J Supercomput (2010) 51: 201-223
DOI 10.1007/s11227-009-0284-7

DAGMap: efficient and dependable scheduling of DAG
workflow job in Grid

Haijun Cao - Hai Jin - Xiaoxin Wu - Song Wu -
Xuanhua Shi

Published online: 6 May 2009
© Springer Science+Business Media, LLC 2009

Abstract DAG has been extensively used in Grid workflow modeling. Since Grid
resources tend to be heterogeneous and dynamic, efficient and dependable workflow
job scheduling becomes essential. It poses great challenges to achieve minimum job
accomplishing time and high resource utilization efficiency, while providing fault tol-
erance. Based on list scheduling and group scheduling, in this paper, we propose a
novel scheduling heuristic called DAGMap. DAGMap consists of two phases, namely
Static Mapping and Dependable Execution. Four salient features of DAGMap are:
(1) Task grouping is based on dependency relationships and task upward priority;
(2) Critical tasks are scheduled first; (3) Min-Min and Max-Min selective scheduling
are used for independent tasks; and (4) Checkpoint server with cooperative check-
pointing is designed for dependable execution. The experimental results show that
DAGMap can achieve better performance than other previous algorithms in terms of
speedup, efficiency, and dependability.

Keywords DAG Grid workflow - Critical task - Adaptive scheduling - Cooperative
checkpointing
1 Introduction

Grid computing is considered as a cornerstone of next generation distributed com-
puting that coordinates large-scale resource sharing and problem solving in dynamic,

H. Cao - H. Jin (&) - S. Wu - X. Shi

Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School

of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan,
430074, China

e-mail: hjin@mail.hust.edu.cn

X. Wu
Communication Technology Lab, Intel China Research Center, Beijing, 100080, China

@ Springer


mailto:hjin@mail.hust.edu.cn

202 H. Cao et al.

multi-institutional virtual organizations. Through Internet, Grid enables people to co-
operate with each other and share all resources across corporate, institutional, and
geographic boundaries without sacrificing local autonomy. Grid workflow is defined
as the orchestration of a set of atomic tasks processed at distributed resources in a
well-defined order to accomplish a large and sophisticated goal. Currently, Directed
Acyclic Graph (DAG) has been extensively used in scientific computational workflow
modeling, especially large-scale computing-intensive or data-intensive Grid applica-
tions [1] such as high-energy physics, geophysics, astronomy, medical image process-
ing, and bioinformatics. Based on DAG, two well-known Grid workflow management
systems, GridAnt [2] and DAGMan [3], have been implemented and applied in the
Globus [4] and Condor [5] project, respectively.

DAG workflow job scheduling in a Grid environment determines how to map all
atomic tasks to a bounded number of distributed computing resources [6]. The prob-
lem can be described as that N tasks are scheduled to M computing resources (hosts)
subject to the conditions which are: (1) the execution precedence constraint exists
between two dependent tasks; (2) only one task can be executed on a host at each
time; and (3) task executions are nonpreemptive. Such a scheduling problem has been
shown to be NP-complete [7]. Since Grid resources tend to be heterogeneous and dy-
namic, efficient and dependable workflow job scheduling becomes essential. It poses
great challenges to achieve minimum job accomplishing time and high Grid resources
utilization efficiency, while providing dependable execution.

In this paper, based on list scheduling and group scheduling, we propose a novel
scheduling heuristic for DAG workflow job, called DAGMap. It consists of two
phases, namely static mapping and dependable execution. The static mapping phase
includes two steps: fask grouping and independent tasks scheduling. At the task
grouping step, firstly, the upward priorities, downward priority, and overall prior-
ity of each task are determined. Accordingly, the collection of critical tasks can be
obtained. Then tasks are grouped by the upward priority and dependency relation-
ship, while tasks in the same group are kept independent. At the independent tasks
scheduling step, independent tasks are scheduled group by group in an ascending
group order.

In summary, the salient features and contributions of our heuristic are as follows:

e Task grouping policy Compared with simple grouping policies merely based on
the task dependency relationship, our grouping policy also takes the task upward
priority into account.

e Critical tasks scheduled first Considering that critical tasks are the main factor
that affects the overall job finish time, in each group, DAGMap schedules a critical
task to a computing host with a minimum earliest completion time first.

e Min-Min and Max-Min selective scheduling for independent tasks In each
group, except for critical tasks, independent tasks are scheduled by Min-Min or
Max-Min selectively according to the deviation of average estimated task execu-
tion time.

o Checkpoint server with cooperative checkpointing is designed for dependable
execution According to the static mapping results, tasks then are executed by dy-
namic Grid resources. In order to provide fault tolerance, checkpoint server with
cooperative checkpointing is proposed.

@ Springer



DAGMap: efficient and dependable scheduling 203

The remainder of this paper is organized as follows. Section 2 gives an overview of
related works. Section 3 presents the formal definitions and preliminaries of the job
scheduling problem. In Sect. 4, the algorithms of DAGMap are detailed. Experiments
and performance evaluation are conducted in Sect. 5. Finally, we conclude this paper
and give some future works in Sect. 6.

2 Related works

DAG workflow job scheduling problem has been extensively studied and a number
of scheduling heuristics were proposed. These heuristics can be classified into sev-
eral categories [8, 16], which are list scheduling algorithms [9], group scheduling
algorithms [10], and clustering algorithms.

List scheduling is one of most commonly used scheduling algorithms. In list
scheduling, a weight is assigned to each task and edge, based on which ordered task
list is constructed by assigning priority for each task. Then tasks are selected in the or-
der of their priorities, and each selected task is scheduled to a computing host that can
minimize a predefined cost function. As two typical list scheduling heuristics, HEFT
(Heterogeneous Earliest Finish Time) and CPOP (Critical Path on a Processor) are
studied in [9]. The upward rank and downward rank of each task are computed at
the beginning. The HEFT algorithm always selects the task with the highest upward
rank at each step. Then the selected task is assigned to a host that can minimize its
earliest finish time. In contrast, the CPOP algorithm always selects the task with the
highest total rank (upward rank + downward rank) value from ready tasks queue. In
order to minimize the total execution time, CPOP schedules all critical tasks onto a
single host with the best performance. During execution, if a selected task is noncrit-
ical, it will be mapped to a host which could minimize its earliest finish time, as in
HEFT. Both HEFT and CPOP have low complexity, i.e., lower algorithm execution
time. However, the study in [11] observed that the performances of these two algo-
rithms are affected dramatically by how to assign weights to the nodes and edges. In
some extreme cases, different weight assignment approaches can lead up to 47.2% of
performance difference.

