J Supercomput (2010) 53: 371-393
DOI 10.1007/s11227-009-0300-y

ServiceFlow: QoS-based hybrid service-oriented grid
workflow system

Haijun Cao - Hai Jin - Xiaoxin Wu - Song Wu

Published online: 20 May 2009
© Springer Science+Business Media, LLC 2009

Abstract Based on OGSA, grid workflow may construct new value-added services
by composing existing elementary services with sophisticated workflow logic. Due
to the highly heterogeneous and dynamic features of grid, Quality of Service (QoS)
becomes essential and poses great challenges to grid workflow. This paper presents a
QoS-based hybrid service-oriented grid workflow system called ServiceFlow, which
enables the construction of QoS-aware workflow at both abstract and concrete service
levels. To gather and delegate multiple concrete physical services providing equiva-
lent functionality but diverse QoS capabilities, virtual service is proposed to par-
ticipate in service composition. In addition, two phases of service selection, namely
pre-matching phase and QoS-based service selection phase, are designed for dynamic
service bindings at runtime. Performance evaluation results indicate that ServiceFlow
can improve different QoS metrics to fulfill the user’s requirements.

Keywords Grid workflow - Virtual service - Multi-QoS metrics - Synthesized QoS
evaluation - Service selection - Dynamic binding
1 Introduction

Grid systems and applications aim to integrate resources and services across dynamic
distributed heterogeneous virtual organizations [1]. Currently, grid technologies are

H. Cao - H. Jin (X)) - S. Wu

Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School
of Computer Science and Technology, Huazhong University of Science and Technology,
‘Wuhan 430074, China

e-mail: hjin@mail.hust.edu.cn

X. Wu
Communication Technology Lab, Intel China Research Center, Beijing 100080, China

@ Springer

mailto:hjin@mail.hust.edu.cn

372 H. Cao et al.

evolving towards service-oriented architecture, e.g., Open Grid Service Architec-
ture (OGSA). By encapsulating distributed heterogeneous hardware and software re-
sources in standard interfaces, loosely coupled grid services, such as web services and
WSRF (Web Service Resource Framework) services, become dynamically discover-
able and composable, and are widely regarded as the backbone for the new generation
of cross-platform, cross-language distributed computing.

Grid workflow [2] can be seen as a collection of tasks that are processed on dis-
tributed resources in a well-defined order. Due to the highly heterogeneous and dy-
namic features of grid, Quality of Service (QoS) becomes essential and poses great
challenges. For instance, resources shared within virtual organizations may not be
entirely dedicated to the grid, and can be added or removed at any time. The change
of resource local policy, the breakdown of hardware or software, and the malfunc-
tion of network fabric can also result in inaccessibility of services. Furthermore, even
for available services providing identical functionality, performance and other QoS
metrics (e.g., execution time, price, availability, and reputation) may be diverse and
fluctuated over time.

To deal with the aforementioned problem in grid environment, a QoS-aware work-
flow may be constructed by abstract services that stand for a group of concrete ser-
vices with the equivalent functionality. Under this approach, even though one or more
workflow components are unavailable, e.g., concrete service providers fail; they could
be substituted by other available ones that provide the equivalent functionality. A con-
crete service may also be substituted by others with higher QoS capabilities. Thus, to
enhance the QoS for the execution of workflow jobs, the scheduler needs to evaluate
the QoS for concrete services and make wise choices.

In this paper, we present a QoS-based hybrid service-oriented grid workflow sys-
tem, called ServiceFlow. It is a subsystem of ChinaGrid Support Platform (CGSP),
the common middleware of ChinaGrid [3]. In ServiceFlow, grid services are orga-
nized at different granularities, which are, from fine to coarse, Physical Service, Vir-
tual Service, Atomic Service, and Composite Service. The salient features of Service-
Flow are as follows:

e Hybrid service-oriented workflow model. Rather than requiring that all participat-
ing services be static physical services, ServiceFlow supports virtual services in the
workflow process. Virtual service is proposed to gather and delegate multiple con-
crete physical services that have equivalent functionality and identical interfaces,
but diverse QoS capabilities.

e QoS-aware service selection. In order to satisfy users’ requirements and improve
QoS, two phases of service selection are proposed for dynamic service bindings at
the workflow runtime. Pre-matching phase is designed to choose competent physi-
cal services according to both of their static and dynamic resource capacities. This,
in turn, generates the service pool within which the physical services may compete
with each other. In QoS-based service selection phase, an extensible multi-criteria
QoS model is presented. An AHP (Analytical Hierarchy Process) [4] based Syn-
thesized QoS Selection Algorithm (SQSA) is proposed to quantitatively evaluate
the quality of each candidate physical services and therefore the most qualified
one can be selected.

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 373

The remainder of this paper is organized as follows. Section 2 gives an overview
of related works. In Sect. 3, grid workflow model is presented, in which several ba-
sic concepts about grid services and structured elementary grid workflow patterns
are detailed. Section 4 illustrates the architecture of ServiceFlow. The QoS-aware
two-phase service selection model is presented in Sect. 5. System performance is
evaluated in Sect. 6. Finally, we conclude this paper and give some future works in
Sect. 7.

2 Related works

Grid workflow has been extensively studied. The early researches focus on three as-
pects: (1) workflow pattern and modeling, such as Petri-net, DAG, UML; (2) work-
flow specification and definition language, such as BPEL [5], GSFL [6], AGWL [7],
and OWL-WS [8]; and (3) workflow management system, including workflow en-
gine, such as GridAnt [9], GridFlow [10], DAGMan [11], Triana [12], Symphony
[13], and GridBus [14]. However, few of them have specifically addressed the QoS
issues.

Recently, there are several research works on service-oriented workflow involv-
ing QoS-driven service composition and selection. eFlow [17] has investigated the
dynamic service selection based on user requirements. In eFlow, each service node
includes a specification of the service selection rule called search recipe. When a
service node is invoked, the eFlow engine issues a query request to the E-services
platforms (ESP) that will execute the specified query and return a reference of a ser-
vice whose description satisfies the constraints. For the case that different providers
offer the same type of service, eFlow introduces the dynamic conversation approach.
However, there is no specific QoS model explicitly supported in eFlow, and the ser-
vice selection mechanism determining a competent service is only based on query
and search. To some extent, the approach in eFlow can be regarded as the counterpart
of the pre-matching phase of our approach. Due to lack of quantitative and qualita-
tive measurement of QoS, it is difficult to make a wise choice in the case that there
are a number of candidate services with multi-QoS characteristics; for instance, some
services are much cheaper, with higher availability but lower response time than the
others.

