relative to the main frequency of processor.
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Fig. 1. Effective boundary of p/B with different memory sizes M.
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Fig. 2. Downtime t, of migrations as the dirty rate p changes.

The VM’s executed instructions during migration are represented
as follows:

I=FxUxT (6)

where U is VM'’s average CPU usage and T the total time of
migration. This parameter I can be used to compare the two
migration methods’ impacts on the performance of application
running in VM. Suppose the destination host uses the same CPU as
the source host, the VM’s efficiency difference of two migration
methods could be

IL = [Ul X T] —Uz X T2_Udes X (Tl —Tz)} x F (7)

where U;, U,, T; and T, are, respectively, the CPU usage and
migration time of methods 1 and 2, and Uges represents the
migration’s destination host’s available CPU usage. Specially,
when T,=0, the I, is the efficiency loss of the migration 1.

4. Optimizing live migration

Based on above analysis, we propose an optimized iterative
pre-copy algorithm, which could limit the dirty rate of VM, thus
help to improve the performance of live migration process.

The main idea of the algorithm is, when a VM writes memory
too fast to perform the pre-copy, it schedules the CPU time for this
VM to a proper percentage, so that the dirty rate could be adjusted
to a small enough value, then according to conclusions in Section
3, the downtime and the total time of the pre-copy process could
be reduced to acceptable ranges.

4.1. Mechanism design

Our solution is based on an experiential rule that a certain
VM'’s memory dirty rate is approximately linear increase with the
growing speed of the VM'’s execution by host CPU. Assuming a VM
running programs, which have x percent of the instructions to
write the memory, and the VM is writing y MB data per second to
the memory. When we set the CPU timeslice occupied by the
same VM from 100% to 50%, because the percentage x does not
change, the VM will write the memory with the speed of y/2 MB/s.
In fact, there are other factors that affect the relationship between
dirty rate and execution speed, such as process priority. Because
the operation system would prefer to schedule the processes with

higher priority (kernel processes or others), many processes with
normal priority will not be executed when there is not enough
CPU timeslice left. That means the dirty rate of high priority
memory writing process will decrease slower than the low
priority one if VM’s execution speed keeps reducing. Nevertheless,
such processes exist in the application programs with same lower
priority, so in most situations, we can consider that approxi-
mately linear relationship is reasonable.

We use e; and e;.; as the percentages of processor quantum
allocated for a migrated VM before and after optimization, p; and
pi+1 as the dirty rates generated by e; and e;.; execution. The
relationship among those parameters would be

€& _ Di
€i+1  Di+1

®)

When e; and p; are known, and if we want to adjust p;./B to a

given value C, e;.; should be

CxBxe;

€it1= i 9)
The parameter C is an expectant ratio that determines the proper
dirty rate to achieve good downtime in migration process with
certain bandwidth. As Eq. (5) and Fig. 1 implied, C is preferred to
the effective boundary of p;/B, which can be calculated from
known parameters (VM’s memory size, available network band-
width and pre-copy algorithm’s last round threshold). However,
since C is one of the key parameters in our algorithm that
determines the target VM’'s running speed and the memory
writing speed, its value should balance those two factors. A larger
C leads to less efficiency loss of application while may not help to
a successful live migration; and if C is too low, the performance of
application will be unbearable even the VM is moved quickly.
Though the actual dirty rate will vary during the migration, most
of the applications running in VM have memory writing patterns.
For example, some applications keep dirty rates in narrow ranges,
some write the memory with stable frequency. In order to
guarantee p;.1/B stays in the area close to C, we use the dirty rate
of current round as reference to determine the next round’s
quantum to be allocated. Our algorithm will update the dirty rate
at the end of each pre-copy round and re-calculate e;.; by
replacing pi with new dirty rate.

As the result of Eq. (9), e;+1 is a value relative to the current
CPU scheduling percentage e;. The original proportion allocated to
the migrated VM should be saved on first pre-copy round and
restored at the end of migration before the VM resumed on
destination host.

4.2. Optimized pre-copy algorithm

We modified the basic pre-copy algorithm to which adjusts
certain timeslices for the VM being migrated in each pre-copy
round. Algorithm 1 presents the optimized pre-copy algorithm. It
needs max round limit N and threshold of doing last round H as
input parameters. For simplicity here set the expectant ratio C as a
constant. The main steps of the algorithm are as follows:

At first, the data to be transferred M is initialized to the VM’s
whole memory and the round index R is initialized to 1. Lines 1
and 2 complete this initialization.

