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Abstract Due to the highly dynamic feature,
dependable workflow scheduling is critical in
the Grid environment. Various scheduling algo-
rithms have been proposed, but seldom consider
the resource reliability. Current Grid systems
mainly exploit fault tolerance mechanism to
guarantee the dependable workflow execution,
which, however, wastes system resources. The
paper proposes a dependable Grid workflow
scheduling system (called DGWS). It introduces
a Markov Chain-based resource availability pre-
diction model. Based on the model, a reliabil-
ity cost driven workflow scheduling algorithm is
presented. The performance evaluation results,
including the simulation on both parametric ran-
domly generated DAGs and two real scientific
workflow applications, demonstrate that com-
pared to present workflow scheduling algorithms,
DGWS improves the success ratio of tasks and
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diminishes the makespan of workflow, so im-
proves the dependability of workflow execution in
the dynamic Grid environments.

Keywords Grid · Workflow scheduling ·
Dependability · Markov

1 Introduction

Grid workflow is a complex and typical Grid ap-
plication and opens up a new avenue for com-
plex and collaborative scientific research. The
workflow scheduling is an NP-complete problem,
and many heuristics have been proposed [1, 2].
However, due to the diverse failures and error
conditions in the Grid environments, resource
failure is increasingly becoming severe and poses
great challenges to the Grid workflow schedul-
ing. For example, most Grid resources are non-
dedicated and can enter and depart without any
prior notice. In addition, the change of resource
local policy, the breakdown of software and hard-
ware and the malfunction of network fabric can
result in resource inaccessibility. Hence, jobs fail
frequently and QoS can’t be guaranteed. Present
heuristic algorithms (e.g., HEFT [1], CPOP [1],
DLS [3]) rarely consider the resource reliabil-
ity and current systems generally resort to the
fault recovery mechanism [4], such as check-
point/restart, replication, primary/backup, etc.
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Although relieving the challenges to some ex-
tent, the mechanism sacrifices system resources.
For example, checkpoint/restart policy requires
extra disk space and network bandwidth to record
the job running information. Replication and pri-
mary/backup policies are to run the job at multiple
available resources. Moreover, the fault recovery
mechanism belongs to compensating methodol-
ogy and can’t prevent job failures in advance.
To prevent the job failures proactively, the ac-
curate information of temporal and spatial dis-
tribution of resource availability in the future
should be predicted. Thus, jobs can be scheduled
onto the resource nodes with long uptime instead
of upcoming failing nodes. Therefore, modeling
and predicting the resource availability in the
dynamic Grid environments are significant and
imperative.

In this paper, we propose a dependable Grid
workflow scheduling system (DGWS), which
adopts a Markov Chain-based resource availabil-
ity prediction model. Based on the model, a relia-
bility cost driven workflow scheduling algorithm is
presented. The rationale is that it first predicts the
reliability of resource node during task execution
and then makes scheduling decision in terms of
the reliability cost of success execution of task.
Performance evaluation is conducted to compare
DGWS with three popular workflow scheduling
algorithms: HEFT [1], PRMS [5], and eFRCD
[6]. Performance evaluation results, including sim-
ulation on both parametric randomly generated
DAGs and two real scientific workflow applica-
tions, demonstrate that DGWS improves the suc-
cess ratio of tasks and diminishes the makespan
of workflow, so improves the dependability of
workflow execution.

The rest of the paper is organized as follows.
Section 2 reviews the related work. Section 3
introduces the reliability analysis of DAG. The
system architecture is designed in Section 4. Then,
the reliability cost driven workflow scheduling
algorithm is proposed in Section 5. Section 6 con-
tains a brief overview of three frequently used
workflow scheduling algorithms that we apply
for performance comparison. Section 7 conducts
a comparison study of DGWS with the above-
mentioned algorithms. Finally, we conclude and
give some future work in Section 8.

2 Related Work

Grid workflow researches have attracted more
attentions [7, 8], including resources monitoring,
service analysis, scheduling algorithms, fault tol-
erance, and so on. Current workflow scheduling
algorithms can be classified into two main groups:
heuristic-based and guided random-search-based
algorithms [1]. The former can be further clas-
sified into three groups: list scheduling heuristics,
clustering heuristics and task duplication heuris-
tics. The list-scheduling heuristics are generally
more practical and provide better performance re-
sults at a lower scheduling time than other groups,
so our work is based on the list scheduling. Its
representative algorithms are HEFT [1], CPOP
[1] and DLS [3].

The workflow scheduling strategies can be cat-
egorized into performance-driven, market-driven
and trust-driven [9]. The performance-driven
strategy tries to submit jobs onto resources to
achieve optimal performance for users and sys-
tem [10]. The work in [11] utilizes the market-
driven strategy. In the system, bids are collected
from eligible resource providers for each task. If
the execution time satisfies user’s requirement,
a bid with lower price will be chosen as the
optimal bid. The reference [12] proposes a hy-
brid market approach to manage Grid resources:
combining futures and spot markets, in which
if users are to correctly express their valuations
for service, quality of service guarantees would
be given with respect to the turnaround time of
their workloads. In [13], a new instantiation of the
negotiation protocol between the scheduler and
resource manager using a market-based Continu-
ous Double Auction (CDA) model is presented to
schedule scientific applications in distributed Grid
and cloud environments.

