Exploiting Spatial Locality to Improve Disk
Efficiency in Virtualized Environments

Xiao Ling *, Shadi Ibrahim®, Hai Jin*, Song Wu*, Songgiao Tao*

*Cluster and Grid Computing Lab

Services Computing Technology and System Lab
School of Computer Science and Technology

TINRIA Rennes - Bretagne Atlantique
Rennes, France
shadi.ibrahim @inria.fr

Huazhong University of Science and Technology

Wuhan, 430074, China
{hjin, wusong} @hust.edu.cn

Abstract—Virtualization has become a prominent tool in data
centers and is extensively leveraged in cloud environments:
it enables multiple virtual machines (VMs) — with multiple
operating systems and applications — to run within a physical
server. However, virtualization introduces the challenging issue
of preserving the high disk utilization (i.e., reducing the seek
delay and rotation overhead) when allocating disk resources to
VMs. Exploiting spatial locality, a key technique for improving
disk utilization and performance, faces additional challenges in
the virtualized cloud because of the transparency feature of
virtualization (hypervisors do not have the information about
the access patterns of applications running within each VM).
To this end, this paper contributes a novel disk I/O scheduling
framework, named Pregather, to improve disk 1I/O efficiency
through exposure and exploitation of the special spatial locality
in the virtualized environment (regional and sub-regional spatial
locality corresponds to the virtual disk space and applications’
access patterns, respectively), thereby improving the performance
of disk-intensive applications without harming the transparency
feature of virtualization (without a priori knowledge of the
applications’ access patterns). The key idea behind Pregather is
to implement an intelligent model to predict the access regularity
of sub-regional spatial locality for each VM. We implement
the Pregather disk scheduling framework and perform extensive
experiments that involve multiple simultaneous applications of
both synthetic benchmarks and a MapReduce application on Xen-
based platforms. Our experiments demonstrate the accuracy of
our prediction model and indicate that Pregather results in the
high disk spatial locality and a significant improvement in disk
throughput and application performance.

Keywords—virtualization; disk-intensive; 1/O scheduling; spa-
tial locality; efficiency

I. INTRODUCTION

Virtualization has become a prominent tool in data centers
and is extensively leveraged in cloud environments: it enables
multiple virtual machines (VMs) — with multiple operating
systems and applications — to run within a physical server.
For example, Amazon web services [1] rely on the Xen vir-
tualization hypervisor to provide the VM-based infrastructure
as a service (IaaS) solution, which enables users to lease and
customize their environments in order to run their applications.
Virtualization however imposes new challenges in the schedul-
ing and the allocation of system resources. With the volume
of data growing rapidly and applications becoming more disk-
intensive [2][3], allocating disk resources efficiently while
preserving a high disk throughput becomes of key importance
in virtualized environments.

Exploiting spatial locality is an important technique for
improving disk efficiency and performance (i.e., high spatial
locality results in a significant reduction in seek delay and
rotation overhead, which leads to high disk efficiency and
low power consumption). For example, traditional file systems
often allocate the accessed data of a process as contiguous
blocks if possible, so disk scheduling can easily exploit spa-
tial locality. Unlike traditional environments, in a virtualized
environment achieving high spatial locality is a challenging
task, due to the transparency feature of virtualization which
causes semantic isolation between the hypervisor and guest
VMs. As a result, the block I/O layer lacks a global view of
the I/O access patterns of processes [4]. The lack of coordi-
nation between file systems in both the hypervisor and VMs
reduces the efficiency of exploiting disk locality in virtualized
environments. Moreover, another use has recently emerged:
sharing an infrastructure between multiple applications with
different disk I/O characteristics (mixed applications). A VM
may therefore encapsulate more than one application, which
in turn increases the complexity and irregularity of the I/O
behavior of the VM (e.g., multiple applications, including file-
editing and media streaming, run in a virtual desktop).

Research effort has been directed toward improving disk
efficiency through exploiting spatial locality in virtualized en-
vironments. These efforts use either invasive mode scheduling
(i.e., select the disk pair schedulers within both the hypervisor
and the VM according to the applications’ access patterns
[5][6]), or non-invasive mode scheduling (i.e., schedule the
I/0 requests while treating a VM as a black box [7][8]).
However, the aforementioned solutions target similar types of
applications (mainly read-dominated applications), and can-
not be applied when a VM encapsulates mixed applications
[4][9]. Moreover, they come at the cost of violating the
transparency feature of virtualization. This paper follows this
line of research and contributes to the goal of improving the
performance of disk-intensive applications in virtualized envi-
ronments by enabling efficient disk utilization while preserving
the transparency feature of virtualization and ensuring the
high throughput for complex I/O workloads, including write-
dominated applications or mixed applications. In particular, we
aim at detecting and exploiting spatial locality in virtualized
environments. In this paper we make the following three
contributions to achieve this goal:

1)  We investigate the spatial locality of disk data ac-
cesses in virtualized environments. By tracing the I/O



requests of VMs with mixed applications, we observe
that the disk data accesses are grouped into regions,
bounded by the virtual disk sizes, and within each
region the disk data accesses are grouped into sub-
regions, which correspond to the applications’ access
patterns.

2)  We introduce an intelligent prediction model that
uses a temporal access-density clustering algorithm
to analyze the data access of a VM running mixed
applications. Our model can predict the distribution
of sub-regions with spatial locality within each region
(i.e., detect the sub-regional spatial locality for each
VM) and the arrival times of future requests accessing
these sub-regions.

3)  We propose Pregather, a disk scheduling framework
with a spatial-locality-aware heuristic algorithm in the
hypervisor for exploiting the special spatial locality
(i.e., the regional and sub-regional spatial locality) to
reduce disk seek and rotational overhead in the virtu-
alized environment: Pregather does that — thanks to
our prediction model — without any prior knowledge
of the access patterns of the applications running
within each VM.