In another popular scheduling heuristic group scheduling, tasks are sorted into
groups, under the constraint that tasks in the same group should be independent.
Tasks then are scheduled group by group. The studies in [12] proposed a hybrid
remapping heuristic. Tasks in a DAG are partitioned into levels so that there is no
dependency among tasks at the same level. Then tasks are mapped to computing
hosts with task/host pairs using a static algorithm (e.g., baseline). The merit of this
hybrid heuristic is to revise the static mapping result during job execution by two
runtime factors, the availability of computing hosts and the completion time of tasks
in previous levels. However, the task partition merely considers the task dependency
relationships. It does not take task priority into account, which may result in that some
tasks with lower priority are sorted into improper groups (levels). We will compare
this level based task grouping policy with ours in Sect. 4.4.

Clustering algorithms are proposed for the case of an unbounded number of com-
puting resources, so they are not suitable for a Grid environment.

@ Springer



204 H. Cao et al.

Generally, all above mentioned heuristics are static algorithms, that is, the sched-
ule decisions are made at the static mapping phase, which is prior to the workflow
job execution. They do not take runtime fault tolerance and failure recovery into con-
sideration.

3 System model and preliminaries

To illustrate the job scheduling problem clearly, in this section, we present the formal
definitions for DAG workflow job and computing resource, and introduce several
scheduling factors considered in DAGMap.

3.1 DAG workflow job

A DAG Grid workflow job can be represented by a directed acyclic graph G =
(T,E), where T = {t1,12,...,ty} is the collection of tasks (N is the total number
of tasks), and E is the collection of edges indicating the dependency and precedence
constraint between tasks.

In a given task graph, a task without any precedents is called an entry task, and a
task without any successors is an exit task. If there is more than one entry/exit task,
a zero-cost task can be added, and these entry/exit tasks can be connected to it with
zero-cost edges. This can ensure that there are only one single-entry task (denoted as
fentry) and one single-exit task (denoted as fexit) in a DAG workflow job.

DI[N][N]is a N x N matrix, in which D[i][j] is denoted as the amount of data
required to be transferred from Task #; to Task ;.

3.2 Grid computing resources

For Grid resources, H = {hy, ha, ..., hy} is defined as the collection of computing
hosts (M hosts in total).

For an arbitrary host /;, R(h;) is the ready time, that is, how long Host 4; will
finish the current task so that it can be available for a new task.

B[M][M] is a M x M matrix, in which B[i][j] is the bandwidth between two
hosts #; and 4 ;. Since there is no need for transferring data within the same host,
B[i][i] = oc.

L[M][M]is a M x M matrix, in which L[i][j] is the network latency from Host
h; to Host h;, including the communication setup cost and the propagation time.
Specially, L[i][i]=0.

3.3 Scheduling factors

(1) Transmission time: Suppose that Task #; is the direct precedent of Task ¢;. If #; is
being executed on Host /,,, and ¢; will be executed on Host /,,, then the time required
for transferring the output of #; from 4,, to h,, is called the transmission time, denoted
as I0(ti(m)» tj(n))- As shown in (1),

DIli][/]

10Gigm. 1) = Limlin] + 2

ey

@ Springer



DAGMap: efficient and dependable scheduling 205

As mentioned above, L[m][n] is the network latency from h,, to h,, D[i][j] is the
amount of data required to be transferred from #; to ¢;, and B[m][n] is the bandwidth
between Ay, and hy,. According to (1), if m = n, I0(t; (), tjm)) = 0.

Taking no accounts of the specific hosts on which tasks are executed, the average
transmission time, 10(t;, t}), is the average time for transferring the output of ; to #;.
As shown in (2),

100, 1) =L+ D[%m. )

Here, L is the average network latency, and B is the average bandwidth among hosts.
(2) Estimated execution time: The estimated execution time, ET (t;, h;,), is defined as
the estimated time when Task ¢; is executed on Host /,,. A number of researches have
been done on the estimation of task/host execution time, which is beyond the scope
of this paper. Based on this, the average estimated execution time of t;, denoted as
ET(t;), can be calculated as follows:

M
ET(6) =Y ET(ti,hy)/M. 3)

n=1

(3) Expected start time and expected finish time: For a given pair of task/host #; and
hy,, EST(t;, hy) is the expected start time. As shown in (4),

EST(t;, hy,) = max(R(hn), max )(AFT(tk) + 10(t, ti))). @)

ty €Pre(t;

Here, R(hy) is the ready time of Host &,. Pre(t;) is the direct precedent task col-
lection of ¢;. AFT(t) is the actual finish time for Task #;, which is determined by
the host on which #; is executed. Suppose that 7 is executed on h,,, then AFT (t;) =
EFT (tx, hy). For the entry task, fentry, EST (fentry, hn) = 0.

EFT(t;, h,) is the expected finish time. As shown in (5),

EFT(t;,h,) =EST(t;, hn) + ET(;, hy). 5)

(4) Makespan: For a given DAG workflow job, Makespan is defined as the overall
finish time after static mapping, which is equal to the actual finish time of the exit
task fexit. As shown in (6),

Makespan = AFT (fexit) .- (6)

(5) Task priority: The upward priority of Task ¢;, denoted as Pyp(t;), is defined as
the longest distance form #; to the exit task i, including the average estimated
execution time ET(f;). Starting with fej, the upward priority of each task can be
computed recursively by traversing the task graph upward. As shown in (7),

Pup(1) = ET(1;) + max )(IO(Ii,tj) + Pup(7))). N

tj eSuc(t;

Here, Suc(t;) is the direct successor task collection of ¢;.

@ Springer



206 H. Cao et al.

In contrast, the downward priority of Task t;, denoted as Pgown (i), is defined as
the longest distance form the entry task fenuy to #;, excluding the average estimated
execution time ET (¢;). Accordingly, for the entry task, Paown (fentry) = 0. Starting with
fenury, the downward priority of each task can be computed recursively by traversing
the task graph downward. As shown in (8),

Paown(ti) = max )(Pdown(tj) +ET(tj) +10(t}, 1;)). ®)

tjePre(t;

Here, Pre(t;) is the direct precedent task collection of ¢;.
The fotal priority of Task ¢;, denoted as Pia1(#; ), is defined as that passing through
1;, the longest distance from the entry task Zengy to the exit task fexit. As shown in (9),

Protal (1) = Pup(ti) + Paown(%i)- )

(6) Critical task: In a given DAG task graph, the path with the longest distance from
the entry task fenqy to the exit task 7exj¢ is called the critical path. Note that in general
there may be more than one critical path in a DAG graph.