Line 3 starts the main loop of the algorithm that iterative pre-
copy VM’s dirtied memory, it continues until dirtied memory
reaches the threshold or the next round is the last one. Lines 4-6
perform the traditional pre-copy algorithm that save changed
memory and count the time lasting in current round while
sending the previous round’s dirtied memory. After calculating
the transfer speed of last round in line 7, line 8 moves the content
of TempM to M to copy in the next iteration, and line 9 gets the
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dirty rate of current round. Then we do our optimization on lines
10-12. After acquiring currently assigned scheduling parameter,
the algorithm calculates the new execution percentage according
to Eq. (9). Line 12 resets the new value to the parameter of VMM'’s
scheduling strategy to make prospective percentage of physical
CPU time available to the appointed VM. At the end of the
iteration, add 1 to the round counter R on line 13.

In the end, lines 15 and 16 send the remained memory in the
last stop-and-copy round. Then finish the process by resuming
VM on line 17.

Algorithm 1. OptimizedPreCopy(VM, N, H)

M« VM'’s memory

R<1

While size of M > H and R < N do

Transfer M to destination host

Record VM's dirtied memory to TempM
Count the transferring time T

B«M|T

M < TempM

P«~M|T

10: Read current CPU time allocated for VM to E
11: E«C*B*EJP

12: Schedule E% of the CPU time to execute VM
13: R+—R+1

14: End while

15: Pause VM

16: Transfer M to destination host

17: Resume VM on destination host

OO, WN =

Our algorithm only introduces a scheduling strategy to help
improve the performance of VM live migration; it could cooperate
with most of the other known optimization methods compatibly.
One shortcoming of the algorithm is that it works by sacrificing
the performance of application running in VM, which makes user
uncomfortable. We will discuss this problem in Section 5. In fact,
this algorithm will be the last attempt behind other approaches. It
effects only if the previous methods failed to achieve the expected
downtime.

4.3. CPU scheduling implementation

We chose the open source Xen virtual machine monitor
(Barham et al., 2003) and its live migration tool (Clark et al.,
2005) as basic environment to implement the above-optimized
pre-copy algorithm on it. Since Xen is an open source virtualiza-
tion platform, it is easy to get every round’s needed values and
calculate the target scheduling percentage. We inserted several
codes into the “xc_domain_save.c” file, which does most of the
work on VM live migration. Fig. 3 shows the main part of our
improvement to the original pre-copy algorithm.

The SetSched() function is given in Fig. 4, which controls the
execution of target VM’s CPU. VM monitor attains global load

if (ts_dirty_rate > 0) {
if (ts_send_rate > MAX_MBIT_RATE) {
| ts_send_rate = MAX_MBIT_RATE;
}
ts_setValue = ts_send_rate * TS_C_VALUE / ts_dirty_rate;
SetSched(ts_setValue);
}

Fig. 3. The code that schedules CPU in each iteration. ts_send_rate and
ts_dirty_rate are the memory data transfer and changing speed of current round,
parameter C is assigned by the constant TS_C_VALUE.

void SetSched(int i) {
int rint, paramIndex;
virSchedParameterPir paramUnit;

/* Initialize sched */

ifi<1)i=1

ts_sched = ts_sched *i / 100;

if (ts_sched < TS_MIN_SCHED) ts_sched = TS_MIN_SCHED;
if (ts_sched > TS_MAX_SCHED) ts_sched = TS_MAX_SCHED;

/* Set Sched Parameters */
if (ts_params = NULL) {
for (paramindex=0; paramIndex<*ts_nParams; paramIndex++) {
paramUnit = ts_params + paramIndex;

if (Istrcmp(paramUnit->field, "cap”)) {
paramUnit->value.ui = (unsigned int)ts_sched;
}
}

rint = virDomainSetSchedulerParameters(ts_dom, ts_params, *ts_nParams);
if (rint 1= 0) {

SchedError();

return;

}

paramUnit = NULL;
}
else {
~if (ts_fp = NULL) fprintf{ts_fp, "[Sched Task] params is NULL\n");
}
}

Fig. 4. The SetSched() function—it sets the percentage of target VM’'s CPU
execution by invoking libvirt API, the Credit Scheduleris used.

balancing on all the managed VMs by performing CPU scheduling
strategies. Our solution only works on the specified VM when it is
migrating, so it is not necessary to substitute the existing
scheduler or undermine it by significantly impacting other VMs’
running. Also, to avoid the VM running too slowly to keep the
service response, we set the CPU time allocated to the VM not be
lower than 20%.