In [14], the trust-driven scheduling strategy is
adopted to map jobs onto appropriate resources
according to their trust levels. The strategy avoids
selecting malicious and non-reputable resources
so as to increase the system reliability. However,
it doesn’t consider the job completion time. The
references [5, 6] exploit “Reliability Cost” as the
scheduling objective to improve the reliability of
task execution. The “Reliability Cost” is defined
to be the product of processor failure rate and task
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execution time. The algorithms in [5] (MCMS and
PRMS) are both based on ALAP (As Late As
Possible) scheduling which is proved poorer than
the list scheduling [1]. As exploiting the primary-
backup fault-tolerance, eFRCD [6] occupies so
more precious resources that the job waiting time
would become long and many jobs may fail in
high system load. In addition, in above reliability
cost model, the failure rate of resources is set
experimentally.

More attention has been paid to modeling
the characteristics of resource availability [15–19].
The references [16, 17] conclude that the time
between reboots of nodes is best modeled by
a Weibull distribution with shape parameters of
less than 1, implying that a node becomes more
dependable the longer it has been operating. The
reference [19] finds that the resource availability
follows exponential, Weibull and Pareto distrib-
utions with different parameters. In [20], much
work analyzes the machine availability in enter-
prise systems, but the results are only meaningful
for the considered application domain. The ref-
erences [21, 22] propose a multi-state availability
model based on semi-Markov to predict resource
availability. However, the model applies to the
fine-grained CPU cycle availability prediction and
the applications are confined to be CPU-bound
batch programs, which are sequential or comprise
multiple tasks with little or no inter task commu-
nication. Different from the reference [21], in our
work, different historical TTFs (Time To Failure)
of resources are adopted as the Markov state set
to predict the resource availability (TTF) in a
future time window.

3 Reliability Analysis of DAG

Directed Acyclic Graph (DAG) is an efficient
model to represent workflow application [23].
A DAG G = <V,E,W> is a node-weighted
and edge-weighted directed graph, where V =
<n1,n2,. . . ,nn> is the set of task nodes, with
each node denoting a task, E ⊆ V×V is the
weighted edge set that defines the precedence
relations among nodes in V. The weight on each
edge, Dij ∈ W, denotes the volume of data being

transmitted from task node ni to task node nj.
P = {P1,P2,. . . ,PM} represents the resources of a
Grid system. For each task ni ∈ V, the weight on
each node, T(ni), represents the execution time on
each resource node: T(ni) = {t1(i),t2(i),. . . ,tM(i)},
where tj(i) represents the execution time of ni on
Pj and can be obtained by the prediction model
of GHS proposed in [24]. cij denotes the com-
munication cost from Pi to Pj, namely network
bandwidth.

Consider a Grid system with M resource nodes,
P = {P1,P2,. . . ,PM}, and a DAG containing N task
nodes, V = <n1,n2,. . . ,nn>. Let xij be a binary
number that denotes whether task ni is assigned
to Pj, 1, for assigned, 0, for not assigned. Let psij

be the probability of resource node Pj not to fail
during the running of task ni on Pj. Researches
have show that the system reliability follows the
negative exponential distribution [25, 26]. So, the
probability of system not to fail can be expressed
in Formula (1).

Pr = ξg
M∏

j=1

N∏

i=1

(
ps

xij·(t j(i)+Tlat)
ij

)

Tlat =
∑

p∈prec(i)

M∑

k=1

(
Dpi · xpk · ckj

) + SL j (1)

As there are errors in deriving Pr due to the
fluctuating of network bandwidth and nodes’ per-
formance, ξ is the fixup parameter and is used to
amend the theoretical result of Pr. ξ is usually set
empirically (0.7–1.2). Tlat denotes the execution
latency of task ni, including the time that task ni

spends to fetch the needed data from its preceded
nodes and the scheduling length of resource node
Pj (SLj). prec(i) is the set of immediate precursors
of task i. When psij is not 0,

Pr ≈ ξg
M∏

j=1

N∏

i=1

(
e−(1−psij)·xij·(t j(i)+Tlat)

)
(2)

In order to maximize Pr, we need to minimize:

min

⎛

⎝
M∑

j=1

N∑

i=1

(
1 − psij

) · xij ·
(
t j (i))Tlat

)
⎞

⎠ (3)
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As the reference [6], the Reliability Cost (RC) is
defined to be the product of resource failure rate
and the execution time of task as follows:

RCij = (
1 − psij

) · (
t j (i) + Tlat

)
(4)

min

⎛

⎝
M∑

j=1

N∑

i=1

xij·RCij

⎞

⎠ (5)

Thus, the Formula (3) can be expressed as
Formula (5). From Formulas (2), (3) and (4),
we can see that to improve the dependability of
workflow execution, we need to minimize RC.
The lower RC is, the higher the dependability is.
The RC of workflow DAG V on Grid system P is
obtained as follows:

RC =
N∑

i=1

M∑

j=1

(
xij · RCij

)
(6)

4 System Architecture

The DGWS architecture is shown in Fig. 1. The
system consists of two main components: Sched-
uler and Predictor. DGWS adapts the Scheduler to
the dynamic Grid environment via collaboration
with the Predictor.