A task on the critical path is called a critical task. tenyy is a critical task. Thus,

according to (9), the total priority of Task fentry, Protal (fentry), is €qual to the length of
the critical path. Therefore, for an arbitrary task #;, if Piotal (f;) = Protal (fentry), then £;
is a critical task.
(7) Task heterogeneity: As proposed in [13], we use task Heterogeneity Factor (HF)
to indicate the execution time deviation among independent tasks. For a collection
of independent tasks, T = {t1, 2, ..., t;,}, HF is defined as the standard deviation of
task average estimated execution time. As shown in (10),

HF = D(X) = VE(X — E(X))2

x1=ET(11)
x2 = ET(t2) (10)

Xm = ET (1)

Here, D(X) is the mean square deviation of (x1, x3, ..., Xs), and E(X) is the math-
ematical expectation of (x1, x2, ..., Xn).

In addition, we denote HF ireshold as the threshold of task deviation. For a given

collection of independent tasks, if HF < HFreshold, it means the lengths of most
tasks are within a small range. Otherwise, it means the lengths of tasks deviate from
each other greatly.
(8) Computational consistency: Besides heterogeneity, computational consistency of
Grid resources is also ubiquitous. Suppose Task #; € T, two hosts h,,, h, € H, if the
estimated execution times of #; on these two hosts satisfy ET(t;, h,,) < ET(t;, hy),
then when executing t;, h,, is faster than 4.

For an arbitrary #; € T, if ET(t;, hy,) < ET(t;, hy,) is always satisfied, that is, any
task can be executed faster on Host 4, than on Host 4,,, there exists the resource
consistency between h,, and h,,.

@ Springer



DAGMap: efficient and dependable scheduling 207

For two arbitrary hosts, h,,, h, € H, if there always exists resource consistency,
then the computing resources in the host collection are computationally consistent.
Otherwise, they are computationally inconsistent.

4 DAGMap scheduling heuristic

DAGMap scheduling heuristic is designed to take advantages of both list schedul-
ing and group scheduling. It consists of two phases, namely static mapping and de-
pendable execution. The static mapping phase includes two steps: tasks grouping and
independent tasks scheduling.

4.1 Tasks grouping

As shown in Algorithm 1, firstly, according to (7) and (8), the upward priority and
downward priority of each task are computed recursively (lines 1-2). Then for an
arbitrary task ¢, the total priority Pioa(#;) is obtained. For Task #;, if its total priority
Piota1 (1;) is equal to Pyogal (fentry), it is added to the critical task collection CT (lines
4-10). Accordingly, the collection of critical tasks can be obtained.

Then tasks are grouped by the upward priority and dependency relationships.
Tasks in the same group are independent. The procedures of task grouping are as
follows:

(1) Tasks are sorted in descending order by the upward priority Pyp (line 11).

(2) The entry task fentry is added to G (k = 1)(line 12).

(3) For a successive task #;, if it is independent from all tasks which have already
been added into group Gy, t; is added to G¢. Otherwise, a new group G4 is

Algorithm 1 DAGMap Heuristic

compute Py for each task by traversing graph upward, starting with fexit; /' Eq. (7)
compute Pgown for each task by traversing graph downward, starting with fenyy; // Eq. (8)
compute HF for all tasks; /laccording to Eq. (10)
CT =1{}; /Icreate the critical task collection
Ptotal(tentry) <~ Pup (tentry) ~+ Pown (Ientry)§
for (cacht; € T)
compute Pioar ()3 /laccording to Eq. (9)
if (Piotal (1) == Protal (temry))
then add ¢; to CT;
10. end for
1. sort tasks in a descending order of Pyp;
12. k=1; Gy ={}; add fenuy to Gi;
13.  for (each #; in a descending order of Pyp)
14. if ((3t; € Gx)&&(1; depends on t;))

OCX_NAN R W=

15. then k++; G = {}; /[create a new group
16. add #; to Gg; //add task to the group
17. end for

18. for (each G; in an ascending order)
19. schedule independent tasks in group G;;
20. end for

@ Springer



208 H. Cao et al.

created, and ¢#; is added to Gy (lines 13—-17). The task grouping operation is
made repeatedly until all tasks are grouped.

After grouping, tasks are scheduled group by group in an ascending group order
(lines 18-20), as detailed in Sect. 4.2.

4.2 Adaptive independent tasks scheduling

Min-Min and Max-Min heuristics are two typical independent task scheduling algo-
rithms with the expectation that tasks are assigned to the machines which can com-
pute them the earliest and fastest; in most cases, Min-Min shows an outstanding per-
formance [14]. However, the study in [13] has shown that Max-Min can outperform
Min-Min when the lengths of tasks deviate greatly. For instance, if there is only one
long task and many short tasks, Min-Min executes all short tasks first, and then the
long task would be executed while several machines sit idle. In contrast, Max-Min
executes the long task first. At the mean time, it executes short tasks concurrently
with the long task. This can result in a better makespan and even a better resource
utilization rate and load balancing than Min-Min.

Considering the critical task and task deviation, we proposed adaptive independent
tasks scheduling heuristic, which is shown in Algorithm 2.

Algorithm 2 Independent Tasks Scheduling

1. while (G; # 9)

2 for (each task #; € G;)

3 for (each host h; € H)

4. compute EFT(t;, hj); //Expected Finish Time

5. end for

6 end for

7. if((3t; € G;)&&(tj € CT)) then /[Critical Task

8. find Host /,, with the smallest m on which #; can achieve the earliest EFT;
9. assign t; to hyy;

10. Gi<—G[—{tj};
11. update the host ready time R(hy,,) for h,,;

12. update AFT for t; //Actual Finish Time

13. else /l adaptive scheduling depends on HF
14. TH ={}; /lcreate a temporary collection for task/host
15. for (each task 1 € G;)

16. find Host A with the smallest X on which #; can achieve the earliest EFT

17. add the pair (#, hy) to TH;

18. end for

19. if (HF < HF threshold) then /ladopt Min-Min

20. select the pair (#s, hy) € TH with the minimum earliest EFT;

21. else /lotherwise, adopt Max-Min

22. select the pair (s, hy) € TH with the maximum earliest EFT;

23. end if

24. assign 7, to hyg;

25. G; < G; —{t};

26. update the host ready time R (hy) for hy;
217. update AFT for tg;

28. end if

29. end while

@ Springer



DAGMap: efficient and dependable scheduling 209

In this heuristic, as a first step, if there exists a critical task ¢; in group G;, t; will be
scheduled to Host h,,, where t; can achieve earliest EFT. Then t; is removed from G;,
and the host ready time R(h,,) and the actual finish time AFT(¢;) are updated (lines
7-12). Since the critical task is the main factor that determines the overall finish time
for the workflow job, we should schedule the critical task as early as possible.