Zeng et al. investigate AgFlow which is a QoS-aware middleware for web service
composition [18]. In AgFlow, the QoS of web services is evaluated by means of an
extensible multi-dimensional QoS model, and the selection of component services
is performed to optimize the composite service’s QoS. In order to comply with the
user’s constraints on QoS, AgFlow also can adapt to changes that occur during the
execution by revising the execution plan. In addition, two selection approaches are
described and compared: one is based on local (task-level) selection of services, and
the other is based on global allocation of tasks to services using Integer Programming.

A notable work is presented by Canfora in [19]. The authors advocate using Ge-
netic Algorithm (GA) to tackle the QoS-aware composition problem. This is because
Integer Programming has two obvious weaknesses: (1) As the number of services
invoked increases, the number of required variables in Integer Programming tends to

@ Springer

374 H. Cao et al.

Table 1 Symbol of concept

Symbol Meaning

ps Physical service

Vs Virtual service

as Atomic service

cs Composite service

gs Grid service

PS The set of physical services
VS The set of virtual services
AS The set of atomic services
[\ The set of composite services

explode. (2) For any QoS attributes, Integer Programming needs to have a linear (or
at least linearized) aggregation function. Moreover, when the number of concrete ser-
vices for each abstract service becomes large, the experimental results show that GA
is able to keep its timing performance almost constant while Integer Programming
undergoes an exponential growth.

As a matter of fact, QoS-aware service selection is a multi-criteria decision-
making (MCDM) problem, which is regarded as NP-hard. Besides above mentioned
Integer Programming and GA, researchers have studied different decision-making
problems by using different decision-making methods such as Mathematical Sta-
tistics (MS), Data Envelopment Analysis (DEA), and Analytic Hierarchy Process
(AHP). Among them, AHP is regarded as an outstanding approach, and has been
extensively used for evaluating complex multi-attribute alternatives. Therefore, we
propose Synthesized QoS Selection Algorithm (SQSA) based on AHP to evaluate
QoS of the candidate physical services quantitatively and qualitatively, and then the
most qualified one can be selected.

3 Grid workflow model

Through sharing and virtualization, distributed grid resources can be seamlessly ac-
cessed by users and applications. As a matter of fact, service virtualization is essential
to (1) reduce the complexity of heterogeneous system management, and (2) handle
diverse resources in a unified way. In this section, we present several basic concepts
with grid services and six structured elementary grid workflow patterns. Some sym-
bols used in this section are listed in Table 1.

3.1 Physical service vs. virtual service
In ServiceFlow, a physical service (ps) is a concrete implementation of grid service,

which can be either web services (WS™) or WSRF services (WSRF"). As shown in
Table 1, a PS is the set of ps. This can be described as

PS={ps| (ps € WS*) v (ps € WSRF*)}. (1)

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 375

Similarly to the idea of abstract class and interface in Object-Oriented Program-
ming (OOP), a virtual service (vs) is a set of concrete physical services exposing the
equivalent functionality and same interfaces, that is, a virtual service stands for a
conceptual function without actual implementation. The relationship between a vir-
tual service and its physical services can be expressed as follows:

vs={ps| fi(ps)}. (2)

In (2), f1 is a notation indicating physical services which hold the same interfaces
and functionalities. However, physical services under the same virtual service may
have different QoS capabilities due to diverse physical hardware, software, price,
availability, reputation, etc.

3.2 Composite service vs. atomic service

Composite service (cs) is the new value-added service defining the interoperabil-
ity and interactions between existing elementary services by sophisticated workflow
process logic. Accordingly, individual services participating in a composite service
are called atomic services (as). A composite service can then be described as

cs=(AS, @) @ :process logic. 3)

Here, AS is the set of participant atomic services; and the notation @ denotes work-
flow process logic that defines the interactions among all atomic services. The work-
flow process logic, namely workflow patterns, will be detailed in Sect. 3.4. It is noted
that a composite service can also be as an atomic service participating in another
larger workflow services.

In ServiceFlow, not only physical service but also virtual service can act as atomic
service in grid workflow. This can be described as

AS = {as | (as € VS) V (as € PS)}. “)

Figure 1 illustrates a sample of grid workflow service, cs = (AS, @),AS =
{psy,vs1, vs2, ps,}. Here vs; = {pss3, psy} and vsy = {pss, ps¢, ps;} are virtual ser-
vices and executed concurrently, and ps; ~ ps; are physical services.

3.3 Grid service

In ServiceFlow, grid service can be supported in different granularities, i.e., compos-
ite services and atomic services.

Grid Service = {gs | (gs€AS) Vv (gs e CS)}. 5)

Figure 2 depicts our ServiceFlow grid service model. In general, grid hardware
environments tend to be heterogeneous and distributed, encompassing a variety of
devices, e.g., computers, instruments, mobile devices, sensors, storage systems, and
networks. At the software layer, there may be diverse operating systems (e.g., Unix,
Linux, Windows, and embedded systems), hosting environments (e.g., J2EE and

@ Springer

376 H. Cao et al.

Fig. 1 Sample of hybrid -~
service-oriented grid workflow

®

®

bttt}

M o —————————

virtual service physical service state
Fig. 2 Grid service model
Grid Service &
Y
cf'é
cj-\c:‘ ﬁé‘\“c
Atomic Composite Service o & .
Service (Workflow) = Ny
Y .:3\‘5\
&
Web WSRF &
service service qq.\"'
o
<)
OS, File System, Database, g—"‘é
Application (in C++, Java,...), etc. Q:L\‘
Processor Memory/ Networks
Power Storage Links

.NET), file systems (e.g., FAT32, NTFS, and Ext3), databases, application programs,
and so forth. Through SOA technologies, heterogeneous hardware and software re-
sources can be encapsulated as open, standard-based (XML, WSDL, SOAP, HTTP,
etc.), loosely coupled web services and WSREF services, which are discoverable au-
tonomous and composable entities. Physical/virtual services are concrete/abstract
web services and WSRF services. Both of them acting as atomic services can par-
ticipate in hybrid service composition.