4.1 Scheduler

The Scheduler consists of two components: In-
stance and Execution Manager. For each workflow
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Fig. 1 System architecture

application, an Instance is instantiated and first
analyzes the relationship of tasks in DAG, and
then consults the Predictor to estimate the com-
munication and computation cost with the given
resource set and calculate the reliability cost of
tasks execution on each resource. Finally, the
Instance decides the resource mapping with the
goal of achieving the minimum reliability cost for
entire workflow while meeting the QoS require-
ments, and submits the schedule to the Execution
Manager. The Execution Manager receives the
DAG and executes it. It is responsible for getting
job input file ready and executing the job on the
mapped resource.

4.2 Predictor

The Predictor can be further decomposed into
Prediction Model, Resource Availability Reposi-
tory and Resource Monitor. The Prediction Model
is based on Markov Chain and can dynamically
predict the resource availability and will be de-
tailed in Section 4.3. The Resource Availability
Repository is used to keep the information of
resources, the state space and state transition ma-
trix which are used by the Prediction Model. The
Resource Monitor is used to monitor the change
of Grid resources, such as joining and leaving. It
triggers the Prediction Model while resources join,
leave or fail.

4.3 Prediction Model

The Markov model is usually utilized to model the
stochastic processes in many fields. Discrete-time
Markov Chain (DTMC) is a process that consists
of a finite number of states M(S1, S2, . . . , Sm)
and M×M known state transition matrix Q. In
matrix Q, Qij is the probability of moving from
state Si to state Sj [27]. Suppose at time k, system
state is Si (1≤i≤M) and the distribution of Si is
Qk(Si) = ei, where ei is 1 × M row vector, the
value at location i is 1, and others is 0. Thus, we
can predict the distribution of Si at time k+1:
Qk+1(Si) = Qk(Si)·Q = ei·Q. At time k+2, the
distribution of Si is: Qk+2(Si) = Qk+1(Si)·Q=ei·Q2.
At time k+n, the distribution of Si is: Qk+n(Si) =
Qk+n−1(Si)·Q=ei·Qn. So, with DTMC, we can
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get the occurrence probability of each state at
each time.

The TTF (Time To Failure) denotes the run-
ning time of a system before failure occurs and is
usually adopted as a basic metric for evaluating
system availability. So, the paper uses TTF to
represent the resource availability. In the Grid
environment, resources are volatile and failures
can occur at any time. Therefore, Markov Chain
model can be used to model the stochastic process
of resources’ TTF. In the prediction model, TTF
is adopted as system state. In traditional Markov
model, the M and Q are invariable. However,
in dynamic Grid environments, frequent resource
failures can generate amounts of TTF, so requir-
ing large storage space for M and Q, which makes
the model complex and unpractical for Grid. To
address the issue, we present an adaptive Markov
Chain-based Grid node TTF prediction model
which can dynamically amend M and Q.

When a resource node fails, a new TTF is
produced (denoted by TTFnew). Then, the status
space M would be traversed. If there exists state Si

whose absolute difference value and TTFnew is less
than the specified value, Si would be modified to
be the average of Si and TTFnew and the number
of state transition would be increased by 1. Re-
versely, if there doesn’t exist this state, new state
Sm+1 would be created. At the same time, Q would
be emended according to Formula (7).

Qij = tnij
/

Ntotal, Ntotal =
∑

K

tnik (7)

Where tnij represents the transition number from
state i to state j at K failures. Ntotal denotes the all
state transition number of K failures.

To better understand how to create the Markov
based prediction model and the transiting process
of M and Q, Fig. 2 is took as an example. In
Fig. 2, resource node experiences 4 failures and
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Fig. 2 Transiting of resource nodes’ status

generates 3 different TTFs, namely 3 states. The
transiting process of M and Q is shown as follows.

Step 0: the resource node starts and no failure
occurs. System is at state S1(S1 can be set
empirically), Q is:

Q0 = [1]

Step 1: When the first failure occurs, a new TTF
is produced. Then, system has two states:
S1 and S2, M(S1, S2), Q is:

Q1 =
[ 1/

2
1/

2
0 1

]

Step 2: When the second failure occurs, a new
TTF is produced. Then, system has three
states: S1, S2 and S3, M(S1, S2, S3), Q is:

Q2 =
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Step 3: When the third failure occurs, system
state transits from S3 to S2. Then, system
state space M is M(S1, S2, S3), Q is:

Q3 =
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Step 4: When the forth failure occurs, system
state stays at S2. Then, system state space
M is M(S1, S2, S3), Q is:

Q4 =
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Through the transiting of M and amending of Q,
the occurrence probability of each state in the
future can be predicted.
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5 DGWS Algorithm

5.1 Outline

The DGWS scheduling algorithm is based on the
list scheduling and consists of three phases: rank-
ing, grouping and scheduling. Firstly, a weight is
assigned to each node and edge of DAG; this is
based on averaging all possible values of the cost
of node (or edge, respectively) on each resource
(or combination of resources respectively). With
this weight, upward rank value is computed and
each node of DAG is assigned a rank value. The
upward rank value of node i, ranku(ni), is recur-
sively defined according to Formula (8) as the
reference [1]:

ranku (ni) =wi + max
nk∈succ(ni)

(c · Dik + ranku (nk))

wi =
M∑

j=1

t j (i)

/

M c =
M∑

i=1

M∑

j=1

(
cij

)
/

(
2 · C2

M

)

C2
M = M!