We build the Pregather scheduling framework in Xen. Our
evaluations, using both synthetic benchmarks and a MapRe-
duce application (distributed sort), demonstrate the accuracy of
the proposed intelligent prediction model and the throughput
benefits from our heuristic scheduling algorithm: Pregather
achieves high disk spatial locality, and thus improves the disk
utilization and the applications’ performance. For example, in
contrast to the default Xen disk I/O scheduler -Completely Fair
Queuing (CFQ), Pregather achieves throughput performance
improvement by a factor of 1.6x when mixed applications are
running within a VM.

The rest of the paper is organized as follows. Section
IT discusses the related work. Section III zooms on the
disk access patterns in virtualized environments with mixed
applications. Section IV discusses our prediction model and
section V describes Pregather along with the spatial-locality-
aware heuristic algorithm. Section VI details the performance
evaluation. Finally, we conclude the paper in section VIIL.

II. RELATED WORK

Ever since the advent of virtualization technology, a huge
number of studies have been dedicated to improving the
performance of disk-intensive applications in virtualized en-
vironments [4—10]. On one hand, some of these solutions use
invasive mode scheduling to manage I/O requests [S][6][10].
They introduce an additional hypervisor-to-VM interface to
achieve better coordination between the disk scheduler within
both the hypervisor and VMs. However, these solutions can
only be applied when VMs are running the same type of
application. Moreover, they require the hypervisor to be aware
of the applications running within VMs, which harms the
transparency feature of virtualization.

On the other hand, some solutions use non-invasive mode
scheduling to manage the I/O requests in virtualized envi-
ronments without harming the transparency feature of virtu-
alization [4][7-9]. Streaming scheduling (SS) [9] turns any
work-conserving disk scheduler into a non-work-conserving
one based only on the request’s own locality, thus reducing
the disk seek time. SS essentially examines the existence of

a stream by analyzing the characteristics of requests with
relative spatial locality. Antfarm [4] enables the hypervisor to
track the creation and exits of processes in VMs to infer the
information of processes. The process information can help the
disk scheduler at the hypervisor level to check the existence
of read streams and map requests at the right read stream.
However, both SS and Antfarm can only infer read streams,
and cannot be applied for write applications or when mixed
applications are running within a VM.

To the best of our knowledge, analyzing the regularity of
data accesses of VMs has thus far been performed only when
a specific (one) application is running within a VM (such as
online transaction processing, mail server or file migration)
[11-14]. Moreover, exploring the benefits of predicting the
access locality and regularity of processes to exploit the disk
spatial locality (e.g., by facilitating I/O perfecting) has so far
been discussed only in non-virtualized environments [15-17].
These studies cannot be applied in virtualized environments,
because unlike general processes, the access patterns of VM
processes are more complicated and frequently changing. Our
own work focuses on investigating and exploiting the disk
access locality and regularity in virtualized environments when
mixed applications are running within each VM. As far as we
know, we are the first to explore the benefits of the locality
and regularity of data accesses to improve the disk efficiency
in the presence of mixed applications while preserving the
transparency feature of virtualization.

III. ZOoOM ON DISK ACCESS PATTERNS IN VIRTUALIZED
ENVIRONMENTS

In this section, we seek to obtain an overview of under-
standing the disk spatial locality in virtualized environments.
Ideally, we would like to get a rough idea of the disk access
patterns in virtualized environments, and the impact of both
virtualization features and mixed applications on the access
patterns.

Experimental setup. We conduct our experiment in one
physical node, equipped with four quad-core 2.40GHz Xeon
processor, 22GB of memory and one dedicated SATA disk
of 1TB, running CentOS5 with kernel 2.6.18. All results
described in this section are obtained using Xen version 4.0.1
with Blktap AIO driver [18]. Three guest VMs are deployed
within this physical machine. The guest VM is configured
with two virtual CPUs, 1GB memory and 12 GB virtual disk
(the virtual disk is mapped to a default file-backed image).
We set the disk scheduler of VMs to the default Noop'in
order to send requests as early as possible, and set the disk
scheduler of the hypervisor to the default CFQ. As stated
earlier, we want to study the disk access patterns when mixed
applications are running, thus running mixed I/O workloads.
In the experiments, two sequential access applications run on
VM1, a sequential access application and a random access
application run on VM2, and two random access applications
run on VM3. As shown in Table I, we use sysbench [19] to
generate these workloads with different disk access patterns. In

"Noop has recently been used as the default VM scheduler because any
(re)ordering at the VM level will be counterproductive as I/O requests from
several VMs will be managed (dispatched) to the disk device according to
the disk scheduler at the hypervisor level. Thus it is better to simply push the
requests as early as possible, and therefore save CPU cycles and avoid any
conflict that could occur between the I/O schedulers at the hypervisor and the
VM levels.



| Region

VM1 Req & VM2 Req + VM3 Req

Sub-region | J Region

/

/| © vM1Req & VM2 Req + VM3 Req

 BINSARS AR

LBA of Requests

1.28e+09 1.32e+09 1.36e+09 1.40e+09
LBA of Requests

1.28e+09 1.32et+09 1.36et+09 1.40e+09

0 10 20 30 40 50
Arrival Time of Requests (Sec)

0 1 20 30 40 50
Arrival Time of Requests (Sec)

(b) Write-dominated applications: Sub-
regional spatial locality can hardly be
noticed for write applications, especially
for random applications.

(a) Read-dominated applications: VMs
with only sequential applications exhibit
stronger sub-regional spatial locality (i.e.,
sub-regions have smaller ranges) than
VMs with mixed or random applications.
Fig. 1: Disk access patterns of requests in virtualized environ-
ments: The LBAs of the requests from the same VMs can be grouped
into regions.