3.4 Grid workflow patterns

Workflow patterns prescribe the process logic of composite service in which a series
of atomic services taking place. Aalst et al. presented 20 basic workflow patterns
[20], such as fork, AND-join, XOR-split, XOR-join. In our grid platform, as shown
in Fig. 3, from a different view, we propose six elementary structured patterns, which
are sequence, condition, iteration, concurrency, synchronization, and triggering. We

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 377

(=
(_;; a1 a1 a2 I%|
'f a1l
a2
%

(a) Sequence (b) Condition (c) Iteration
% Q)ém
al a2 al a2 a1 a2
(d) Concurrency (f) Synchronization (f) Triggering

Fig. 3 Grid workflow patterns

adopt Petri Net [21] to describe the workflow model, where a transition indicates the
execution of an atomic service.
The six workflow patterns are described as follows:

e A sequence pattern consists of atomic services executed sequentially, which is de-
noted as a; — as.

e A condition pattern supports alternative routing between atomic services, which is
denoted as aj V ap.

e An iteration pattern supports repeated performance of a specified iterative atomic
service, which is denoted as coa;.

e A concurrency pattern provides parallel execution of atomic services, which is
denoted as aq ||as.

e A synchronization pattern provides coordination execution among atomic services,
especially for atomic service sharing critical sections, which is denoted as a; //a;.

e A triggering pattern provides execution based on external events. A trigger is an
external condition leading to the execution of an enabled atomic service. The most
common triggers are based on time and message. An atomic service triggered
based on time is invoked at a predefined time, which is denoted as ®aj. An atomic
service triggered based on message is invoked at the coming of a specific message,
which is denoted as Qas.

@ Springer

378 H. Cao et al.

Fig. 4 Architecture of

ServiceFlow [Grid Workflow Client]

Workffow b ponker 0P shate
Deplogment subnfjssion notificftion

N

[Workflow BPEL Engine I

—

’I InfoCenier

——— B

= Virtual Service<”

- -
p i —

!

[Ser\«'ice Selection Agem]

.) ____A_-____-\
— T T — L~

——— ~ g - |
G x 3 e]
o Web Service < :‘WSRI- Services |
B
= P

e i Jl‘hysicul Service ~~—x" "~ |
e e~ A i i

Service Container

WSRF.NET

A TR A

It is worth mentioning that all these elementary grid workflow patterns can be
nested and combined recursively.

4 ServiceFlow architecture

As shown in Fig. 4, the architecture of ServiceFlow is comprised of five major com-
ponents: Grid Workflow Client, Workflow BPEL Engine, Service Selection Agent,
InfoCenter, and Service Container.

Grid Workflow Client is the interface between ServiceFlow system and workflow
end-users, mainly responsible for grid workflow process design and deployment,
workflow job submission, monitoring, notification, etc. Moreover, we offer a GUI-
based workflow design toolkit with drag-and-drop mechanism, called Workflow De-
signer, to facilitate common users to describe workflow process logic and to generate
BPEL scripts in a visible way.

Workflow BPEL Engine aims to provide a robust grid workflow runtime environ-
ment capable of enacting and executing workflow process instances, passing mes-
sages among participators, monitoring and notifying the state of services and jobs,
managing life-cycle of composite services, issuing secure policies, handling events
and exception, logging, and so forth. In ServiceFlow, ActiveBPEL [22] is adopted and
extended to support WSRF services and virtual services in grid workflow. Because
JSDL (Job Submission Description Language) [23] can be used for specifying job
requirements and it can be extended to describe some special attributes, we propose
WISDL (Workflow JSDL) for end-users to describe workflow job and QoS require-
ments. After receiving a submitted job, WISDL Parser will start to analyze the job
description and the QoS requirements.

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 379

Service Selection Agent is responsible for evaluating QoS of physical services
and consequently making decision to determine the most qualified physical service,
which should be called at the workflow job runtime. When the execution of a work-
flow job invokes a virtual service, Service Selection Agent selects services through
two phases: Pre-matching phase and QoS-based service selection phase. Service se-
lection and scheduling will be detailed in Sect. 5.

InfoCenter, similarly to Monitoring and Discovery Service (MDS) in GT4, is
designed to support registration, discover workflow engines and grid services, and
record the track of workflow jobs execution.

Service Container provides the runtime environment to host grid services and ad-
ministration, including grid services remote and hot deployment, message passing,
security configuration, life-cycle management, and SOAP engine management. In
our grid platform, two categories of third-party service containers are supported: one
is the standard web service container, e.g., Apache’s Axis, IBM’s Websphere, Mi-
crosoft’s .NET, and BEA’s WebLogic Server; the other is the WSRF-compliant ser-
vice container, e.g., Globus Toolkit container. In each Service Container, a probing
program called Monitoring Service acting as sensor is deployed to supervise run-time
physical resources and other environment attributes. With a heartbeat mechanism, the
collected information is reported to InfoCenter.

5 Service selection model

As described in Sect. 4, when a grid workflow job invokes a virtual service, Service
Selection Agent will evaluate QoS of each physical service and make the dynamic
binding through pre-matching and QoS-based service selection.

5.1 Pre-matching

Pre-matching is designed to choose qualified physical services according to their sta-
tic capacities and dynamic resource capacities, which are detailed as follows:

e Static capacities are the fundamental and original attributes of physical services
and, in general, are constant and persistent. Static capacities can be heteroge-
neous hardware resource and software environment, such as CPU architecture,
CPU clock speed, number of processors, overall physical memory, overall disk
space, operating system version, and file system. After a physical service is pub-
lished, metadata of static capacities are registered into InfoCenter.

e Dynamic capacities are the runtime attributes of physical services, which may
change over time. Generally, dynamic capacities can be physical service’s real-
time characteristics such as accessibility, available CPUs, spare disk space, and
network runtime bandwidth. Metadata of dynamic capacities are supervised by
Monitoring Service and recorded in InfoCenter.