M! (M − 2)! . (8)

Where wi is the average weight of task node i,
succ(ni) is the set of immediate successors of task
node i and c is the average communication cost
between any two nodes.

Secondly, the task nodes of DAG are sorted
in descending order of ranku(ni). With this order,
they are divided into different groups as follows.
The first node is added to a group numbered 0. If
the successive nodes in descending order of their
upward rank value are independent with all nodes
already assigned to the group (namely, there is no
dependence between them), they are placed in the
same group. Reversely, if there is dependence, a
new group will be created and the new group’s
number is the current group’s number increased
by one, and then the node with the smallest rank
value is the member of new group. Again, the
subsequent task nodes will be assigned to different
groups. The final outcome is a set of ordered
groups.

Thirdly, according to the ascending order of
groups’ number, the independent tasks within
each group are scheduled. In DGWS, the inde-
pendent tasks in each group are scheduled based
on the reliability cost of the success execution of
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Fig. 3 A sample DAG

task on the given resource. The reliability cost
driven independent task scheduling algorithm will
be detailed in Section 5.2.

In order to illustrate the idea of DGWS algo-
rithm, consider the sample DAG shown in Fig. 3.
The number next to each edge of the graph cor-
responds to the amount of data that needs to be
passed from a task to an immediate successor.
The cost to execute each of tasks in the graph
on each of three resources is given in Table 1.
Table 2 shows the cost to transfer a data unit for
any given combination of resources. Thus, the cost
to transfer, for instance, the data needed from task
0 to task 1 would be 20 × 2.0 if one of the tasks
is executed by resource node 0 and the other by
resource node 1.

Table 1 The computation cost

Nodes
Task m0 m1 m2

0 20 22 26
1 24 20 22
2 20 14 18
3 10 8 6
4 21 18 19
5 26 22 24
6 20 19 22
7 52 56 51
8 18 19 17
9 22 20 18
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Table 2 The communication cost for the resource nodes

Nodes Communication cost
for a data unit

m0-m1 2.0
m0-m2 1.5
m1-m2 2.5

The first phase involves the assignment of
weights to the nodes and edges of the graph and
the computation of upward ranking for the nodes.
The results are shown in Table 3. The nodes
in descending order of their ranking value are
{n0, n5, n2, n1, n7, n4, n3, n6, n8, n9}. The sec-
ond phase involves the partitioning of nodes into
ordered groups, considering them in descending
order of their upward rank value. Node 0 is as-
signed to group 0. Node 5 can’t be in the same
group as node 0 (since it depends on node 0),
and, as a result, a new group (group 1) is created.
Nodes 1 and 2 can also be in the same group as
node 5 (that is group 1, since all three nodes are
independent). Node 7 depends on nodes 5 and 2,
therefore a new group needs to be created, and so
on. When this procedure is completed, nodes are
grouped in 5 groups as shown in Table 4. Within
each group, the tasks are independent and can be
scheduled and run in parallel.

Although the DGWS algorithm seems similar
to the hybrid heuristic in [1, 28], there is a funda-
mental difference. The hybrid heuristic in [1, 28]
aims to minimize the makespan of DAG while
scheduling independent tasks without consider-
ing the resource reliability. So, even if the tasks
are scheduled to the resource nodes with mini-

Table 3 Upward ranking of nodes using mean values to
compute weights

Task(ni) Weight Ranku(ni)

0 22.67 203
1 22 124.33
2 17.33 148.33
3 8 74
4 19.33 97.66
5 24 151
6 20.33 70.33
7 53 107
8 18 46
9 20 20

Table 4 Partitioning the
nodes into groups
according to their upward
rank values

Group Tasks

0 {0}
1 {5, 2, 1}
2 {7, 4, 3}
3 {6, 8}
4 {9}

mum makespan, the rescheduling can lead to large
makespan due to the resource failures. Whereas,
DGWS targets to minimize the reliability cost so
as to improve the dependability of success exe-
cution of DAG. Thus, the reliable execution can
avoid task failure and rescheduling, and lower the
makespan of task.

5.2 Reliability Cost Driven Independent
Tasks Scheduling

Existing heuristics are developed at the assump-
tion that resources are dedicated and no failures
occur, without consideration of resource reliabil-
ity. Inspired by the reliability analysis of DAG
in Section 3 and based on the resource avail-
ability prediction, the paper exploits a reliability
cost driven independent task scheduling algorithm
in DGWS.