Secondly, except for critical tasks, other remaining independent tasks are sched-
uled by Min-Min or Max-Min selectively according to the deviation of average esti-
mated execution time. For an arbitrary Task #;, Host i with the smallest & is found,
through which #; can achieve the earliest EFT. The pair (¢ hx) then is added to the
temporary task/host collection TH (lines 14—18). Next, we compare the task length
deviation HF with a given threshold HFyeshold- If HF < HF threshold, Min-Min is
adopted to select the successive tasks (lines 19-20). Otherwise, Max-Min is adopted
(lines 21-22).

This process is repeated until all tasks in G; are scheduled.

It is worth mentioning that for different workflow application job, HFhreshold
might be significantly diverse. Our method to determine the value of HF hreshold fol-
lows such steps: (1) According to (10), HF can be obtained; (2) We set HF threshold_1 =
floor(HF) and HF threshold_2 = ceil(HF), then HF threshold_1 and HF hreshold_2 are used
separately in Algorithm 2, consequently we can Makespan, and Makespan, for this
workflow job, respectively. (3) For the above two makespans, the smaller, the better.
Thus, we chose its corresponding threshold value of HF as HF ypreshold-

Suppose there are X independent tasks in G; and there are ¥ computing hosts, the
time complexity for computing the expected finish time (EFT) for tasks (lines 2-6) is
O (XY). Because at each time only one task is scheduled, the overall time complexity
for Algorithm 2 is O (X?Y).

4.3 Dependable execution

After static mapping, tasks are queued in the line of its corresponding host. However,
as mentioned above, all static mapping heuristics are carried out prior to the workflow
job execution, and are on the basis of two assumptions: (1) the estimated execution
time of each pair of task/host are precisely made, and each task can be finished within
the predefined time interval; (2) computing hosts and interconnection network are re-
liable. However, during real job execution, performance slowdown of resource might
result in that job will be uncompleted in the time quota. Moreover, because of the
dynamic feature of Grid, resources departure and failure are inevitable. Therefore,
static mapping heuristics are not complete solutions, and the fault tolerance mecha-
nism should be provided for dependable execution.

Until now, checkpointing is still the best approach for providing reliable com-
pletion of jobs on inherently unreliable hardware. Generally, checkpointing involves
periodically saving a sufficient amount of the state of a running job to stable storage,
allowing for that job to be started from the last successful checkpoint. A number of
practical checkpointing packages have been developed for the Linux/UNIX family
of operating systems. These packages may be divided into two classes, namely user
space checkpointing and kernel based packages. Those which operate in user space
are highly portable and can typically be compiled and run on any modern UNIX,

@ Springer



210 H. Cao et al.

Fig. 1 Checkpoint server

DAG Execution Checkpoint Server ~ Backup Hosts

such as Condor checkpoint [20] and Cocheck library [21]. In contrast, kernel based
checkpointing packages such as Chpox [22] and Mosix checkpoint [23] for clusters
and multiclusters can work as a Linux kernel module. Moreover, studies in [19] have
shown that cooperative checkpointing provides greater performance and reliability
than periodic checkpointing because it allows for irregular checkpoint intervals by
giving the system an opportunity to skip requested checkpointing at runtime.

As shown in Fig. 1, by adopting cooperative checkpointing, we propose the check-
point server with large capacity and high bandwidth storage, which is specifically
designed to move checkpoint from local disk, across the high-speed interconnection
network, and on to the stable storage. To insure that multiple checkpoints can take
place simultaneously and frequently, if necessary, a scalable number of checkpoint
servers can be placed to provide better performance.

The procedure of our checkpointing can be described as follows.

Firstly, checkpointing initiation. By using checkpointing API, the workflow pro-
grammer inserts checkpoint request in the atomic task code where the state is min-
imal, or where a checkpoint is efficient. Two groups of operation system processes
are specified in the request: those that should be checkpointed; and those that should
block while checkpointing. To save overhead, the local disk is specified to temporar-
ily store the checkpoint file by default.

Secondly, checkpointing evaluation. After receiving a checkpoint request, with the
cooperative checkpointing mechanism, the checkpoint server makes a decision either
to grant or to deny the request based on failure prediction, which is through evaluating
several system condition factors, such as network traffic, disk usage, job scheduling
queue, and event prediction. Note that critical event based failure prediction on real
system traces have seen accuracies up to 80% [17, 18].

Thirdly, checkpointing. If a checkpoint request is granted, the process of the orig-
inal task is temporarily paused, and then the checkpointing process is taken to save
the state of task on local disk. To reduce the checkpoint overhead, if necessary, the
incremental checkpointing is adopted as an optimization technique.

Fourthly, restarting task and storing checkpoint image. After the checkpointing is
complete, the restart function is invoked immediately to let the original task continue.
Meanwhile, the checkpoint server receives the signal, and then transfers the check-
point image with identifier meta-information from local disk to the stable storage.

In addition, in order to insure workflow job execution in case of any machine
which is permanent failure, several backup hosts are connected to checkpoint server

@ Springer



DAGMap: efficient and dependable scheduling 211

with high speed network. For instance, as shown in Fig. 1, suppose Task #; is being
executed on Host 4, and its direct successor Task ¢; will be executed on Host A,. If
h, fails beyond a specific time interval, the scheduler will select a backup host, e.g.,
hp, to take over the task and to restart it from the latest checkpoint. After completion,
the output of #; can be directly transferred from 4, to h,. This is also suitable for
the situation that a task can not be finished at the end of the time quota. In this case,
for the host, because it is time to execute another new task, the current task must
be forced to vacate the machine through checkpointing, and then it will migrate to a
backup host to continue execution.

4.4 A static mapping example

In this section, in a consistent computational heterogeneous Grid environment, we
choose a DAG job sample to comparatively illustrate the static mapping of DAG
workflow job. As shown in Fig. 2(a), as a general representative of DAG workflow
job, it is composed of 10 atomic tasks. The number next to each edge indicates the
amount of data required to be transferred. Suppose there are three available comput-
ing hosts H = {h1, ha, h3}. Figure 2(b) shows the estimated execution time (ET) for
each task/host pair. Figure 2(c) shows the network property among these hosts. For
simplicity, the bandwidth is fixed at 1 between two different hosts and at oo for within
the same host. The network latency is fixed at 0.