TABLE 1. The description of the workloads generated by
sysbench

Workload Description

Sequential Read 16 threads sequentially read 128 files, with total size of
(SR) 1 GB

Random Read (R- 16 threads randomly read 128 files, with total size of 1
R) GB

Sequential Write 16 threads sequentially write 128 files, with total size of
(SW) 1 GB

Random  Write 16 threads randomly write 128 files, with total size of 1
(RW) GB

the first experiment (read-dominated applications), VM1 runs
two SR applications, VM2 runs one SR and one RR application
and finally VM3 runs two RR applications. In the second
experiment (write-dominated applications), VM1 runs two SW
applications, VM2 runs one SW and one RW application and
VM3 runs two RW applications. We use the blktrace tool [20]
in order to track the logical block addresses (LBAs) and arrival
times of I/O requests from VMs.

Results. Fig. 1 shows the change in the LBAs of arriving
requests for the three guest VMs in the read-dominated and
write-dominated experiments, respectively.

Our first observation is that the LBAs of requests from the
same VMs can be grouped into regions which are bounded by
the range of disk space occupied by a guest VM image. The
ranges [1.2832 x 10%-1.3057 x 10°], [1.3086 x 10°-1.33 x 10%]
and [1.3594 x 10-1.384 x 10°] represent the regions of VM1,
VM2 and VM3, respectively, for both read-dominated and
write-dominated applications. This is because the hypervisor
file system assigns contiguous disk blocks to the VM image in
order to improve disk efficiency. Accordingly, the virtualized
environment has regional spatial locality across VMs.

Our second observation is that looking at the disk accesses
within each VM, LBAs and arrival times of requests divide the
accessed disk region of each VM into several sub-regions over
time. These sub-regions differ in their ranges and frequencies
of access. The reason is that the file system of a VM also
assigns contiguous virtual blocks to the applications without
being aware of physical disk information, and accordingly
all VM image formats (e.g., RAW, Qcow [21], Fvd [22]) try
to map LBAs of these virtual blocks into contiguous offsets
in the VM image. As these blocks belong to the same VM
(the hypervisor treats a VM as a process), the file system of

the hypervisor accordingly allocates these blocks together in
the physical disk. Furthermore, because different applications
access their own data sub-regions, requests from the same
application have sub-regional spatial locality, especially from
applications with sequential access.

As shown in Fig. 1, in contrast to VM1, both VM2 and
VM3 do not have a clear sub-regional spatial locality (i.e.,
the number and the range of observed sub-regions are higher),
because of the random access of data sets exhibited by random
applications. For example, for read-dominated applications
(Fig. 1(a)) the requests from VM1 are mainly concentrated into
two sub-regions with small ranges: around 1.29 x 10 with a
maximum distance of F0.005 x 109, and around 1.305 x 10°
with a maximum distance of F0.005 x 10°. Meanwhile, the
distribution of the requests from VM3 is concentrated in two
sub-regions: one with small range, around 1.36 x 10° with
a maximum distance of F0.005 x 10%, and the second with
larger range, around 1.379 x 10° with a maximum distance of
F0.05 x 10°. For write-dominated applications, the distribution
of sub-regions and their range are more diverse. Moreover, the
access frequencies of these sub-regions are often changing.
Fig. 1(b) shows that the distribution of sub-regional spatial
locality of VM2 during 0 to 30s is different to that after 30s.
This is due to the transparency feature of virtualization which
leads to a non-deterministic allocation of write data set, in
addition to the impact of the VM caches.

Fig. 1 also shows that some data sub-regions are accessed
with low frequency at the beginning of each region, thus not
having spatial locality. This can be explained due to: (1) the
writing of log files — the journal process running within a VM
periodically writes the logs of the file system and the operating
system, which are normally at the start of the VM image;
and (2) the VM process accesses the inode of the VM image
when updating the metadata of the image, such as the access
time, the size of image, and the changes of file content. The
position of the inode is generally at the start of the VM image.
Moreover, the applications with random access introduce high
I/O operations of the journal process and system process in
contrast to sequential access applications, such as in VM3 in
Fig. 1(a). Furthermore, for write applications, the log writing
and the metadata modifications are frequent; we observe a
growing number of sub-regions with low access frequencies.

In summary, with respect to the case when multiple ap-
plications run within a VM, we observe the special spatial
locality in virtualized environments: regional spatial locality
across VMs and sub-regional spatial locality between requests
from the same VM. Moreover, the sub-regional spatial local-
ity of a VM is obvious when applications with sequential
access run within a VM. The lack of coordination between
VMs and the hypervisor (virtualization transparency) results
in inefficient exploitation of spatial locality, which leads to
low disk utilization (i.e., increases disk head seeks (move-
ment) between sub-regions); traditional non-work-conserving
scheduling, including the CFQ [23] scheduler and Anticipatory
scheduler (AS) [24], are effective at preserving the spatial
locality exhibited by individual processes, but treat a VM
process simply as a general user process and do not recognize
the sub-regional access locality of a VM, resulting in the
low spatial locality (e.g., as shown in section VI, the seek
distance at zero is only 46% under CFQ in the read-dominated
applications). The aim of our work is to take advantage of
the special spatial locality of VMs to improve physical disk



TABLE II: Variables of the vNavigator model

Var. Description Var. Description

VM a guest VM An the number of requests accessing Z; during interval [T}, T']

P(R) the LBA of a request R U; the it" sub-region unit with sub-regional spatial locality of a VM in current prediction
window

T(R) the arrival time of a request R A a decay factor

B the offset in the disk W(R;,T) the contribution of R; to spatial locality at prediction window T'

Z; the j°" equal-sized zone whose size is B D(Z;,T) the temporal access-density of Z; at prediction window T

R; a request accessing Z; o(VM,T) the temporal access-density threshold of a VM at prediction window T

RT the m”h request accessing Z; ZT(Z;,T(R;))| the average access time interval of Z; when a request R; access Z;

T the current prediction window SR(U;) the range of U;

Ty a prediction window when R arrives ST(U;) the future access interval of U;

efficiency and thus enhance the performance of applications in
the virtualized environment.