The reliability cost driven scheduling algorithm
consists of two steps. At the first step, the indepen-
dent tasks are sorted in descending order of their
average completion time on all resource nodes.
The average completion time of task i (ACT(ni))
includes the execution time and transfer time of
needed data as shown in Formula (9). prec(ni) is
the set of immediate precursors of task node ni.

ACT (ni) = wi +
∑

k∈prec(ni)

(c · Dki) (9)

At the second step, according to the descending
order of ACT, the task with the highest value is se-
lected. The completion time of task i on resource
node j (CTij) is computed according to Formula
(10).

CTij = t j (i) +
∑

p∈prec(i)

M∑

k=1

(
Dpi · xpk · ckj

)
(10)

Then, using the prediction model in Section 4.3,
the reliability of resource node j during the
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execution of task i is predicted as follows. As-
suming that the state of resource node j is Sq at
time tq, we can predict its state distribution at time
tq+1: (Qq1 Qq2 . . . QqM). Sk(1≤k≤M) denotes the
TTF of resource node j. In order to guarantee the
dependable execution of task i on resource node
j, the following condition should be satisfied: Sk −
(Tnow − Tj) > CTij. Here, Tnow denotes the system
current time and STij represents the startup time
of resource node j. So, the reliability of success
execution of task i on resource node j (namely,
psij) can be obtained according to Formula (11).

psij =
M∑

k=x

(
Sk · Qqk

)
/

M∑

h=1

(
Sh · Qqk

)

Sk − (
Tnow − ST j

)
> CTij (11)

Accordingly, the reliability cost of success execu-
tion of task i on resource node j, RCij, can be
computed in terms of Formula (4) and the result
is shown as follows.

RCij = (
1 − psij

) · (
CTij + SLij

)
(12)

Thus, we chose the resource node on which the
reliability cost of success execution of task is low-
est and schedule the task to it. In this way, we
can minimize the reliability cost of workflow and
improve the dependability of workflow execution.

6 Other Heuristic Scheduling Algorithms
for DAG

This section reviews three frequently used DAG
scheduling algorithms: HEFT [1], PRMS [5] and
eFRCD [6], which are used to conduct the perfor-
mance evaluation in the coming section.

6.1 HEFT

The HEFT [1] covers two major phases. In task
prioritizing phase, it computes the priorities of all
tasks in terms of upward rank value. In processor
selection phase, it selects tasks in the order of their
priorities and schedules each selected task to the
resource which minimizes its earliest finish time.
Figure 4 shows the schedule obtained by HEFT
for the sample DAG of Fig. 3. The scheduling

0 20 40 60 80 100 120 140
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160 180

1

0 2
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Fig. 4 HEFT Schedule of tasks of DAG in Fig. 3 (schedule
length = 161.5)

order of the tasks is {n0,n5,n2,n1,n7,n4,n3,n6,n8,n9}
and the schedule length is equal to 161.5.

6.2 PRMS

The PRMS [5] progressively improves the reli-
ability based on the schedule obtained by the
ALAP (As Late As Possible) scheduling. PRMS
first schedule all tasks of DAG using the ALAP
scheduling. Based on the schedule, PRMS repeat-
edly take the task with earliest starting time and
reschedule it to a resource such that the system
reliability cost is minimized. Meantime, its finish
time must be earlier than that in ALAP and the
task doesn’t overlap with other tasks remaining
in the ALAP schedule. In PRMS, the key issue
is obtaining the critical path. The tasks with the
same summation of upward and downward ranks
compose the critical path of a DAG. The down-
ward rank values of tasks are obtained in terms of
Formula (13) as in the reference [1].

rankd (ni) = max
nk∈prec(ni)

(rankd (nk) + wk + c · Dki)

(13)

As shown in Table 5, the tasks {n0,n2,n7,n9} are the
critical tasks. Then, according to the deadline of
DAG and the critical path, we can obtain the EST
(Earliest Starting Time) and LST (Latest Starting
Time), and conduct the ALAP scheduling.

6.3 eFRCD

The eFRCD [6] uses a Primary/Backup scheduling
technique to tolerate the single processor fail-
ure. Meanwhile, it adopts the reliability cost as
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Table 5 Upward and downward rank value of task nodes
using mean computation cost and communication cost

Task(ni) Ranku(ni) Rankd(ni) Ranku(ni)+
rankd(ni)

0 203 0 203
1 124.33 62.67 187
2 148.33 54.67 203
3 74 58.67 132.67
4 97.66 42.67 140.33
5 151 46.67 197.67
6 70.33 116.67 187
7 107 96 203
8 46 86.67 132.67
9 20 183 203

scheduling objective to improve the reliability.
The eFRCD schedules tasks in the following three
main steps. First, tasks are ordered by their dead-
lines in non-decreasing order, such that tasks with
tighter deadlines have higher priorities. Second,
the primary copies are scheduled. Finally, the
backup copies are scheduled in a similar manner
as the primary copies and the backup copies of
tasks are allowed to be overlapped.