Xen provides three optional CPU schedulers: Simple Earliest
Deadline First (SEDF) (Leslie et al., 1996), Borrowed Virtual Time
(BVT) (Duda and Cheriton, 1999) and latest Credit Scheduler. They
all assign each VM a separate weight representing the proportion of
CPU share. Weight is a relative value, which means the actual CPU
allocated to a VM is decided by its weight compared to that of the
other VMs. The scheduler will allocate more CPU time to the one
with higher weight. So the migrated VM'’s executing speed could be
controlled by adjusting its weight as the following equation:

e n
WO:l_—EXI;Wi (10)

where e is the expectant percentage of CPU time allocated to the VM
and wy, ..., w, are the weights of VMs running on host except the
one being migrated. When one VM'’s weight changed, the whole
host’s CPU distribution will be reset, even other VMs keep the
weight unaltered. To implement absolute VM executing speed, we
should modify wo whenever there is variation with any VM’s weight.

Besides the weight-based scheduling, the SEDF and Credit
Scheduler provide another CPU allocation mechanism named
non-work-conserving mode (Cherkasova et al., 2007). It supports
limiting each VM’s CPU usage, which makes our scheduling avoid
complicated weight operation. Just assign the value e to the target
VM'’s cap parameter, then the CPU time allocated to the VM will
not exceed e percent. By using cap mechanism, the target VM'’s
weight need not be frequently calculated and modified; however,
when migration begins, the current CPU scheduler in use must be
detected for choosing the right method to control VM execution.
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5. Evaluation

The basic pre-copy has been proven to work well on VM with
normal workloads in the environments that have sufficient
resources. In this section we describe the experiments undertaken
to evaluate the total time and downtime of the optimized pre-
copy algorithm in tough circumstances. We also discuss the trade-
off of our approach and compare the performance to the basic
pre-copy algorithm.

5.1. Experimental setup

We built our experimental environment on a pair of two-
socket servers, each socket has 4 Intel Xeon 1.6 GHz CPUs. Both
servers were 4 GB DDR RAM and connected by a 1000 Mbit/s
Ethernet network. We used Linux 2.6.18 with Xen 3.1.0 installed
as the operation system. The Xen was default set Credit as the CPU
scheduler. Storage was exported to the migrated VM from a file
system image, which was accessed via the NFS protocol. We also
pre-installed Red Hat Enterprise Linux 5 as guest OS in VMs.

5.2. Performance comparison

Firstly, we compare the general performance between original
and optimized pre-copy algorithms. We used a program,
memMWriter, to generate workloads during our experiments. This
program writes the given-sized memory with a stable and
controllable speed. We performed a series of migrations with
the bandwidth limited to 1000, 500, and 200 Mbit/s. Workloads
write 800 MB memory with different speeds; the range is from
41 Mbit/s (naked guest OS) up to 4798 Mbit/s. Every workload is
migrated 5 times, by separately using original Xen live migration
and our optimized live migrations with the parameter C assigned
to 0.6, 0.7, 0.8, and 0.9 for comparison. In all cases the VM was
configured to have a single CPU with 1 GB of RAM.

Fig. 5 shows the downtimes of both the original migration and
the optimized migration with different memory writing speeds.
The two methods perform well when memory dirty rates are less
than the memory transfer speed that most of the downtimes are
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kept in 0.1s. As the memory dirty rate increases close to the
available network bandwidth, original live migration makes VM
downtime rapidly rise and then stays at a very high position while
the dirty rate keeps increasing. This is in accord with the
migration barrier mentioned in Section 3. It can be caused by
the limit of network bandwidth assigned for the migration
process. When a traditional live migration meets the migration
barrier, the pre-copy algorithm fails to reduce the changed
memory size and the migration process has to send the whole
memory in stop-and-copy iteration. This phenomenon also
follows the model presented in Section 3.