According to the job requirements of static capacities and dynamic capacities de-
scribed in WISDL, when the execution of a grid workflow job invokes a virtual ser-
vice, Service Selection Agent executes the pre-matching selection and finds a set of

@ Springer

380 H. Cao et al.

available physical services as candidates. This process can be described as follows:
VScompetent = {pS :PS| (ps € vs') A (s Rsaiic) A (ps> Rdynamic)}- (6)

Here vs’ is the virtual service containing a set of physical services, VScompetent 18 the
set of candidate physical services, the notation t is used to denote satisfaction, Ratic
and Rdynamic are the requirements for static and dynamic capacities, respectively.

5.2 QoS-based service selection

Following the pre-matching phase, QoS-based service selection phase is executed to
evaluate the multi-QoS metrics and to select the most qualified physical service from

VScompetent -
5.2.1 Multi-criteria QoS model

In ServiceFlow, a multi-criteria QoS model is proposed to evaluate the candidate
physical services, under which QoS is classified into five essential criteria, which are
response time, cost, success ratio, availability, and reputation.

(1) Response Time. Response time refers to the duration from the moment when
an atomic task is submitted until the results are received. In general, response
time value (V7) involves two aspects, the execution time (7exe) and the data
transmission time (7iraps), as expressed in (7).

V1 = Texe + Tirans,

Datainput + Dataoutput T @
Bandwidth fatency:

Ttrans =

Here, Texe is advertised by physical services or can be inquired by provided
method (refer to [18]), and Tirans includes data transfer time and network la-
tency (Tlatency), including the communication setup cost and the propagation
time, which can be calculated by data volume and estimated by an arithmetic
mean of the historical records, respectively.

(i) Cost. The execution cost value (V) is the price for invocation of physical ser-
vices. In ServiceFlow, InfoCenter gets the price when service providers publish
physical services.

(iii) Success Ratio. The success ratio value (Vg) indicates the probability that an
atomic task or job can be executed correctly by a physical service, which is
measured by the historical execution records, as shown in (8).

_ Nsuc
N Total

Vs ()

Here, Ngy is the number of jobs completed successfully, and N, is the total
number of submitted jobs.

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 381

(iv) Availability. The availability value (V4) indicates the probability that a physical
service is available when invocated, which is defined as follows:

MTTF

Vo= e
MTTF + MTTR

©))
In ServiceFlow, MTTF (Mean Time To Failure) and MTTR (Mean Time To
Recovery) can be obtained from the physical service’s execution log.

(v) Reputation. Depending on the experiences of end-users, reputation is the ap-
praisal information indicating the trustworthiness of a physical service, which is
collected through a feedback mechanism. The average reputation value (Vg) of
a physical service is defined as follows:

_ 2i=i Vo)
L0

V& (10)
Here, V() is the service’s reputation value ranked by the ith end-user, and n is
the number of the users that give grades.

5.2.2 SQSA: synthesized QoS selection algorithm

QoS criteria mentioned above describe the quality of a physical service from five as-
pects, and the measurement rule for each aspect is significantly distinct. Therefore,
QoS-based service selection becomes a multi-objective decision-making (MODM)
problem. AHP [4] is regarded as an outstanding approach for evaluating complex
multi-attribute alternatives, and has been extensively used in MODM problem. In this
section, we propose Synthesized QoS Selection Algorithm (SQSA) based on AHP,
to quantitatively evaluate the synthesized QoS of each physical service and conse-
quently to make the final selection.

The main procedures in SQSA include 6 steps, which are establishing the struc-
tural hierarchy model, determining criterion weight, establishing the comparison ma-
trix, checking the consistency, calculating synthesized QoS values, and making ser-
vice selection.

5.2.2.1 Step 1: establishing the structural hierarchy model As shown in Fig. 5,
the structural hierarchy model is composed of three levels. Level 1 shows the candi-
date physical services, which are psy, ps,, ..., ps,. Level 2 represents five QoS crite-
ria, which are response time, cost, success ratio, availability, and reputation. Level 3
stands for the synthesized QoS values for each candidate physical service.

5.2.2.2 Step 2: determining the criterion weight In general, different users may
hold different perspective on the weight (importance) of each QoS criterion. There-
fore, in SQSA, the weight of each QoS criterion in level 2 derives from the job sub-
mitter’s requirements. We use Rqos to denote the QoS requirement, and three ranks,
Highest (H), Moderate (M), and Low (L), are designed to specify the demand for
each QoS criterion. For instance, Rqos = {H, H, M, M, L} means the user requires a
service with a short response time, a low cost. However, the user requires a moderate

@ Springer

382 H. Cao et al.

Fig. 5 Structural hierarchy Level 3 Synthesized QoS Values of Physical Services
- /“\
Respnose Success A .
Level 2 I Cost . Availability Reputation
I'ime Ratio
Level 1 psi ps: . PSi CUPS vee PSaa PSa

success ratio and availability, and does not care too much about reputation. The nota-
tions of Wr, W, Wg, W4, and Wg are used to denote the weight values of each QoS
criteria, respectively, with the overall summation of 1. To distinguish H, M, and L,
certain relationships are set up between two of them, as shown in (11):

Wr +We+Ws+ Wy 4+ Wr=1,

Wr, We, W, Wa, Wpe{H,M, L}, (11)
H M 3
M L 2

For instance, if an end-user specifies the importance for each QoS criterion as
Rqos ={H, H, M, M, L}, from (11), we can obtain each weight values Wr = W¢ =
0.265, Wg = W4 =0.176, and Wr =0.118.

5.2.2.3 Step 3: establishing the comparison matrix To compare the capability of
each QoS criterion between two physical services ps; and ps;, as shown in (12), we
use E, to denote the excellent ratio. Here V; and V; are the QoS values for ps; and
psj,as introduced in Sect. 5.2.1. It is noted that for response time (V7) and cost (V¢),
the higher the value, the lower the quality.
V-Vl
p 9

max(V;, V), Vi, V;eVrorV;,V;eVc,

P= I min(Vi, V). Vi.VjeVsor Vi,V e Vaor Vi,V € Vg,

E,
(12)

Here, pairwise comparison is used to compute the weight factors for evaluation. Ta-
ble 2 presents how the pairwise comparison scale in our proposed excellent ratio
matches Saaty’s 1 to 9 numerical recommendations [4].