7 Performance Evaluation

The prototype of DGWS is implemented and inte-
grated into CGSP (ChinaGrid Support Platform)
[29]. We compare DGWS with HEFT [1], PRMS
[5] and eFRCD [6]. The testbed employs a cluster
deployed with CGSP with 16 1.3 GHz IA 64 nodes
(each with 2 GB memory), which are connected
by a 100 Mbps Ethernet switch and run Redhat
Linux 9.0. In addition, GridSim is also adopted to
simulate the Grid environment [30] on which the
simulation experiments are conduced. However,
due to the length of paper, the simulation experi-
mental results are omitted.

7.1 Evaluation Metrics

(1) Reliability Cost (RC). RC is defined to be
the product of resource failure rate and the
execution time of tasks of a DAG as shown
in Formula (6).

(2) Success ratio. It is defined as the ratio of the
number of success jobs to the number of all
jobs.

(3) Makespan. It is the time for obtaining the
output result of a given DAG, including the
running time of scheduling algorithm and the
execution time of tasks of DAG.

7.2 Results of Parametric Randomly
Generated DAGs

7.2.1 Random DAG Generator

In our study, a random DAG generator is imple-
mented to generate weighted DAGs with various
characteristics that depend on several input para-
meters given below.

(1) Number of tasks in DAG: V.
(2) The max and min weights of task nodes

of DAG: DAGNode_Max_Weight, DAGN-
ode_Min_Weight. The average computation
cost of each task (ni) in DAG (wi) is se-
lected randomly from a uniform distribu-
tion with range [DAGNode_Max_Weight,
DAGNode_Min_Weight].

(3) Communication to computation ratio: CCR
(0<CCR<1). It is the ratio of the av-
erage communication cost to the aver-
age computation cost. If a DAG’s CCR
value is very low, it can be considered as
a computation-intensive application. Oth-
erwise, it is a data-intensive application.
The volume of data being transmitted from
task ni to task nj in DAG (Dij) is se-
lected randomly from a uniform distribution
with range CCR×[DAGNode_Max_Weight,
DAGNode_Min_Weight] ∪{0}.

(4) Offset ratio of computation costs on resource
nodes: ε (0 ≤ ε < 1). It is basically the
heterogeneity factor to represent the hetero-
geneous features of resources. A high offset
ratio indicates a significant difference in a
task’s computation cost among the resource
nodes and a low offset ratio shows that the
execution time of a task is almost equal on
any given Grid resource. The computation
cost of task ni of DAG on resource node Pj

is selected randomly from a uniform distri-
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bution with range [wi · (1 − ε) , wi · (1 + ε)].
While the value of ε is zero, the computation
cost of task ni on any resource node is wi,
representing the target resources are homo-
geneous.

(5) Adjustment factor of the number of nodes
in each level of DAG: φ (0 < φ < 1). The
number of nodes in ith level of DAG (NLi)
is selected randomly from a uniform distrib-
ution with range [1, φ·(V-2-NLi−1)].

To introduce the scheduling model clearly, the
first and the last level of the generated DAG
contain only one node. In practical, this is not a
real restriction. Thus, to generate a DAG with a
number of nodes, we first generate a single entry
node and a single exit node, and then other nodes
are divided into levels. Care is taken so that the
entry node in DAG is connected to all the nodes
of the 2nd level and the exit node is connected
to all the nodes of the penultimate level. To in-
troduce the scheduling model clearly, Each node
in ith level (2<i<L−2) is connected to m nodes
of (i + 1)th level. Here, L is the total number of
levels of DAG and m is selected randomly from a
uniform distribution with range [1, NLi+1].

7.2.2 Failure Simulator

Due to the factors of security, business secret and
etc., the system running logs of most enterprises
cannot be obtained. Since the failure traces from
real large-scale systems are unavailable, plus fail-
ures in distributed systems are correlated tem-
porally and spatially, not identically distributed
[15, 18, 31], we implement one failure simulator
according to the reference [31] to model the fail-
ure distribution including the occurrence time, lo-
cation distribution and downtime of failures. The
failure simulator utilizes the Weibull distribution
to model the occurrence time of failures and the
Zipf’s law to the location distribution of failures.
The Weibull distribution function (denoted by
F(t)) can be described in Formula (14). The pa-
rameter α is called the shape parameter, and η is
the scale parameter.

F (t) = 1 − e−(t/η)α

(14)

The Zipf’s law can be given in Formula (15). The
β reflects the degree of popularity skew, while
K represents the number of failures for the most
volatile nodes.

P (i) = K
/

iβ, β ∈ [0.5, 1] (15)

We exploit the Pareto distribution to model the
downtime of failures, because hardware manufac-
turing technology continues to improve so that
the number of permanent faults is gradually de-
creasing and the transient faults increasingly be-
come the main reason for resource failures. The
reference [32] makes detailed research on the
historical logs of IT systems of IBM and Los
Angeles national laboratory, and shows that the
downtime of system follows heavy-tailed distri-
bution and the Pareto distribution can be used
to efficiently model the downtime of resource
nodes. The Pareto distribution function (F(x)) is
given in Formula (16). Here, λ is the heavy-tailed
parameter determining the degree of heavy-tailed
distribution. The parameter θ denotes the tail start
point of heavy-tailed distribution.