Compared to the original pre-copy algorithm, the optimized
pre-copy performs better. All the optimized migrations loosen the
migration barrier and keep downtime of migration short enough
while the memory writing speed even exceeds the data transfer
bandwidth. The extended effective range of the optimization is
affected by the parameter C. As it decreased, the migration barrier
moves more. Because of the failure of pre-copying or optimized
pre-copying, the experiments with dirty rates exceed their
migration barriers and achieve similar worse performance.

When the 1 Gbit/s network bandwidth is assigned to the
migration process and the expectant ratio C is set to 0.9, the
optimized algorithm extends the traditional pre-copy mechan-
ism’s migration barrier; here it is represented by the first dirty
rate that makes downtime reach 1s, from nearly 600 bit/s to
about 1.2 Gbit/s. In the best situation (dirty rate=1943 Mbit/s,
C=0.6), the optimized approach reduces the downtime to 0.026 s,
only 0.4% of the original migration’s 6.435s. As the network
bandwidth is limited to 500 and 200 Mbit/s, the migration
barriers of traditional mechanism correspondingly shrank under
the available network bandwidths. Due to the reduced memory
transfer speed, in situations that pre-copy does not work, the
largest downtimes are higher than those under 1 Gbit/s transfer
speed.

From Fig. 6 we can see that under 1 Gbit/s available network
bandwidth, optimized mechanism with C=0.6 uses least time to
perform the whole VM migration than other pre-copy processes
when memory writing speed does not exceed the migration
barrier. While the (C=0.9) optimized migration makes longest
total time, even higher than the original process. As dirty rates
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Fig. 6. The total times of original and optimized migrations for different workloads.
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rise up to more than the migration barrier, the optimized methods
do not work well, leading the total migration time to rise, while
the original mechanism detects that the dirty rate is too large and
finishes migration by skipping early iterations and directly going
into stop-and-copy round.

In conditions that 500 and 200 Mbit/s network bandwidths are
allocated to the process, results follow a similar way, except a
peak of total time for the (C=0.6) optimized migration close to
the migration barrier, while others are more smooth and stable.

5.3. Dynamic web application

To evaluate the effect of optimized pre-copy algorithm in
practical circumstances, we tried both approaches on a dynamic
web application. A client sends 100 requests per second to access
the ‘/jsp-example/dates/date.jsp’ page provided by tomcat run-
ning in the migrated VM. The VM is configured with 8 CPUs and
512 MB of RAM. We limit the network bandwidth for migration to
200 Mbit/s, and set the parameter C to 0.8.

Fig. 7 illustrates the detailed migration process of the
experiment. The x-axis indicates time elapsed since the start of
migration, while the y-axis shows the speed of memory changing
(illustrated by black box) or sending (illustrated by box in write
grid). We also put a gray line into this figure for showing the CPU
cap assigned during the process. The VM has been in three phases
through the migration. Phase 1 was the earlier 2 rounds lasting
about 38 s. In this long phase, the memory is transferred with a
low speed of 104 Mbit/s, and the CPU allocation is not changed
yet. After the memory dirty rate reaches 160 Mbit/s in the 2nd
round, the optimization starts to adjust the VM’s processor
quantum to 52%. Phase 2 includes rounds 3-8 between the 39th
second and the 43rd second that CPU scheduling strategy is
working. The dirty rate is slowed down to 135 Mbit/s in round 3,
while the pre-copy mechanism raises the transfer rate up to
209 Mbit/s. Though the distance of two rates makes the CPU cap
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set back to 62% in the next round, the allocated processor
quantum of each round is eventually reduced rapidly in the
following few rounds, as well as decrease in dirtied memory,
leading to performing the last phase. In phase 3 the CPU
scheduling is terminated and the cap parameter is set back to
the initial state. The VM is stopped at round 9, and then does the
last iteration to finish the migration. The whole process takes total
43,986 s, and downtime is shrunk to only 288 ms.

We also moved the same workload without using optimiza-
tion. It spends 42.968 s total time and 2491 ms downtime. The
throughputs achieved by both mechanisms are shown in Fig. 8.
During the most of the migration times, the optimized migration
does not sacrifice the efficiency of application. The throughput is
reduced by CPU scheduling strategy for no more than 4s. As a
conclusion, we can say that comparing those two processes,
though spends total time about 1 more second, using our
optimized pre-copy algorithm reduces downtime by over 2.2 s,
88% of the original algorithm.