According to Algorithm 1, for each task, we can compute the average estimated
execution time E7(t;), the upward priority Pyp, the downward priority Paown, and the
total priority Piotal, as shown in Table 1(a). Accordingly, the collection of critical tasks
and the grouping result can be obtained, as shown in Table 1(b) and (c), respectively.

For comparison, we scheduled this DAG job using DAGMap, HEFT, CPOP,
GS.Min-Min, and GS.Max-Min. Here, GS.Min-Min and GS.Max-Min are both based
on grouping scheduling, and adopt Min-Min and Max-Min, respectively, to schedule
the independent tasks in each group. From the scheduling results presented in Fig. 3,
itis observed that for this workflow job, the makespan by DAGMap is 536, is less than
by other four heuristics. As well as the speedup and resource efficiency by DAGMap
are 1.80 and 0.741, respectively, which are also higher than by other related works.

As mentioned in the related works, the study in [12] adopted a task grouping policy
based on level partition, which merely considers task dependency relationships. Ac-
cording to their policy, tasks in the sample workflow job are sorted into four groups:
{1}, {2, 13, t4, 15, t6}, {t7, 13, 19}, and {t10}, as shown in Fig. 4.

To compare this level based task grouping policy with ours, according to the
grouping result presented in Fig. 4, we schedule independent tasks at each level us-
ing Algorithm 2, Max-Min, and Min-Min, which are denoted as Level. Algorithm2,
Level.Max-Min, and Level.Min-Min, respectively. The scheduling results are pre-
sented in Fig. 5.

Comparing the static mapping results in Fig. 3 and in Fig. 5, it is observed that for
this workflow job, DAGMap performs better than Level.Algorithm2, GS.Max-Min
is equal to Level.Max-Min, and GS.Min-Min is better than Level. Min-Min in terms
of makespan, speedup, and resource efficiency. This is because our task grouping
policy not only considers the dependency relationship between tasks, but also takes

@ Springer



212

H. Cao et al.

Fig. 2 Example of DAG job
with computing hosts

(a) Example of DAG job graph

Tasks hi hy h3

t 113 145 189
23 166 200 213
13 74 89 110
ty 48 67 95
15 112 156 188
te 106 135 167
t7 169 183 206
tg 55 71 96
19 83 102 127
1o 38 41 53

(b) Estimated execution time for task/host

Machines Bandwidth Latency
hy —hy 1 0
hy —h3 1 0
hy — h3 1 0
hl — hl 0.¢] 0
hy —hy o) 0
h3 — h3 0.¢] 0

(c) Network property

the task upward priority into account, which can prevent some tasks (e.g., #4 and g)

with lower priority from being sorted into improper groups.

5 Performance evaluation

In this section, we evaluate the proposed algorithms in two aspects: static mapping
and dependable execution. The former is evaluated in terms of speedup, efficiency,

@ Springer



DAGMap: efficient and dependable scheduling

213

Fig. 3 Scheduling results A |
hs \ =167 [ =95 [ 496 | |
hy (o890 [ w156 [ w102 |
t10=38}
n o3 | w66 | w69 | [ fse
Speedup: 1.80  Efficiency: 0.741
Scheduling Order: (ty, ta, t3, te, ts, t7, ta, to, ts, ti0)
(a) DAGMap
A
hy \ =188 [ =95 |
h, [=89 | 135 [ w=102 |
tg=55 t10=38,
h| =113 ] =166 ] =169 [ ] 41
Speedup: 1.78 Efficiency: 0.709
Scheduling Order: (1}, t, t3, ts, ts, t7, ta, to, tg, ti)
(b) HEFT
A
hs [ om1ss [ os |
hy [ 689 [ 135 [ w102 |
t5=551,6=38
ml =13 [ emtee [ emte0 [ ] ] s
Speedup: 1.78  Efficiency: 0.709
Scheduling Order: (ty, t, t3, t7, ts, te, to, ta, g, ti0)
(c) CPOP
A
hs \ =167 [ 95 |
hy [ w156 | [ w102 |71 ]
=38
[ 6=113 ] 4,166 [ =74 | =169 [ 560
Speedup: 1.72  Efficiency: 0.685
Scheduling Order: (ty, tp, ts, te, t3, t7, to, ta, ts, tio)
(d) GS.Max-Min
A
ty=41
hy [ w135 [ue7| [ o183 ]
m[ =113 [674 ] =112 [ 483 [t=55] 513
Speedup:1.68 Efficiency: 0.625
Scheduling Order: (t1, t3, t, ts, t, ta, to, t7, ts, ti0)
(e) GS.Min-Min
ringer
9 spring



214 H. Cao et al.

Table 1 Critical tasks and task .
(a) Task priorities

groups =
Tasks ET(t;) Pup Paown Protal
t 149 608 0 608
t 193 443 165 608
2} 91 342 159 501
ty 70 205 157 362
t5 152 321 161 482
te 136 308 167 475
t7 186 243 365 608
s 74 127 374 501
tg 104 163 319 482
1o 44 44 564 608

(b) Critical tasks
CT {t1.12.17. 110}

(c) Task groups

Gi Tasks

Gy {r1}

Gs (12,13, 15, 16}
G3 {t7,14, 19}
Gy {rg}

Gs {t10}

Fig. 4 Level based task
grouping policy

and algorithm running time, while the latter is evaluated in terms of success ratio and
slowdown ratio. These metrics are defined as follows:

e Speedup For a given DAG workflow job, the speedup value is defined as the ratio
between minimal sequential execution time and makespan, as shown in (11). The
sequential execution time is the cumulative computation cost when mapping all the

@ Springer



DAGMap: efficient and dependable scheduling 215

Fig. 5 Scheduling results with A !
level based task grouping policy h; ‘ =110 ‘ =206 3
hs [t=67] =135 [ 71 ] §
138,
b =13 | wie6 | w12 [uss ] [ ] 58
Speedup: 1.77  Efficiency: 0.676
Scheduling Order: (t, t, t4, 83, t6, ts, t7, ts, to, t10)
(a) Level.Algorithm2
A
hy [ w167 [ w127 |
hy [ 156 [u=67] =71 ]
t10=38
n| =13 | um166 [ 6=74 [ 47169 560

Speedup: 1.72 Efficiency: 0.683
Scheduling Order: (t[, tz, t5, T(,, t3, t4, T7, tt), tg, t][])

(b) Level.Max-Min

A
t=41;
h, =3 =200 =183
1,48 =55
b u=113 | [ w06 | s3] [ ] 636

Speedup: 1.52  Efficiency: 0.580
Scheduling Order: (t;, ts, t3, t, 5, &, to, ts, t7, tig)

(¢) Level.Min-Min

tasks sequentially to a single computing host.

minhmeH{ZzN:l ET(t;, hy)}

(11
Makespan

Speedup =

e Efficiency is defined as the utilization rate of all computing resources, as shown
in (12). Here, MET (t;) is the mapped execution time of Task ¢;.