According to Table 2, for any QoS criteria, the pairwise comparison matrix (A)
can be constructed, as shown in (13). Here a;; is the preference weight value of ps;
compared to ps;.

a]l 6112 aln
a ayp ... ay 1
A=| | . .| a@j>0,a5i=—,a;;=1. (13)
: : . aij
anl dn2 Qnn

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 383

Table 2 Pairwise comparison scale for preferences

Excellent ratio (E;) Preference weight Meaning

0 1 Equally preferred

(0, 0.05] 2 Equally to moderately preferred
(0.05, 0.10] 3 Moderately preferred

(0.10, 0.15] 4 Moderately to strongly preferred
(0.15, 0.20] 5 Strongly preferred

(0.20, 0.25] 6 Strongly to very strongly preferred
(0.25, 0.30] 7 Very strongly preferred

(0.30, 0.35] 8 Very to extremely strongly preferred
(0.35, 00) 9 Extremely preferred

Reciprocals Reciprocals for inverse comparison

Then, we adopt Asymptotic Normalization Coefficient (ANC) to calculate eigen-
vectors (W) of matrix (A), as shown in (14).
aijj

bij ==,
T Y akj

i,j=1,2,...,n,

n
wi=2bij, i,j=12,...,n,
P (14)

Wi
Z;l‘:l wj’

T
W=[w,wy,...,w,]" .

w; = i,j=1,2,...,n,

5.2.2.4 Step 4: checking the consistency The consistency index (CI) of the compar-
ison matrix (A) is calculated as follows:

A —
cp=ltmx "1 (15)
n—1
Here Amax is the maximum eigenvalue of the comparison matrix (A), and 7 is the
matrix size. On the basis of CI and average random index (R]) [4], consistency esti-
mation can be checked by the consistency ratio (CR), which is

CI

CR=—.
RI

(16)
If (CR < 0.1), the comparison matrix is considered to be consistent. Otherwise ad-
justments should be made in the comparison matrix (A).

In ServiceFlow, a Comparison Matrix Consistency Adjustment Algorithm (CM-
CAA) is designed to adjust the comparison matrix (A) when it is inconsistent. The
pseudo code for CMCAA is as follows.

@ Springer

384 H. Cao et al.

Table 3 Synthesized QoS value for each candidate physical service

Criterion weight Synthesized QoS value
Wr Wc Ws Wa Wr

Psi w]T wlc wf wfx w]R WTw]T + ch]C + Wswf + WAuui4 + WRw{e
§2%) wg wg wg w? w2R Wng + chzc + Wswzs + WAwé4 + Wp wé‘)
DSn wl w§ w wi wk Wrwl + Wew$ 4+ Wews + Wawd + Wrwk

Input: the inconsistent matrix A = (a;;).
Output: the consistent matrix A" = (a; ;)
1.for (i =1ton, j =1ton)do /according to (14)
2. construct column normalized matrix B = (b;;);

3. construct eigenvector W = [wy, wa, ..., wy];
4. construct derived matrix C = (¢;;), ¢ij = bij/w;;
5. end for

6. double maxDeviationVaule = 0; intp =0, g =0;
7.for(i=1ton,j=1ton)do

8. double deviationValue <[¢;; — 1[;

9. if (deviationValue > maxDeviationVaule) then
10. maxDeviationValue < deviationValue; p < i; g < j;
11. end if

12. end for

13.if (cpg > 1) //construct matrix A’

14. if (ap;%1 ==0) then a;,q <~ dpg;

15. elsea,, < 1/(1/apg +1);

16. end if

17.if (cpg < 1)

18. if (apg%1 ==0) then a),, < ap, + 1

19. else a},q <~ 1/(1/apy —1);

20. end if

21, ay, < 1/a,,;

22.if (CR4 < 0.1) then return matrix A’;

23. else A < A’, goto 1 to take the next turn.

5.2.2.5 Step 5: calculating synthesized QoS values Based on the weight value of
each QoS criterion, i.e., Wy, W, Wg, W4, and Wg in Step 2 and the eigenvectors
of each pairwise comparison matrix, i.e., wT wC wS w4, and WX in Step 3, the
synthesized QoS value for each candidate physical services can be calculated, as
shown in Table 3.

Here W/ = [w!, wl, ..., w]] indicates the eigenvector of matrix (A) (see (14))
for a given QoS metric. The last column of Table 3 shows the resulted synthesized

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 385

QoS values for each candidate physical services. Thus, a physical service that has a
higher synthesized QoS value will have a higher selection priority.

5.2.2.6 Step 6: making service selection Finally, the QoS-based service selection
with SQSA can be expressed as

PSselected = SSQSA (VScompetent)- (17

Here, pSgelectea denotes the physical service to be selected with the highest synthe-
sized QoS value, and fsqgsa is the selection maker implementing SQSA.

6 Performance evaluation

In this section, we evaluate the performance of ServiceFlow in a real grid environ-
ment. The testbed is based on the resources shared over China Education and Re-
search Network (CERNET), covering more than 1500 universities, colleges and in-
stitutes in China. The bandwidth of CERNET backbone is 10 Gbps. The testbed in-
cludes three sites, the Cluster and Grid Computing Lab (CGCL), the National Hydro
Electric Energy Simulation Lab (NHEESL), and the Grid Center of China National
Grid (GCCNGrid), which are located in different areas in Wuhan, China. CGCL has
a 38-nodes cluster connected by 100 Mbps Ethernet. Each node is equipped with
1 GHz Pentium III processor and 512 MB memory. The operating system is Red Hat
Linux 9.0. In NHEESL, a 47-nodes cluster is connected by 1 Gbps Ethernet. Each
node is equipped with 1.73 GHz Itanium processor and 1 GB memory. The operating
system is AIX 5.2. GCCNGrid has a 36-nodes cluster connected by 1 Gbps Ether-
net. Each node is equipped with 2.4 GHz AMD processor and 2 GB memory. The
operating system is Solaris 10. It should be noted that the testbed is not entirely ded-
icated to our experiments; hence the performance and availability of resources for
ServiceFlow change from time to time.