IV. PREDICTION MODEL OF THE LOCALITY AND
REGULARITY OF DISK ACCESSES

As discussed in section III, the regional spatial locality
can be easily observed according to the VM image size.
The sub-regional spatial locality, however, cannot be observed
in the virtualized environment due to the transparency fea-
ture of virtualization. Consequently, the disk scheduler in
the hypervisor cannot efficiently exploit the special spatial
locality. To this end, we design an intelligent prediction model,
named v~Navigator, to predict the regularity of the sub-regional
spatial locality (i.e., the distribution of sub-regions with spatial
locality within a VM and access intervals of these sub-regions).
Hence the vNavigator model helps to guide the scheduling of
I/O requests in the hypervisor to efficiently exploit the sub-
regional spatial locality within VMs. Based on the trace of
sub-regions in section III, the vNavigator model prediction
faces three challenges: (1) the distribution of sub-regions with
spatial locality is changing with time, and varies based on the
access patterns of applications; (2) requests from background
processes (named discrete requests) in a VM interfere with the
prediction of future requests with sub-regional spatial locality;
and (3) different sub-regions with spatial locality may have
different access regularity. For clarity, we first list the variables
used in the vNavigator model, which are shown in Table II.

The vNavigator model uses a temporal access-density
clustering (TAC) algorithm to analyze data access within a VM
image file in the past to predict the sub-regional access locality
of the VM in the near future. As shown in Fig. 2, considering
the frequent changes in both the range and regularity of the
sub-regions with spatial locality, the TAC algorithm divides
the disk space into a series of equal-sized zones (denoted by
Z = {Z1,Z2,.... Zp,n = %}). To ease capturing
and predicting of the change of the spatial locality in time,
the TAC algorithm also divides the allocated serving time of
a VM into several equal time windows (prediction window).
By tracking the arrival time and the LBAs of VM’s requests,
the TAC algorithm quantizes the zones’ access frequencies for
each VM in previous windows to estimate the spatial locality
of zones in the current prediction window.

Zones with possible spatial locality draw out the distri-
bution of the sub-regions with relative spatial locality of a
VM: given that zones with similar spatial locality may have
different access frequencies and access intervals, the TAC al-
gorithm therefore groups, within the same prediction window,
neighboring zones into larger units (sub-region units). The dis-
tribution of sub-regions with spatial locality can be represented

as U = {Uy,Us, ...,U;, U; S VM}, where U; represents the 7%
sub-region unit with sub-regional spatial locality. A sub-region
unit may consist of one or two neighboring zones (further
details are provided in the following subsections). Accordingly,
the vNavigator model actually predicts the range of U; and the
arrival time interval of future requests accessing U;.

A. Quantization of Access Frequency

The temporal access-density of a zone is the sum of the
contributions of historical requests to the future possibility of
spatial locality of the zone in the current prediction window.
Considering the frequent change of the sub-regional spatial
locality, the impact of recently arrived requests is greater than
that of older requests when predicting sub-regional spatial
locality within the current prediction window. The contribu-
tion of historical requests should therefore decline with time.
Accordingly, we introduce an access weight of the request to
represent the contribution of a request in the current prediction
window. The access weight uses a decay factor (\) to quantize
the relationship between the contribution of requests and time.
Definition 1: The access weight of a request (f2;) to the sub-
regional spatial locality of accessing a zone (Z;) in the current
prediction window is:

W(R;,T) = x~(T=Tr) (0

where A > 1 and R; accesses Z; in 7.

According to (1), the access weight of a historical request
declines with time. For instance, the access weight is 1 at the
beginning, then decays toward zero with passing time. Thus
the temporal access-density of the zone is defined as follows:
Definition 2: The temporal access-density of a zone (Z;) is
the sum of the access weights of the requests accessing this
zone in the current prediction window:

D(z;,T)= > W(R,T) 2

P(R)EZ;

where R represents all requests accessing Z; until 7.
According to (1) and (2), and to simplify the computational

cost of the temporal access-density of a zone, we obtain the

following Lemma 1.

Lemma 1: Given that An is the number of arrived requests

accessing Z; between T, and T' (T < T), D(Z;,T) is given

by:

D(2;,T) =X~ """ D(Z;,T:) + L. )

Proof: n is the number of requests accessing Z; until 7', and



R represents the k' request to access Z;.

n+An n n+An
D(z;,T) = Y. WRELT) = Y W(RET)+ > W(RETD)
k=1 k=1 k=n+1
n n+An
= XIS w(RE T+ > AT
k=1 k=n+1

= AN T-TI)p(z;,T,) + An

According to Lemma 1, the temporal access-density of a
zone consists of the number of newly arrived requests during
the current prediction window and the decay of the temporal
access-density of the previous prediction windows. Hence the
temporal access-density captures the impact of the zone’s
access: requests to access a zone at different times have
different effects on the future probability of the spatial locality
of the zone.