SN MET(;)

: (12)
Makespan x M

Efficiency =

e Algorithm Running Time is the execution time of the static mapping algorithm
itself, which indicates the algorithm complexity. Job execution time will not be
counted.

e Success Ratio is the proportion of DAG jobs executed successfully to the total
submitted workflow jobs during dependable execution.

@ Springer



216 H. Cao et al.

e Slowdown Ratio is the exceeding proportion of workflow job execution time
(JET ¢kpt) versus the makespan, as shown in (13). Here, makespan is from sta-
tic mapping without checkpoint, while JET cxp; includes makespan, checkpointing
overheads, and recomputation time from the latest checkpoint in case of failure.

JET cxpt

Slowdown = ————— — 1. (13)
Makespan

5.1 Simulation environment

Based on GridSim and SimJava toolkit [15], we implement a simulator to establish
the consistent and inconsistent heterogeneous Grid environments.

For static mapping, we conduct experiments to evaluate the performance of
DAGMap with above mentioned heuristics comparatively. Inputs to the simulator
include scheduling algorithm, type of DAG workflow job, tasks dependency relation-
ships, number of hosts, estimated execution time for each task/host pair, and commu-
nication time between two dependent tasks. In our experiments, we use two common
DAG jobs, i.e., Random Graphs and Laplace [11]. In each case, we randomly generate
10,000 DAG jobs, and each job consists of 10 to 100 tasks. The estimated execution
time for a task/host pair is generated randomly following a uniform distribution over
an interval [100, 500]. For any two dependent tasks, the transmission time is chosen
randomly based on the communication-to-computation ratio (CCR) from the interval
of [0.1, 0.2].

For dependable execution, in addition to above configurations in static mapping,
other parameters for the simulator include MTTF (Mean Time To Failure), MTTR
(Mean Time To Recovery), checkpointing overhead. In experiments, the time to fail-
ure (TF) and the time to recovery (TR) of computing hosts are exponentially distrib-
uted with mean of 400 (MTTF = 400) and 50 (MTTR = 50), respectively, namely
TF ~E(1/400) and TR ~ E(1/50). The checkpointing overhead (CO) of tasks follows
a normal distribution with mean 40 and variance 16, i.e., CO ~N(40, 16).

5.2 Experimental results of static mapping

Figure 6 and Fig. 7 show the average speedup of Random graph and Laplace DAG
jobs in consistent and inconsistent computing environments. Generally, DAGMap
performs best, while HEFT and GS.Max-Min are better than CPOP and GS.Min-Min.
It is noted that among all group-based scheduling algorithms, in consistent heteroge-
neous environments, DAGMap outperforms GS.Max-Min about 3% and outperforms
GS.Min-Min about 13%. This is mainly because in each group, DAGMap schedules
the critical tasks first. Moreover, the selective task chosen policy in DAGMap can best
utilize Min-Min and Max-Min and avoid their shortcomings. It has also observed that
for two list scheduling algorithms, HEFT performs better than CPOP. The reason is,
as mentioned above, CPOP schedules all critical tasks to a single host with the best
computing capacity. However, as the number of tasks in a workflow job increases,
more and more tasks tend to be not critical.

Figure 8 and Fig. 9, respectively, show the heuristic efficiency for Random graph
and Laplace DAG jobs in consistent and inconsistent computing environments. Ac-
cording to (12), the efficiency depends on three factors: makespan, number of hosts,

@ Springer



DAGMap: efficient and dependable scheduling 217

Ir—r v T
—— DAGMap —8— DAGMap
28 —¥—HEFT 1 28} | —*—HEFT
—4—CFOP Tl [—a—crop
— 855 MaxMin [ ]
26 [ GS Max-Min
. —*— 3 Min-Min 3 25 *— GS Min-Min
° o
8 24 §24
@ 0
§ 22 % 291
i B
g
2 2l
18 18+
'y
18 . 18
0 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 %0
Nurnber of Tasks in Each DAG Job Nurrber of Tasks in Each DAG Job
(a) Random Graph DAG Jobs (b) Laplace DAG Jobs

Fig. 6 Average speedup under consistent heterogeneity environment

3
— 3 ‘
—&—DAGMap —8— DAGMap
28F | ¥ HEFT 78 —%—HEFT
—a— CPOP —&— CPOP

26 —— 55 Max-Min 1 . —8— 55 Max-Min
. —%— (35 Min-Min L2 | o Minin J—
© E o
i § 24}
i @
ke
g 23t : 22
b g
z E;

2 2
18+ 18}
15l . . . \ . . . . 1l . . . . . . . .
10 20 30 40 50 60 70 8O0 40 0 20 30 40 50 60 70 80 @O0
Mumber of Tasks in Each DAG Job Number of Tasks in Each DAG Job
(a) Random Graph DAG Jobs (b) Laplace DAG Jobs

Fig. 7 Average speedup under inconsistent heterogeneity environment

and actual execution time of each task. Because adopting DAGMap can obtain the
least makespan for a workflow, DAGMap can achieve best resource utilization in
each case. As the number of tasks increase, the depth of generated task graphs in-
crease and the degree of parallelism becomes low. Hence, it is observed that except
for the case that Random Graph jobs are executed on inconsistent heterogeneous
hosts, HEFT can achieve a relative better performance than CPOP, GS.Min-Min, and
GS.Max-Min, especially for Laplace workflow jobs.