6.1 Test cases

Our test cases focus on the image processing, which is a representative workflow
application in ChinaGrid. The legacy program PovRay [24] and ImageMagick [25]
are encapsulated as grid services. Web services for image processing and its func-
tion descriptions in our test cases are listed in Table 4. In addition, TransferSer-
vice based on GridFTP is integrated into the workflow as a WSRF services to per-
form data transfer. All these services are organized as virtual services, for each of
them a set of physical services are implemented and deployed in our testbed. Vir-
tual service and its related physical services are registered in InfoCenter. Take Char-
coalService as an example, under it, a number of physical services identified by
http://HostIP:Port/services/CharcoalServicelD and its hardware environment prop-
erties are published. Here, HostIP:Port represents a real node of our testbed where
a concrete physical service is available. As mentioned in Sect. 4, for each node, a
probing program supervises physical services’ run-time attributes, and reports it to
the InfoCenter using a heartbeat mechanism.

@ Springer

http://HostIP:Port/services/CharcoalServiceID

386

H. Cao et al.

Table 4 Image processing services

ServiceName Option parameter Description

PovRayService -input -output Produce high-quality images by ray-tracing
SolarizeService -solarize threshold Negate all pixels above the threshold level
SpreadService -spread amount Displace image pixels by a random amount
SegmentService -segment values Segment an image

SketchService -sketch geometry Simulate a pencil sketch

SwirlService -swirl degrees Swirl image pixels about the center
NegateService -negate Replace every pixel with its complementary color
CharcoalService -charcoal radius Simulate a charcoal drawing

ShadeService -shade degrees Shade the image using a distant light source

¢t

>3

¢

>

¢

sequence

receivel
assign

PovRay Service

1

assign

1

SegmentService

1

«p | assign

]
SketchService
1
“» | assign
1

SwirlService

“p | assign

¢

>

Fig. 6 Test case models

]
CharcoalService

assign

|

reply 1

model I

sequence
1
¢*, receivel
sequence
&5 assign
|
¢, PovRayService
" switch
5 - ol o
|
| sequence sequence
-7 assign &5 assign
|
!, . .
%, SketchService %) SolarizeService
)

i . .
-+ assign +assign

« flow
sequence sequence sequence
1 1

ASegmentService @&, SwirlService 5, SpreadService
| |

<+ assign &9 assign Shassign

|
fs‘l‘ransi:'erService % TransferService | & Tl‘ansflerSel‘\'ice
Fassign 9 assign “#assign

%) Charcoal Service

5 NegateService & ShadeService

-9 assign

@ fcplyl

model 11

In order to conduct experiments on workflows with different size and complexity,
two workflow test cases, model I and model II, are designed (as shown in Fig. 6).
Atomic services in model I are executed sequentially. Three elementary workflow
patterns, —sequence, condition, and concurrency—are involved in model II.

6.2 Performance evaluation results

To evaluate the performance of hybrid grid service composition, we conduct the ex-
periments to compare service selection through static binding and dynamic binding.

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 387

In static binding, all participant services are determined in advance. In this case, all
atomic services in model I and model II are concrete physical services. In contrast,
dynamic binding supports virtual services in service composition to establish abstract
grid workflows. In such case, all atomic services in model I and II are virtual services.

In dynamic binding, a random selection mechanism (RDM) for comparison is
designed to implement the random physical service selection without QoS metric
measurement after the pre-matching phase. The selection with RDM can be expressed
by (18).

PSselected = JRDM (VScompetent)- (18)

Here vscompetent i the result set of candidate physical services (see (17)), and frpm
is the decision maker implementing the random selection.

Under each virtual service, we consider a variable number of physical services,
ie., 5, 10, 15, 20, 25, 30, 35 physical services to be deployed at different nodes
of our testbed. The QoS requirement of workflow job in each case is specified as
Rqos ={H, H, H, H, H}, that is, we give equal weight (importance) to the different
QoS attributes. In addition, an identical input file (in *.pov format) is submitted to the
workflow services. For each test, experiments are executed 100 times and the average
values are reported.

Figures 7 and 8 show the response time in model I and model II when using
static binding, dynamic binding with RDM, and dynamic binding with SQSA. For
comparison, the minimal response time for each case is obtained at the case of
Rqos ={H, L, L, L, L}, that is, the response time is the only QoS metric under con-
sideration. As SQSA selects the physical service with the highest synthesized QoS
value, it has relative lower response time, only marginally longer than the minimal
response time. The response time for RDM is longer, however it outperforms the
static binding because it can take advantage of pre-matching phase which can filter
incompetent physical services out. Generally, as the number of physical services cor-
responding to each virtual service increases, the response times of RDM, SQSA, and
Minimum decrease gradually because it is more likely to select physical service with
higher computing capability. The results for static binding undergo a small fluctuation
over time because the testbed is not entirely dedicated to our experiments.

In Figs. 9 and 10, we show the cost of both model I and model II. In our ex-
periments, the price for each physical service can be obtained from InfoCenter. The
minimal cost values for comparison are obtained when the QoS requirement is spec-
ified as Rgos ={L, H, L, L, L}, that is, the price is the only QoS metric under con-
sideration. The total cost of workflow job is calculated according to the execution
trace. In general, as the number of physical services under each virtual service in-
creases, SQSA and Minimum experience decreasing costs because more physical
services with lower prices are available. When the number of available physical ser-
vices changes, the cost resulted from static binding keeps constant. RDM has similar
cost values as static binding because the QoS metric of cost at application level is not
taken into account in pre-matching phase.

The execution success ratio for model I and model II are shown in Figs. 11 and 12.
As the number of physical services under each virtual service increases, SQSA im-
proves the success ratio up to 3% higher than RDM in both model I and model II. This

@ Springer

388 H. Cao et al.

Fig. 7 Response time for 520,000 — T T T T T T
model I
510,000 1
W
£
» 200,000 —*— Static T
= —— Dynamic-RDM
i}
2] —®— Dynamic-SQASA
% 480,000 \\-. —— Minimum T
&
480,000 -]
47D‘ﬂﬂﬂ 1 L 1 1 1 1 1
5 10 15 20 25 30 35
Fig. 8 Response time for
model IT 140,000 1
135,000 ¢ .
w
E
£ 130,000 TSt]
= —*— Dynamic-RDM
g —®— Dynamic-SQ5A
=1 L . it
2 125000 — —*—Minimum]
& -
120,000 -
115,000 — L L L

5 10 15 20 25 30 35
Number of Physical Services under each Virtual Service

is because at QoS-based service selection phase, SQSA takes the factor of success ra-
tio into account when calculating synthesized QoS value for each physical service.
RDM outperforms the static binding because inaccessible or collapsed physical ser-
vices have been removed at pre-matching phase. Due to the dynamic feature of our
testbed, the success ratio under static binding suffers a small fluctuation.