B. Explore Sub-regional Spatial Locality

Depending on the temporal access-densities of the zones,
we discuss the sub-regional spatial locality of zones in the
current prediction window. In a guest VM, the requests from
background processes access some disk zones periodically.
These zones do not have spatial locality, although their tem-
poral access-densities are larger than zero. Therefore, the TAC
algorithm introduces a temporal access-density threshold for
each VM to distinguish zones with future spatial locality.
Because of the frequent changes of the access frequencies
of zones and interference of system processes and journal
processes in a VM, the temporal access-density threshold of a
VM should meet two conditions: (1) changing over time (i.e.,
when updating the temporal access-densities of zones); and
(2) never dropping suddenly when increasing the number of
zones with low temporal access-densities. Thus the temporal
access-density threshold of the VM in the current prediction
window can be stated as the mean of the current accessed
zones’ temporal access-densities that are larger than 1. By
excluding zones whose temporal access-densities are lower
than 1, we reduce the impacts of the zones that were accessed
a long time ago, and therefore avoid any sudden drop of the
threshold.

Definition 3: The temporal access-density threshold of a VM
(VM) in the current prediction window is:

N(T)
S(VVM,T)= ) D(Zy,T)/N(T) ©
y=1

where D(Z,, T') > 1 and N(T') is the number of zones whose
temporal access-densities are greater than 1 in 7.

Based on the temporal access-density threshold of the VM
in the current prediction window, we explore the possibility
of sub-regional spatial locality of VM. When D(Z;, T) is
larger than §(VM, T'), the access of data in Z; has sub-regional
spatial locality in the next prediction window. Besides, the
range of the sub-region with spatial locality may include zones
with temporal access-densities more than §(VM, T') and with
temporal access-densities lower than §(VM, T'). For example,
as shown in Fig. 2, in T, D(Z;, T>) is larger than §(VM,
Ty) and D(Z;41,T>) is smaller than 6(VM, T»), but Z;14
also has sub-regional spatial locality in 75. Therefore, when
D(Z;, T) is larger than §(VM, T), but the temporal access-
density of Z;44 is smaller than §(VM, T'), the TAC algorithm

Prediction Window
Tt T T3 --- Ti T

. . -1z
o ® Te .
R U2y U2{ Uy, Yle ®4 U2
B .'U‘lule‘.'.Un ._9/ ’: o ®/® Zi+1
/O Uol‘»...x. ..EUJ NUZi
.oj’_., j Ue of%e

-\Q. L

® Requests

LBA
.
3

sauoz

° o0 . ° V43
L] O []

Arrival Time

Fig. 2: vNavigator model: sub-region unit distribution

considers that both Z; and Zj+12 have sub-regional spatial
locality of access in the next prediction window. Accordingly,
the current distribution of the sub-regions with spatial locality
of VM consists of zones with higher temporal access-densities
compared to the current temporal access-density threshold, and
their neighbors with temporal access-densities lower than the
current temporal access-density threshold.

C. Access Regularity of Sub-regional Spatial Locality

Given that different sub-regions have different access regu-
larity and different zones may have different access regularity,
we introduce a sub-region unit which comprises one or two
neighboring zones with the same access regularity and relative
spatial locality. Therefore, the range of a sub-region unit is
defined as follows, in accordance with the above subsection
on exploring sub-regional spatial locality:

Definition 4: The range of a sub-region unit in the current
distribution of sub-regions with spatial locality of the VM is:
(Z5, Zj+1);

D(Z;,T) > 6(VM,T),D(Zj41,T) < 6(VM, T)

7

D(Z;,T) > §(VM,T), D(Zj41,T) > 6(VM,T)

SR(U;) =

®

where Z; 1 belongs to other sub-region units with relative
sub-regional spatial locality when D(Z;41, T) > 6(VM, T).

According to Definition 4, the sub-region unit with spatial
locality includes one zone whose temporal access-density is
more than the temporal access-density threshold of the VM,
and its neighbor with temporal access-density lower than this
threshold. This allows us to gather arrival intervals between
historical requests with relative sub-regional spatial locality to
predict the arrival time interval of future requests. To reduce
the cost of the model and remove the interference of discrete
requests, we analyze the average access time interval of the
zone with temporal access-density more than the threshold, in
order to estimate the access time interval of the corresponding
sub-region unit with sub-regional spatial locality.
Definition 5: The future access interval of a sub-region unit
with sub-regional spatial locality is:

ST(U;) = ZT(Z;, T(R]")), D(Z;,T) > 5(VM,T) ©)

where ZT'(Z;, T(R]")) is the average access interval of Z;
when R7" access Zj, and is denoted by:

ZT(Zj,T(R}"il)) *(m—1)+T(R™) — T(R;nfl)

2T(2;, T(R}) = —

)

sz,l is not included due to the following reasons :(1) reducing disk
backward seek and rotation overheads; and (2) avoiding overlapping zones.



VMs | vNavigator model (VM,) |

‘ Requests : ‘ vNavigator model(VM,)
VM, E f -

‘ Requests |}[} ‘ Heuristic Decision }4-:
VM, i v :

‘ Requests § [ Sorted queue(VM;) |
VM, i B EDF queue(VM, |t '

: Sorted queue(VM,)
R t:
‘ e\c,’l'\‘;s s [ EDF queue(VM,) |
Block layer of hypervisor

Fig. 3: Architecture of Pregather

V. Pregather DISK SCHEDULING

The aim of our approach is to exploit the special s-
patial locality of VM accesses to improve the performance
of mixed applications and disk I/O efficiency in virtualized
environments while preserving virtualization transparency. We
design and implement an adaptive non-work-conserving disk
scheduling framework with a spatial-locality-aware (SPLA)
heuristic algorithm in the hypervisor, named Pregather. When
dispatching a pending request, Pregather decides whether or
not to dispatch this request without starving other requests.
The SPLA heuristic algorithm takes advantage of the regional
spatial locality across VMs and the sub-regional spatial locality
prediction from the vNavigator model, to guide Pregather to
make the decision.