In Fig. 10, we compare the average running time for static mapping of all algo-
rithms when randomly generating DAG jobs. It has been observed that DAGMap has
the longest execution time because of its complexity. This can be viewed as the algo-
rithm tradeoff between the computing cost and the speedup/efficiency gain. However,

@ Springer



218 H. Cao et al.

08 I O4GMap 04 I D4 GMap
| CiSas| ' I HEF T
08 EElcror 08 EEcror |
07 M 3 GS Min-Min | 07 _ 165 Min-Min
[1GS MaxMin 168 Max-Min ||
508 ] 1 > 08 -
5 S 05
g 08 1 gl 1
= =
w04 4 004 ]
03 1 0.3 4
0.2 1 0.2 4
01 1 01 1
0 0
3 B 9 3 B g9
Number of Hosts Nurnber of Hosts
(a) Random Graph DAG Jobs (b) Laplace DAG Jobs
Fig. 8 Efficiency under consistent heterogeneity environment
1 1
0s I 0:GMap 04 I 04 GMap
Ar I HEF T I ' I HEF T
08} I cPoP | 08 [ croP
07 06 Min-Min | 07 — TGS Min-Min
‘ [ 165 Max-Min ‘ [ 165 Max-Min
06 _ 1 > 06 — 1
805 ] 55 ]
g s
= =
W4t 1 0 04 ]
03 1 03 1
02 g 02 4
01 g 0.1 4
0 0
[ 9 3 B
Number of Hosts Nurmber of Hosts
(a) Random Graph DAG Jobs (b) Laplace DAG Jobs

Fig. 9 Efficiency under inconsistent heterogeneity environment

as all these heuristics are static scheduling algorithms, i.e., all tasks mapping and
scheduling are made prior to the workflow job execution, and it is noted that the run-
ning time of static mapping remains at the millisecond level and cannot significantly
influence the actual job execution time. DAGMap is still reasonable and acceptable.

5.3 Experimental results of dependable execution

For dependable execution, experiments are carried out when DAGMap adopts two
checkpoint policies: periodic checkpointing and cooperative checkpointing with
checkpoint server. The time interval of checkpoint request in periodic checkpoint-
ing is over a range of [100,400]. For cooperative checkpointing in real application,
however, checkpoints requested by applications are irregularly, and checkpointing

@ Springer



DAGMap: efficient and dependable scheduling 219

250

—o— DAGMap
=—HEFT
*— CPOP
—¥— G5 Min-Min
A— G5 Max-Min

[
Qo
=]

Average Running Time (ms)

50

*
L 2

| =

10 20 30 40 50 6O 70 80 40
Mumber of Tasks in Each DAG Job

Fig. 10 Average running time

PP ' ! ' ‘ 086 — e
—#— DAGMap-Periodic —&— DAGMap-Periodic
35t ‘ —#— DAGMap-Cpri-0.3 S —*— DAGMap-Cprt-0.3
| —+— DAGMap-Cprt-0.5 084 R —4— DAGMap-Cprt-05 | 1
s 3 i Sy
Nt 092 \'\r‘\r«t -
P
§ 25t | g I
3 || z
2 "
% 2 v‘-RI ? 08 1
LY
215l ) 3
o . 088t 1
< |
1 *_\
L kS -
05f Ny
a . . . . . 084 . . . . . . .
D s 100 150 200 250 300 350 400 0 50 100 180 200 250 300 350 400
Checkpoint Interval Checkpoint Interval
(a) Slowdown Ratio (b) Success Ratio

Fig. 11 Dependable execution with different checkpoint policies

will not be taken for each request. For simplicity, we make use of the same check-
point request generator as in periodic checkpointing, and use a failure predictor with
certain accuracies, i.e., 0.3 and 0.5, to respectively grant a checkpoint request.
Figure 11 shows the slowdown ratio and the success ratio of experiment results. It
is observed that when the checkpoint interval becomes smaller, all checkpoint poli-
cies have high slowdown ratios. This is mainly because more frequent checkpoint
results in the explosion of checkpoint overheads which dramatically increase the
wasted time. Thus, to reduce slowdown, periodic cooperating may adopt an advice
that checkpointing should be as infrequent as possible. However, Fig. 11(b) shows an
infrequent checkpoint for periodic checkpointing will lead to much lower success ra-
tio. Consequently, for periodic checkpointing, the results from this two metrics come
to conflicting conclusions. In contrast, in any cases, cooperative checkpointing can
keep lower slowdown ratio and much higher success ratio. For this, there are two
reasons: first, cooperative checkpointing with failure prediction can keep from fre-
quent checkpointing, thereby the overhead of checkpointing and recomputing will be

@ Springer



220 H. Cao et al.

reduced significantly. Second, in addition to restarting failed tasks from latest check-
point, our checkpoint server with backup hosts can provide migration and continue
execution in case that a task can not be finished during its time quota. Moreover, even
if the prediction accuracy is low at 0.3, cooperative checkpointing can still gain good
performance.

6 Conclusions

Since provided voluntarily, Grid resources tend to be heterogeneous and dynamic.
Therefore, efficient and dependable workflow job scheduling in Grid becomes essen-
tial. Based on list scheduling and group scheduling, we propose a novel scheduling
heuristic, called DAGMap. DAGMap consists of two phases: static mapping and de-
pendable execution. The experiment results of static mapping show DAGMap can
achieve better performance than other previous algorithms in terms of makespan,
speedup, and efficiency. Because all static mapping heuristics are carried out prior
to the workflow job execution, they cannot provide fault tolerance during runtime.
To solve this problem, we design the checkpoint server with cooperative checkpoint-
ing mechanism. The experiment results of dependable execution show it can provide
lower slowdown ratio and higher success ratio than periodic checkpointing.

In the future, we will make efforts to study the dynamic workflow job scheduling
at the running time with QoS constraints, such as tradeoff between time and cost,
advanced resource reservation. Finally, we intend to use our scheduling heuristic in
our real Grid platform for practical evaluations.

Acknowledgements This paper is supported by the ChinaGrid project, the National High-Tech Re-
search and Development Plan of China under Grant 20006AA01A115, Program for New Century Excel-
lent Talents in University under Grant NCET-07-0334, NSF of China under Grant 60673174, 60603058,
90412010, and SRF for ROCS, SEM.

References

1. Ramakrishnan A, Singh G, Zhao H, Deelman E, Sakellariou R, Vahi K, Blackburn K, Meyers D,
Samidi M (2007) Scheduling data intensive workflows onto storage-constrained distributed resources.
In: Proceedings of the 7th IEEE symposium on cluster computing and the grid (CCGrid’07), 2007

2. Amin K, Hategan M, Laszewski GV, Zaluzec NJ, Hampton S, Rossi A (2004) GridAnt: a client-

controllable grid workflow system. In: Proc 37th Hawai’i international conf on system science, 2004

. Malewicz G, Foster I, Rosenberg AL, Wilde M (2007) A tool for prioritizing DAGMan jobs and its

evaluation. J Grid Comput 5(2):197-212

4. Foster I (2005) Globus toolkit version 4: software for service-oriented systems. In: Lecture notes in
computer science. vol 3779. Springer, Berlin