Because atomic services in model I are executed sequentially and there is no non-
linear workflow pattern within it, we take it as the test case to comparatively evaluate
the performance of Integer Programming, GA, and SQSA (based AHP). As adopted
in [19], we also use GALIib [15] and LPSolve [16] to implement GA and Integer
Programming, respectively. Figure 13 shows the average running time to achieve a
solution when adopting these three algorithms. From the experimental result, it is ob-
served that SQSA is the fastest because of its low complexity. When the workflow
size and the number of concrete services are limited, Integer Programming is faster
than GA because there is no need to use non-linear aggregation functions. In con-

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 389

Fig. 9 Cost for model I T T T T T . ,
7000+ :: ™ J
6500 +]

e Stati

{000 | Static ,]
—_ —¥— Dynamic-RDM
E . .
.D_UJ, 5500 | l\\\\ D_yr?amn: SQSA |
% i —*— Minimum
o
C 5000 \\-.\\]

‘“-\1

wsonl \‘\‘\ i\m‘.ﬁ-ﬁ_‘.—. T

4000 - ‘\\'R.—. 1

3500 — L L 1 I . 1

5 10 15 20 25 30 35
Number of Physical Services under each Virtual Service

Fig. 10 Cost for model II 14.000f T T T T T T]
13,000 r*-_" J
12,000+ —#*— Static J

—— Dynamic-RDM

Z 1.000F —=— Dynamic-SQSA 1
;B, —*— Minimum
+ 10,000F = J
@ ‘———-k\q\
Q -

9,000 kl_i i

~——_

8,000} e

7.000F J

5,000 — . L L L 1 L

5 10 15 20 25 30 35

Nurmber of Physical Services under each Virtual Service

trast, when the number of physical services under each virtual service increases, the
time cost of GA and SQSA show a slight increase, however, Integer Programming
undergoes a fast exponential growth due to the increment of variables.

7 Conclusion and future work

Based on service composition, a grid workflow can be constructed by a number of
atomic services with workflow process logic. Due to the highly heterogeneous and
dynamic features of the grid, multiple services may provide similar functionality, but
with different non-functional properties. In this paper, we present a QoS-based hy-
brid service-oriented grid workflow system called ServiceFlow, which enables con-
struction of QoS-aware workflow at both abstract and concrete service level. Virtual
service is proposed to gather and delegate multiple concrete physical services provid-
ing equivalent functionality but with diverse QoS capabilities, and then it can be used

@ Springer

390 H. Cao et al.

Fig. 11 Success ratio for 96 — T T T T T T
model I
g5+ | —®— Dynamic-SQSA i
—*— Dynamic-RDM
4 | J
3 —— Static
. w———a
93t T 4

/r

Success Ratio (%)
i~

a1t 1
ot g
g9 e g " —————*
SB 1 L L 1 1 1 L
5 10 15 20 25 30 35
Nurnber of Physical Services under each Virtual Service
Fig. 12 Success ratio for 96 — T T T T v T
model IT
g5} | —=— Dynamic-SQSA]
—*— Dynamic-RDM
94t | —e—Static .

w
o
T

w
pury
T

Success Ration (%)
o
()

w
o
T

w
w
T
'

5 10 15 20 25 30 35
Number of Physical Services under each Virtual Service

w
(==}

to participate in service composition. In addition, two phases of service selection,
pre-matching phase and QoS-based dynamic service selection phase, are designed to
implement service dynamic bindings at runtime. The pre-matching phase is mainly
responsible for choosing qualified physical services to be candidates according to
their functionalities. QoS-based service selection phase evaluates the multi-QoS met-
rics and selects the most qualified physical service.

In the future, we plan to incorporate the AHP into GA, i.e. AHP-GA, to obtain the
near optimal solutions. GA is adopted first to explore and exploit alternative services
heuristically. AHP is then applied to evaluate the fitness of the alternative services.
Another direction for further work is to improve QoS of grid workflow involving
services from different virtual organizations with diverse trust policies and security
mechanisms.

@ Springer

ServiceFlow: QoS-based hybrid service-oriented grid workflow 391

Fig. 13 Average running time B00 — T T T T T T
500k —— Integer Programming]
. —&— Genetic Algorithrm
wn
E —=— SQSA (AHP)
o 4001 .
=
=
g
‘£ 300F i
c
=3
¥
=
@ 200F]
)
>
I
100+ .
-
U 1 1 1 1 1 1 1
5 10 15 20 25 30 35

Number of Physical Services under each Virtual Service

Acknowledgements This paper is supported by ChinaGrid project, the National High-Tech Research
and Development Plan of China under Grant 2006AA01A115, Program for New Century Excellent Talents
in University under Grant NCET-07-0334, NSF of China under Grants 60673174 and 90412010.

References

10.

12.

. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organiza-

tions. Int J High Perform Comput Appl 15:200-222. doi:10.1177/109434200101500302

. Foster I, Kishimoto H, Savva A, Berry D et al (2006) The open Grid services architecture version

1.50. Available: http://forge.gridforum.org/projects/ogsa-wg

. Jin H (2004) ChinaGrid: making Grid-computing a reality. In: Proc int conf Asian digit libr, Shanghai,

China. LNCS, vol 3334. Springer, New York, pp 13-24

. Saaty TL (1991) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9-26.

doi:10.1016/0377-2217(90)90057-1

. Andrews T, Curbera F, Dholakia H, Goland Y, Klein J, Leymann F, Liu K, Roller D, Smith D, Thatte S,

Trickovic I, Weerawarana S (2003) Business process execution language for Web services version 1.1.
BEA Systems, IBM Corporation, Microsoft Corporation, SAP AG, Siebel Systems

. Krishnan S, Wagstrom P, Laszewski GV (2002) GSFL: a workflow framework for Grid services.