A. Spatial-locality-aware Heuristic Algorithm

After completing a request (i.e., LR) from the current
serving VM (i.e., VM), Pregather introduces a coarse waiting
time or a fine waiting time to exploit the special spatial locality
(shown in Algorithm 1). If the hypervisor does not have any
pending requests from VM, and the average seek distance of
VM, (i.e., AvgD(VM,)) is smaller than the distance between
the LBA of the pending request from a close neighbor VM
of VM, and the LBA of LR(i.e, P(LR)), the coarse waiting
time is set to the average arrival time interval of VM, (i.e.,
AvgT (VM,)) to lower the disk seek across VMs. Otherwise,
if the pending request queue of VM, is not empty, Pregather
consults the vNavigator model to predict whether the LBA of
a future request is close to LR and predict the arrival time
of the future request (i.e., detect whether data regions around
the current location of the disk head will have sub-regional
spatial locality in the near future). If P(LR) is in the range
of a sub-region unit with sub-regional locality (i.e., SR(U;)),

Algorithm 1: Timer adjustment

Input:P(LR): the LBA of the last completed request;
P(neighbor(VM;).PR): the LBA of the pending request from a
close neighbor VM,; Q(VMy) the request queue of VMy; U;: the ith
sub-region unit of the vNavigator model
Output:coarseTimer or fineTimer is set
/*make the decision on setting a timer after completing a request*/
if Q(VM;) == Null&&(AvgD (VM) <
|P(neighbor(VMg).PR) — P(LR)|) then

| coarseTimer = AvgT(VMz) + currentTime
else if Q(VM,)! = Null&&P(LR) € SR(U;) then

| fineTimer = ST(U;) + currentTime
end

Algorithm 2: SPLA heuristic algorithm
Input:PR: the pending request; P(LR); coarseTimer; fineTimer;U;: the
ith sub-region unit corresponding to P(LR);newR: a new request;
AvgT (VM)
Output:dispatch_req: a dispatching request
/*make the decision when preparing to dispatch a request*/
begin
dispatch_req = LP
if coarseTimer is not over&& (PR € VM, || AvgT (VM) >
SeekTime(P(LR), P(PR))) then
| dispatch_req = PR, turn off coarseTimer
else if fineTimer is not over &&P(PR) € SR(U;) ||
ST(U;) > SeekTime(P(LR), P(PR))) then
| dispatch_req = PR, turn off fineTimer
end
/*Procedure invoked upon waiting for a future request®/
while coarseTimer or fineTimer is not over && PR.deadline is
not over &&(dispatch_req == LR) do
/*on the arrival of the new request new R*/
if coarseTimer&&(newR C VM, || AvgT (VM) >
SeekTime(P(newR), P(PR))) then
| dispatch_req = new_req; turn off coarseTimer
end
else if (fine_timer&&(P(newR) € SR(U;) ||
ST(U;) > SeekTime(P(newR), P(PR))) then
| dispatch_req = PR; turn off fineTimer
end

end
/*Procedure invoked upon expiration of coarse_timer or
fine_timer or deadline of PR*/
if (dispatch_req == LR) then
| dispatch_req = PR; turn off all timers
end

end

then the fine waiting time is set to the average access interval
of the sub-region unit (i.e., ST(U;)), to reduce the disk seek
overhead within a VM.

When ready to dispatch a request, as shown in Algorithm
2, Pregather selects the closest pending request (i.e., PR) to
LR in the request queue of hypervisor (according to the LBASs).
Pregather calculates the disk seek time between the LBAs
of LR and PR (SeekTime(P(LR), P(PR))). Within the coarse
waiting time, if PR meets one of the following two conditions:
either the estimated seek time between the request and P(LR)
is smaller than AvgT (VM,); or the request is from VM,,
the heuristic algorithm decides to dispatch PR. Otherwise,
the heuristic algorithm decides to wait for a new request that
meets one of these two conditions. On the other hand, within
the fine waiting time, if PR also belongs to SR(U;), or the
estimated seek time between the request and P(LR) is smaller
than ST'(U;), the heuristic algorithm then decides to dispatch
PR. Otherwise, the heuristic algorithm decides to wait for a
new request that satisfies one of these conditions. Over the
coarse waiting time or the fine waiting time or the deadline
of PR, Pregather dispatches PR. Therefore, Pregather ensures
the long distance seek outweighs the cost of idle waiting and
reduces the waiting without starving any requests.

B. Implementation

We implement a prototype of Pregather in the Xen-hosted
platform. As shown in Fig. 3, Pregather consists of the
vNavigator models corresponding to VMs, and the heuristic
decision module that implements the SPLA heuristic algorithm,
at the block layer of the hypervisor. To make full use of the
special spatial locality without starving requests, Pregather,
similar to CFQ, allocates two types of request queues for each



g

[ Sequential Read Il Sequential Read 2 3

Il Zero Disk Seek Distance S

@

80 Leo 2
) ]
o) 5]
[2) (%]
@ 60 1605
£ a
L= o
- o
S 404 La0
3 G
2 2
w204 208
[

[0}

a

0- L0 o

10 100 1000 2000 1E4 1E5 1E6 1E7 CFQ ,‘E

Fig. 4: The execution time of two sequential read applications
and the proportion of seek distance at zero point under Pregather
with different offsets, CFQ

VM: the sorted queue and the earlier deadline first (EDF)
queue. The sorted queue contains requests in the order of
LBAs of the requests, while the EDF queue contains requests
in the order of deadline (the deadline value of Pregather is the
same as of CFQ). Also, Pregather allocates each VM an equal
serving time slice and serves VMs in a round robin fashion,
to reduce I/O interference among VMs and batch as many
requests from the same VM as possible. When a new request
from a VM arrives in the hypervisor, Pregather assigns the
request a deadline and queues the request in both the sort queue
and EDF queue of the VM. Then Pregather computes the
average arrival time and the average seek distance of the VM.
Meanwhile, Pregather triggers the corresponding vNavigator
model to analyze and update the range and arrival time interval
of the sub-region units immediately.