F (x) = 1 − (
θ
/

x
)λ

λ, θ > 0, x ≥ θ (16)

To validate the accuracy and efficiency of the
failure simulator, we use one data set which ex-
hibits failure behavior typical of Grid resources
currently residing on the Wuhan Grid Center
of ChinaGrid [29]. The site is comprised of 38
nodes and is at Cluster and Grid Computing Lab
(CGCL) at Wuhan, China. The data set is the
historical logs of resource failures from July 2006
to July 2007. For each above theoretical distri-
bution, we exploit two methods to compute the
needed parameters to match the distribution to
the empirical data. One is the Maximum Likeli-
hood Estimation (MLE) based on Matlab scripts
[33]. Another is EMpht software which is suitable
to deal with large data sets [34]. From the Fig. 5,
we can conclude that the failure simulator can
model the resource availability efficiently with
proper parameters.
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(a) =13200, =0.44 (b) K=135, =0.98    (c) =140, =0.77

Fig. 5 Failures distribution of CGCL. a Cumulative distribution of failures vs. Weibull distribution, b The logarithm of
failures popularity vs. Zipf’s distribution, and c Downtime of failures vs. Pareto distribution

7.2.3 Ef f iciency of Resource Availability
Prediction Model

To evaluate the Markov Chain based resource
availability prediction model, based on the trace
data set in Section 7.2.2, we construct the Markov
Chain prediction model and predict the resource
availability.

The data set is the historical log of resource
failures of 5 nodes at CGCL from July 2006
to February 2007. TTFs of nodes are shown in
Table 6.

To predict the resource availability, the Markov
Chain prediction model must be constructed in
advance. First, we construct the state space M and
state transition matrix Q using the 80 % of TTFs.
Then, based on the M and Q, the rest 20 % of
TTFs are predicted. Finally, through comparing
the predicted TTFs and the real TTFs, we can
obtain the performance evaluation of prediction
model. The accuracy rates of resource availabil-
ity prediction are shown in Table 7. From the
Table 7, we can see that the accuracy rate of
node 1 is highest than other nodes. The reason
is that the prediction model works at the base of
historical logs of nodes. So, if there are more data
of TTFs, the state space M and state transition

Table 6 Number of TTFs of nodes

Nodes
1 2 3 4 5

Number of TTF 167 141 112 109 78

matrix Q would be generated perfectly and pre-
dict precisely.

7.2.4 Simulation Results

In all experiments, the input parameters are
restricted to the following values:

V∈{20, 40, 60, 80, 100},
DAGNode_Max_Weight (sec) ∈ {100, 200, 300},
DAGNode_Min_Weight (sec) ∈ {20, 40, 80},
CCR ∈ {0.5, 1.0, 4.0},
ε ∈ {0.2, 0.8},
φ ∈ {0.3, 0.6, 1}.

These combinations produce 810 different
DAG types. Since 20 random DAGs are gener-
ated for each DAG type, the total number of
DAGs is 16,200. We simulate the resource fail-
ures using failure injection mechanism. We fix
the scale parameter of the Weibull distribution
and by varying the value of shape parameter
(α), obtain different number of failures. The fail-
ure occurrence time distributions are shown in
Table 8. In Formula (15), K represents the number
of failures of the most volatile nodes and β reflects
the degree of popularity skew. We set K = 46

Table 7 Accuracy rates of node availability prediction

Nodes
1 2 3 4 5

Accuracy 90.24 88.56 86.37 87.02 86.84
rates (%)
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Table 8 Failures occurrence time distribution with
different shape (α) values

Scale η Shape α Number of Failures/
failures minute

18000 0.083 106 0.016
0.871 3135 2.177

and β = 0.76 according to the real environments.
As we know that the higher β corresponds to a
highly skewed distribution in which the majority
of failures are concentrated on a relatively small
number of nodes. In addition, θ = 127, λ = 0.87.
The higher λ implies that the downtime of most
failures is shorter.

For the sake of brevity, the paper only shows
the experiment results of two situations: very low
failure ratio and high failure ratio. In addition,
as the short deadline constraint results in poorer
performance in schedulability so that many tasks
are rejected, which are also proved in [5, 6], only
the results with large deadline constraint of DAG
tasks are shown in the paper. For the failed jobs,
DGWS reschedules them to other nodes based on
reliability cost.