5.4. Overhead analysis

We have mentioned that a side-effect of our optimized
algorithm is, when the CPU time allocated to the migrated VM
is constrained, the applications running in this VM would be
slowed down at the same time. It seems that the algorithm
obtains the small downtime by sacrificing performance of service.
Now we discuss this problem based on our experimental results.

Fig. 9 shows the VM’s average CPU usages of every migration in
all the previous experiments on memWriter workloads. When the
original migration is performed, the VM uses as much CPU as
possible to execute workload, while our algorithm schedules the
VM’s CPU allocation as the memory writing speed increases. To
draw the growing dirty rates back to the value below the available
network bandwidth, the processor quanta for their workloads are
gradually decreased. Both mechanisms make stable CPU usages
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when they meet their own migration barriers. We can also see
that the difference in average CPU usage among different C
parameters is not too distinct. Though the target VM’'s CPU
frequency is reduced, the released timeslices are not wasted as
they are allocated to other running VMs on the same host by
Credit Scheduler.

To evaluate the general performance overhead of original and
optimized migrations, we designed a task that sends a total of
800,000 access requests to the previous dynamical web application.

From Eq. (7) and the experiment results collected in the last
subsection, we can calculate the efficiency loss of the optimized
algorithm as

I;(mig-tomcat)=0.99 x 42.968 —0.94 x 43.986 —0.99

x (42.968 —43.986)F=2.2F

It means that the optimized algorithm will spend I;(mig-
tomcat)/(UgesF)=2.22 s more than the original migration.

The results of finishing time for the task performed with
different situations are given in Fig. 10. The whole task takes 165 s
when it is performed without migration, while there is another
3.5 s time spent on original migration, and 6 s spent on optimized
migration as well. Since both the migrations spend no more than
44 s, we can get the overheads as the efficiency lost rates; hence,
the original algorithm makes 8% overhead while the optimized
algorithm makes 6% more efficiency loss.

Though would make extra efficiency lost to the migrated VM,
our solution could avoid large downtime. In fact our mechanism
could be explained as it divides the application’s unavailable time
due to the last stop-and-copy iteration into tiny execution
intervals and spreads them over the whole live migration process.
Besides, by taking some timeslices from the migrating VM, other
VMs can acquire more CPU resource, which improves the overall
CPU utility. So it is a choice between slow service with short break
and fast service with long break. It was thought that live
migration should prefer to ensure the service’s performance, but
when service does not respond the requests for a long time, even
losing the connections, we should consider balancing its down-
time and efficiency with the approach proposed in this paper.

Another by-effect of our approach is that no matter how many
processes write the memory, all processes in the VM will be
punished, which is unfair to those innocent processes, and loses
efficiency of the applications in the VM as a whole. However, for
isolating different applications from each other, users will normally
create VMs as many as they needed, and each VM contains one
application. If the application’s processes are tight coupling, then the
benefit of just punishing one process is not very significant. So as
mentioned in our motivation, it is acceptable to gain our optimiza-
tion’s scalability on different guest OS by sacrificing this rare
potential efficiency loss.

6. Conclusions

In this paper, we presented the basic pre-copy model of VM
live migration and proposed an optimized algorithm to improve
the performance of live migration. Iterative pre-copy mechanism
is sensitive to the VM’s memory writing speed; when the dirty
rate exceeds the transferring bandwidth, the downtime meets the
migration barrier, which it will enlarge quickly. Our approach
tries to limit the speed of changing memory through controlling
the CPU scheduler of the VM monitor. We described the design
and implementation of our optimized pre-copy algorithm in
details. VMs with different memory writing speeds have been
migrated in our experiments. Results show that by using the
optimized algorithm, the migration barrier has been loosened up
to 4 times. Comparing the migrations of the same workload with
and without optimization, our solution can dramatically lower the
VM'’s downtime, with the acceptable overhead.

In the future, we plan to integrate more parameters, such as
writable working set (Clark et al., 2005), into the model presented
in this paper. We are going to add network bandwidth controlling
and memory writing patterns to our optimized pre-copy algo-
rithm, using many strategies together to allocate proper resources
to perform VM live migration.
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