The heuristic decision module guides Pregather to sched-
ule I/O requests. After completing a request from the current
serving VM, the heuristic decision module sets a coarse timer
or a fine timer based on the average arrival time and average
seek distance of the VM and the vNavigator model. When the
hypervisor unplugs the block device and prepares to dispatch
a request, Pregather selects a pending request (named PR)
before triggering the heuristic decision module. If the request
queues of the current serving VM are empty, Pregather selects
a request from the request queue of a VM which has a close
location (in the disk) to the current serving VM. Otherwise,
Pregather first checks the deadline of the head request in the
EDF queue of the current serving VM. If the deadline of the
head request has expired, Pregather dispatches this request
immediately and turns off the timer. Otherwise, Pregather
selects a request next to the last completed request in the
sorted queue of the VM as PR. Then, if the timer is active,
the heuristic decision module decides to either dispatch PR or
to wait for a future request, without exceeding the deadline
of PR. Once the heuristic decision module schedules a future
request, Pregather maintains the idle state of the disk head
until the arrival of a suitable request. If the timer runs out or
the deadline of PR expires, Pregather dispatches PR.

It is important to note that Pregather is not limited to Xen
and can be implemented in other hypervisors (e.g., KVM [25]
and Linux-VServer [26]). The prediction model (introduced in
section IV) uses hypervisor-independent parameters including
the arrival times and LBAs of requests. Also, the historical
decision module is implemented as a separate module at the
block 1I/0 layer of the hypervisor.

VI. PERFORMANCE EVALUATION

We run a suite of experiments evaluating our Pregather
on the Xen-hosted platform using both synthetic benchmarks
and a MapReduce application. The first set of experiments
is to verify the vNavigator model, including evaluation of the
sensitive parameter and verification of its accuracy. The second
set of experiments is to evaluate the overall performance of
Pregather and also to justify the efficiency of our heuristic
algorithm in exploiting the special spatial locality when there
are multiple VMs with different access patterns. The third
set of experiments is to evaluate the overhead of memory
caused by Pregather. The experimental setup is the same that
described as in section III.

A. Verification of vNavigator Model

An accurate sub-regional spatial locality prediction is a
key factor to achieve the high disk utilization with Pregather:
Pregather uses the sub-regional spatial locality prediction of
the vNavigator model to help schedule new requests. In this
subsection we evaluate the accuracy of the prediction model.
The impact of B value. As discussed in section IV, the
offset B of the vNavigator model impacts the temporal access-
densities of zones and the accuracy of clustering zones with
sub-regional spatial locality, especially the interference of
discrete requests. Thus it is very important to define B in our
platform. Accordingly, we run two sequential read applications
(16 threads sequentially read 128 files, whose total size is
2GB) in one VM, and capture their performance variation
when changing B (we fix A at 2, and the prediction window
size to 20ms). The higher the accuracy of the prediction
of the sub-regional spatial locality of the vNavigator model,
the lower the frequency of disk seeking, because Pregather
waits for a suitable future request with a minimal (zero) seek
distance according to the vNavigator model. We use blktrace
to trace the disk seek distance to discuss the prediction of the
vNavigator model further.

Fig. 4 shows the execution time of sequential read ap-
plications and the proportion of disk seek distances at zero
under different B values (B = 1 means that it is equal to
the size of a sector, i.e., 512bytes). Increasing B from 10 to
1000 reduces the execution time of applications and increases
the proportion of minimal seek distance. The reason for this
is that small B leads to the temporal access-densities of all
zones tending toward the same value. The vNavigator model
may treat a zone accessed by a background process as a zone
with sub-regional spatial locality, thus introducing unnecessary
waiting, especially when B is equal to the size of the request.
On the other hand, when increasing B from 1000 to 2000,
Pregather slightly decreases the average execution time of
applications by 2%, but maintains the same proportion of
minimal seek distance. The reason for this is that the number
of zones at 1000 is more than at 2000, introducing more time
overheads when updating all the temporal access-densities of
zones (the 91.6% of seek distance at the zero point means
that our model predicts the sub-regional spatial locality and
regularity of access precisely when B is 1000 and 2000).
However, when increasing B from 2000 to 107, the execution
time of both applications increases from 46s to 85s, while
the proportion of seek distance at zero drops from 91.6% to
71.2%. The performance of Pregather at 107 is the same as
that of CFQ. This is because the size of the zone may cover the



TABLE III: The Execution time of applications running on a
VM under Pregather, CFQ and AS

VM Workload Pregather CFQ AS
SRRR Sequential Read 26.92s 44.0s 45.83s
VM Random Read 33.74s 44.75s 45.94
RRRR | Random Read 101.17s 119.18s 113.18s
VM Random Read 108.29s 119.18s 112.39s
SWSW | Sequential Write 27.27s 40.07s 39.66s
VM Sequential Write 28.04s 42.72s 39.35s
SWRW | Sequential Write 15.04s 25.79s 26.07s
VM Random Write 47.06s 53.64s 53.05s
RWRW [ Random Write 57.56s 66.39s 66.63s
VM Random Write 57.56s 65.81s 66.63s
SWRR | Sequential Write 58.76s 81.10s 85.92s
VM Random Read 81.78s 89.50s 88.80s
SRRW | Sequential Read 33.03s 44.06s 50.03s
VM Random write 49.98s 52.775s 56.23s

complete disk region taken by the VM image with increasing
B. This in turn means that our model cannot detect the possible
sub-regional spatial locality. Therefore, B is restricted to the
range between the size of the request and the size of the VM
image.