Technical Report Preprint ANL/MCS-P980-0802. Argonne National Laboratory, August 2002

. Fahringer T, Qin J, Hainzer S (2005) Specification of Grid workflow applications with AGWL: an

abstract Grid workflow language. In: Proceedings of international symposium on cluster computing
and the Grid (CCGrid 2005), May 9-12. IEEE Computer Society, Los Alamitos

. Beco S, Cantalupo B, Giammarino L, Matskanis N, Surridge M (2005) OWL-WS: a workflow on-

tology for dynamic grid service composition. In: Proceedings of the first international conference on
e-science and Grid computing (e-Science’05), Washington, DC, USA. IEEE Computer Society, Los
Alamitos, pp 148-155

. Amin K, Hategan M, Laszewski GV, Zaluzec NJ, Hampton S, Rossi A (2004) GridAnt: a client-

controllable Grid workflow system. In: Proceedings of the 37th Hawaii international conference on
system science

Cao J, Jarvis SA, Saini S, Nudd GR (2003) Gridflow: workflow management for grid computing. In:
Proceedings of the 3rd international symposium on cluster computing and the Grid, pp 198-205

. Malewicz G, Foster I, Rosenberg AL, Wilde M (2007) A tool for prioritizing DAGMan jobs and its

evaluation. J Grid Comput 5(2):197-212. doi:10.1007/s10723-007-9065-9

Majithia S, Shields MS, Taylor 1J, Wang I (2004) Triana: a graphical Web service composition and
execution toolkit. In: Proceedings of international conference on Web services, San Diego, USA,
2004

@ Springer

http://dx.doi.org/10.1177/109434200101500302
http://forge.gridforum.org/projects/ogsa-wg
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://dx.doi.org/10.1007/s10723-007-9065-9

392

H. Cao et al.

13.

14.

19.

20.

21.
22.
23.

24.
25.

Lorch M, Kafura D (2002) Symphony—a Java-based composition and manipulation framework for
computational Grids. In: Proceedings of the 2nd IEEE/ACM international symposium on cluster com-
puting and the Grid, Berlin, Germany, May 2002, pp 21-24

Yu J, Buyya R (2004) A novel architecture for realizing Grid workflow using Tuple spaces. In: Pro-
ceedings of the 5Sth IEEE/ACM international workshop on grid computing (GRID2004). IEEE Com-
puter Society, Los Alamitos

. GALIb (2008) Available: http://sourceforge.net/projects/java-galib
. LPSolve (2008) Available: http://sourceforge.net/projects/Ipsolve
. Casati F, Shan MC (2001) Dynamic and adaptive composition of e-services. Inf Syst 26(3):143—163.

doi:10.1016/S0306-4379(01)00014-X

. Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) QoS-aware middleware

for Web services composition. IEEE Trans Softw Eng 30(5):311-327. doi:10.1109/TSE.2004.11
Canfora G, Di Penta M, Esposito R, Villani ML (2005) An approach for QoS-aware service composi-
tion based on genetic algorithms. In: Proceedings of the genetic and computation conference (GECCO
2005). ACM Press, Washington

Aalst WMP, Hofstede AHM, Kiepuszewski B, Barros AP (2003) Workflow patterns. Distrib Parallel
Databases 14(1):5-51

Peterson JL (1981) Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs
Active BPEL (2006) Available: http://www.activebpel.org/

Job submission description language (JSDL) specification version 1.0 (2006) Available: http://www.
ogf.org/documents/GFD.56.pdf

PovRay (2007) Available: http://www.povray.org/
ImageMagick (2007) Available: http://www.imagemagick.org/

Haijun Cao received his Bachelor degree at the School of Computer
Science and Technology from Huazhong University of Science and
Technology (HUST) in 2003. Currently, he is a Ph.D. candidate in the
Cluster and Grid Computing Lab at HUST, China. His research interests
include distributed computing, workflow, and service-oriented comput-
ing.

Hai Jin is Professor of Computer Science and Technology at the
Huazhong University of Science and Technology (HUST) in China.
He received his Ph.D. in Computer Engineering from HUST in 1994.
In 1996, he was awarded the German Academic Exchange Service
(DAAD) fellowship for visiting the Technical University of Chemnitz
in Germany. He worked for the University of Hong Kong between 1998
and 2000 and participated in the HKU cluster project. He worked as a
visiting scholar at the University of Southern California between 1999
and 2000. Now, he is the chief scientist of the ChinaGrid Project and
Virtualization Technology for Computing System (973 Project). His
research interests include cluster computing and grid computing, P2P
computing, and virtualization technology.

y--\

@ Springer

http://sourceforge.net/projects/java-galib
http://sourceforge.net/projects/lpsolve
http://dx.doi.org/10.1016/S0306-4379(01)00014-X
http://dx.doi.org/10.1109/TSE.2004.11
http://www.activebpel.org/
http://www.ogf.org/documents/GFD.56.pdf
http://www.ogf.org/documents/GFD.56.pdf
http://www.povray.org/
http://www.imagemagick.org/

ServiceFlow: QoS-based hybrid service-oriented grid workflow 393

Xiaoxin Wu received his Ph.D. degree from the University of Cali-
fornia, Davis, in 2001. Between 2002 and 2006, he had been working
as Postdoctoral Researcher in the Department of Computer Science,
Purdue University, where he worked on wireless network privacy and
security. Since 2006, he has been in the Intel Communication Tech-
nology Beijing Lab, working on mobile collaborative computing and
broadband wireless networks. His research interests include designing
and developing architecture, algorithm, and protocol for network per-
formance improvement.

Song Wu is Professor of Computer Science and Technology at the
Huazhong University of Science and Technology (HUST) in China. He
received his Ph.D. degree from HUST in 2003. In 2007, he was awarded
the New Century Excellent Talents in University (NCET). His research
interests include grid computing and virtualization technology.

@ Springer

	ServiceFlow: QoS-based hybrid service-oriented grid workflow system
	Abstract
	Introduction
	Related works
	Grid workflow model
	Physical service vs. virtual service
	Composite service vs. atomic service
	Grid service
	Grid workflow patterns

	ServiceFlow architecture
	Service selection model
	Pre-matching
	QoS-based service selection
	Multi-criteria QoS model
	SQSA: synthesized QoS selection algorithm
	Step 1: establishing the structural hierarchy model
	Step 2: determining the criterion weight
	Step 3: establishing the comparison matrix
	Step 4: checking the consistency
	Step 5: calculating synthesized QoS values
	Step 6: making service selection

	Performance evaluation
	Test cases
	Performance evaluation results

	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