5. The Condor Project website (2007) Available: http://www.cs.wisc.edu/condor/

6. YouSY, Kim HY, Hwang DH, Kim SC (2004) Task scheduling algorithm in GRID considering hetero-
geneous environment. In: Proc of the international conference on parallel and distributed processing
techniques and applications (PDPTA °04), Nevada, USA, 2004, pp 240-245

7. Mandal A, Kennedy K, Koelbel C, Marin G, Mellor-Crummey J, Liu B, Johnsson L (2005) Scheduling
strategies for mapping application workflows onto the grid. In: IEEE international symposium on high
performance distributed computing (HPDC’05), 2005

8. Dong F, Akl SG (2006) Scheduling algorithms for grid computing: state of the art and open problems.
Technical Report No. 2006-504, School of Computing, Queens University Kingston, Ontario

(5]

@ Springer


http://www.cs.wisc.edu/condor/

DAGMap: efficient and dependable scheduling 221

9.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Topcuoglu H, Hariri S, Wu M (2002) Performance effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260-274

Muthuvelu N, Liu J, Soe NL, Venugopal SR, Sulistio A, Buyya R (2005) A dynamic job grouping-
based scheduling for deploying applications with fine-grained tasks on global grids. In: Proc 3rd
Australasian workshop on grid computing and e-research, Australia, 2005

. Sakellariou R, Zhao H (2004) A hybrid heuristic for DAG scheduling on heterogeneous systems. In:

Proc 13th heterogeneous computing workshop, USA, 2004

Maheswaran M, Siegel HJ (1998) A dynamic matching and scheduling algorithm for heterogeneous
computing systems. In: Proc 7th heterogeneous computing workshop, 1998

Etminani K, Naghibzadeh PM (2007) A Min-Min Max-Min selective algorithm for grid task schedul-
ing. In: Proc 3rd IEEE/IFIP international conference in Central Asia, 2007

Braun TD, Siegel HJ, Beck N, Boloni LL, Maheswaran M, Reuther Al, Robertson JP, Theys MD,
Yao B (2001) A comparison of eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. J Parallel Distrib Comput 61(6):810-837

Buyya R, Murshed M (2002) GridSim: a toolkit for the modeling and simulation of distributed re-
source management and scheduling for grid computing. J Concurr Comput Pract Exp (CCPE) 1175—
1220

Hall R, Rosenberg AL, Venkataramani A (2007) A comparison of DAG-scheduling strategies for
internet-based computing. In: Proc 22nd international parallel and distributed processing symposium
(IPDPS), 2007

Sahoo RK, Oliner AJ, Rish I, Gupta M, Moreira JE, Ma S, Vilalta R, Sivasubramaniam A (2003)
Critical event prediction for proactive management in large-scale computer clusters. In: Proc of the
ACM SIGKDD, international conference on knowledge discovery and data mining, 2003, pp 426—
435

Liang Y, Zhang Y, Jette M, Sivasubramaniam A, Sahoo RK (2006) Blue gene/l failure analysis and
prediction models. In: Proc of the international conference on dependable systems and networks
(DSN), 2006

Adam JO, Larry R, Ramendra KS (2006) Cooperative checkpointing: a robust approach to large-scale
systems reliability. In: Proc of the 20th annual international conference on supercomputing, 2006
Michael L, Todd T, Jim B, Miron L (1997) Checkpoint and migration of UNIX processes in the con-
dor distributed processing system. University of Wisconsin-Madison Computer Sciences Technical
Report 1346

Stellner G (1996) Cocheck: checkpointing and process migration for MPI. In: Proc of the international
parallel processing symposium, 1996

Sudakov OO, Meshcheriakov IS, Boyko YV (2007) CHPOX: transparent checkpointing system for
Linux clusters. In: Intelligent data acquisition and advanced computing systems: technology and ap-
plications (IDAACS 2007), 2007, pp 159-164

Maoz T, Barak A, Amar L (2008) Combining virtual machine migration with process migration for
HPC on multi-clusters and grids. In: IEEE Cluster, Tsukuba, 2008

Haijun Cao received his bachelor degree at the school of computer sci-
ence and technology from Huazhong University of Science and Tech-
nology (HUST) in 2003. Currently, he is a Ph.D. candidate in the Clus-
ter and Grid Computing Lab at HUST, China. His research interests
include distributed computing, workflow, and service oriented comput-
ing.

@ Springer



222

H. Cao et al.

@ Springer

Hai Jin is a professor of computer science and technology at the
Huazhong University of Science and Technology (HUST) in China.
He received his Ph.D. in computer engineering from HUST in 1994.
In 1996, he was awarded the German Academic Exchange Service
(DAAD) fellowship for visiting the Technical University of Chemnitz
in Germany. He worked for the University of Hong Kong between 1998
and 2000 and participated in the HKU cluster project. He worked as a
visiting scholar at the University of Southern California between 1999
and 2000. Now, he is the chief scientist of the ChinaGrid Project and
Virtualization Technology for Computing System (973 Project). His re-
search interests include cluster computing and Grid computing, P2P
computing, and virtualization technology.

Xiaoxin Wu received his Ph.D. degree from the University of Califor-
nia, Davis, in 2001. Between 2002 and 2006, he had been working as a
postdoctoral researcher in the Department of Computer Science, Purdue
University, where he worked on wireless network privacy and security.
Since 2006, he has been in the Intel Communication Technology Bei-
jing Lab, working on mobile collaborative computing and broadband
wireless networks. His research interests include designing and devel-
oping architecture, algorithm, and protocol for network performance
improvement.

Song Wu is a professor of computer science and technology at the
Huazhong University of Science and Technology (HUST) in China. He
received his Ph.D. degree from HUST in 2003. In 2007, he was awarded
the New Century Excellent Talents in University (NCET). His research
interests include Grid computing and virtualization technology.



DAGMap: efficient and dependable scheduling 223

Xuanhua Shi is an associate professor of computer science and tech-
nology at the Huazhong University of Science and Technology (HUST)
in China. He received his Ph.D. degree from HUST in 2005. Between
2006 and 2007, he had been working as a postdoctoral researcher in
INRIA, France. His research interests include cluster and Grid comput-
ing, dependable computing, and virtualization technology.

@ Springer



	DAGMap: efficient and dependable scheduling of DAG workflow job in Grid
	Abstract
	Introduction
	Related works
	System model and preliminaries
	DAG workflow job
	Grid computing resources
	Scheduling factors

	DAGMap scheduling heuristic
	Tasks grouping
	Adaptive independent tasks scheduling
	Dependable execution
	A static mapping example

	Performance evaluation
	Simulation environment
	Experimental results of static mapping
	Experimental results of dependable execution

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