Figures 6 and 7 show the average performance
values for each set of DAGs. When the failure
ratio is very low, HEFT and DGWS perform bet-
ter and eFRCD is the poorest. Whereas, HEFT
is the poorest and DGWS performs best at av-
erage makespan in high failure ratio. The rea-
sons are as follow: (1) HEFT aims to schedule
job to the resource with minimum earliest finish
time without consideration of resource reliabil-
ity. Therefore, in stable environment, for DGWS,

PRMS and eFRCD, computing reliability cost
would incur extra overhead, which increases the
makespan of jobs. In unstable environment, fre-
quent resource failures lead to the low job success
ratio of HEFT and rescheduling the failed jobs
would augment the makespan; (2) As exploiting
the primary-backup fault tolerance and reliability
cost, eFRCD performs better in low system load.
In high system load, the primary-backup policy
would occupy so more resources that the job wait-
ing time becomes long and many jobs may fail.
Most of all, eFRCD is designed to tolerate a single
resource failure. For the simultaneous multiple re-
source failures, however, eFRCD may incur extra
load and lead to poor performance; (3) PRMS
is based on the ALAP (As Late As Possible)
scheduling which is proved poorer than the list
scheduling [1]; (4) DGWS considers the resource
reliability. Moreover, it integrates the advantages
of the list scheduling and group scheduling.

7.3 Results of Real Scientific Workflow
Applications

Finally, we consider the application graphs of
two real scientific workflow problems. One is
a computation-intensive application (Gaussian
Elimination [35]) and the other is a data-intensive
application (BLAST [36]). We construct the re-
source availability prediction model based on the
traces of ChinaGrid resources in CGCL from
August 2007 to November 2007. The experiments
are conducted respectively in different time peri-
ods: daytime, nighttime, workday, and weekend.

(a) Reliability Cost (b) Average Success Ratio        (c) Average Makespan

Fig. 6 Performance results at failures distribution with η = 18000, α = 0.083, K = 46, β = 0.76, θ = 127, λ = 0.87
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(a) Reliability Cost (b) Average Success Ratio             (c) Average Makespan 

Fig. 7 Performance results at failures distribution with η = 18000, α = 0.871, K = 46, β = 0.76, θ = 127, λ = 0.87

Table 9 Failures occurrence time distribution

Scale η Shape α Number of Failures/
failures minute

18000 0.32 1428 0.992

T1,1

T1,2 T1,3 T1,4 T1,5

T2,2

T2,3 T2,4 T2,5

T3,3

T3,4 T3,5

T4,4
T4,5

for k=1 to m-1 do
   Tk,k : { for i=k+1 to m do
                 aik = aik / akk }
    for j=k+1 to n do
       Tk,j : { for i=k+1 to n do
                     aij = aij – aik * akj }  

(a)

(a)

(b)

Fig. 8 a The Gaussian elimination algorithm. b The task
graph for a matrix of size 5

Fig. 9 Average Makespan at failures distribution with
η = 18000, α = 0.32, K = 46, β = 0.76, θ = 127, λ = 0.87

We set η = 18000, α = 0.32, K = 46, β = 0.76,
θ = 127, λ = 0.87. The failure occurrence time
distributions are shown in Table 9.

Gaussian Elimination is a method for solving
matrix equations of the form Ax=b. In Gaussian
Elimination application graph, the number of
tasks v, and the number of graph levels l depends
on the matrix size m. The total number of tasks
v in a Gaussian Elimination graph is equal to
(m2+m−2)/2. Figures 8 give the sequential pro-
gram for the Gaussian elimination algorithm and
the data-flow graph of m = 5. Figure 9 shows the
makespan of 100 generated graphs for each matrix
size m ∈ {5,10,15,20,25}.

The BLAST is used to find regions of local
similarity between sequences. The program com-
pares nucleotide or protein sequences to sequence
databases and calculates the statistical significance

Compbio::FileBreaker/ID01

compbio::BLAST/ID02

compbio::BlastParser/ID03

compbio::cat/ID06

compbio::BLAST/ID04

compbio::BlastParser/ID05

Inputfile.1

jobNo_1_1.seqBlock0 jobNo_1_1.seqBlock1

out.jobNo_1_1.seqBlock1

parse.out.jobNo_1_1.seqBlock1parse.out.jobNo_1_1.seqBlock0

out.jobNo_1_1.seqBlock0

outfile.jobNo_1_1.BLASTPIR

Fig. 10 A six-step BLAST workflow with two-way paral-
lelism [27]
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Fig. 11 Average makespan at failures distribution with
η = 18000, α = 0.32, K = 46, β = 0.76, θ = 127, λ = 0.87

of matches. Our experiments adopt a six-step
BLAST workflow example with different way par-
allelism. It produces a simple comparative analysis
of protein sequences. Figure 10 gives a six-step
BLAST workflow example with two-way paral-
lelism. The ellipse represents a job and the par-
allelogram represents data file. We conduct the
simulation with 10-, 20-, 30-, 40- and 50-way par-
allelism respectively and the makespan is shown
in Fig. 11.

These two real world applications further
confirm that DGWS performs better than
HEFT, PRMS and eFRCD in the dynamic Grid
environments.

8 Conclusion and Future Work

In the paper, the reliability of DAG is firstly
analyzed. Then, a dependable Grid workflow
scheduling system is presented. It introduces a
Markov Chain-based resource availability pre-
diction model. Based on the model, a reliabil-
ity cost driven workflow scheduling algorithm is
proposed, which considers both the task comple-
tion time and resource availability. Finally, per-
formance evaluation is conducted and the results
are promising. As our future work, we plan to
perfect the resource availability prediction model
and further research the dependable workflow
execution using fault tolerance technology such as
checkpoint.
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