The ratio of successful waiting. Based on the above discus-
sion, we set B to 2000. Then, we compare the performance of
mixed applications with different access patterns running on a
VM under Pregather, CFQ and AS.

We evaluate the performance of applications in seven
different scenarios: Table III shows the execution time of the
applications described in Table I. We find that the performance
of applications under Pregather is better than under CFQ and
AS. In particular, Pregather outperforms CFQ and AS by 33%
and 31%, respectively, for the sequential write applications in
the SWSW VM. From tracing the I/O behaviors of requests
from the VM, Pregather achieves a 90.6% success ratio on
waiting for a suitable future request, and therefore reduces the
seek time. In contrast, CFQ and AS treat the VM as a general
process and thus hardly wait for the future request, although
they also employ the non-work-conserving scheduling. More-
over, the vNavigator model also captures the spatial locality of
access between applications when sequential applications are
mixed with random applications, and consequently improves
the performance of the applications, as in SRRR VM, SWRW
VM, SWRR VM, and SRRW VM. For instance, in SRRR VM,
Pregather reduces the execution time of sequential read and
random read by 38% and 22%, respectively, compared with
CFQ and AS. In SWRR VM, Pregather outperforms CFQ
for sequential write and random read applications by 27%
and 9%, respectively. On the other hand, with Pregather, the
improvement of random applications in RWRW VM and in
RRRR VM is 12% and 10%, respectively. This is because
the access pattern of random applications leads to the weak
sub-regional spatial locality for a VM, as discussed in sec-
tion III. Fortunately, the vNavigator model still prevents the
interference of requests from background processes of a VM,
and achieves an 80.4% success ratio on waiting for a suitable
future request. From the above experimental results, we can
conclude that the vNavigator model can predict sub-regional
spatial locality and the access regularity of a VM when mixed
applications run on a VM.

B. Spatial-Locality-Aware Disk Scheduling for Multiple VMs

We design experiments to measure the efficiency of Pre-
gather with the SPLA heuristic algorithm for exploiting both

2504 m 35 — VM1
- VM2
— 30. - VM3
9 2004 = I Total
@ 3 25
@ s
£ 1504 £ 20
c bl
S s 5]
3 1004 (Seqt)) B
9] (¢ T
& (Seq) | © 10
504 2 VM2 (Rnd)
I VM3 (Rnd1 54
0 2% VM3 (Rnd2 0
" Pregather  CFQ AS Deadline " Pregather  CFQ AS Deadline

(a) Execution time (b) Average bandwidth

Fig. 5: The performance of mixed applications when three VMs
are running under Pregather, CFQ, AS and Deadline

TABLE IV: The distribution of seek distance when three VMs
are running under Pregather, CFQ, AS and Deadline

Distance Pregather | CFQ AS Deadline
0 74.84% 46.04% 41.07% 12.49%
[-2.4E7,2.4E7] 97.44% 95.84% 95.95% 79.06%
[-1E9,-2.4E71UJ 2.56% 4.16% 4.05% 20.94%
[2.4E7,1E9]

the regional and sub-regional spatial locality (B is set to 2000,
A is set to 2, the prediction window size is set to 20ms for
the vNavigator model and the serving time slice for each VM
is set to 200ms). Therefore, we compare the performance of
multiple VMs under Pregather with that under three schedulers
of the Xen-hosted platform (CFQ, AS and Deadline). Unlike
CFQ and AS, Deadline is a work-conserving scheduler that
dispatches neighboring requests without waiting for suitable
future requests.

1) Disk 1/O Efficiency for Multiple VMs with Different
Access Patterns: We test Pregather with the read-dominated
applications using the same experimental setup (as in section
IIl). Fig. 5 shows the performance of applications under
four schedulers in the read-dominated experiment. As shown
in Fig. 5(a), Pregather reduces the execution time of both
sequential applications in VM1 by 36%, 68% and 68% in
comparison with CFQ, AS and Deadline, respectively. In VM2,
the execution time of the sequential application with Pregather
is reduced by 40% compared with CFQ. When Pregather is
used for the random application in VM2, it outperforms the
other schedulers by almost 2%. This is because the random
request has the cost of high disk seeking, and this cost uses a
considerable part of the serving time slice of VM2. Fig. 5(b)
shows that Pregather improves the average bandwidth of VM2
by capturing sub-regional spatial locality between sequential
and random applications in the hypervisor. In addition, because
of the limitation of bandwidth of the physical server and
the seeking overhead of the random applications, Pregather
reduces the execution time of the random applications in VM3
by 6% compared with CFQ. Although the performance of
Deadline and AS for VM3 is almost the same as that of
Pregather, they sacrifice the bandwidth of VM1 and VM2.
Fig. 5(b) also shows that the total bandwidth with Pregather
is improved by 1.6x, 2.6x and 2.6x in comparison with CFQ,
AS and Deadline, respectively.

To further illustrate disk I/O efficiency with Pregather,
Table IV presents the distribution of the range of disk seeking
under the four schedulers. The disk seek distance with Pre-
gather, CFQ and AS is mainly concentrated in the range from
—2.4 x 107 to 2.4 x 107, because the VM image occupies
2.4 x 107 sectors and the three schedulers exploit regional



spatial locality across VMs to batch the requests from the
same VMs. Besides, the proportion of disk seek distance at
the zero point with Pregather is 77%, higher than the other
schedulers, because the SPLA heuristic algorithm for each VM
continuously dispatches requests with the sub-regional spatial
locality by waiting for a future request successfully. When
the current dispatched request and the last dispatched request
are not from the same VM, or from system processes or
journal processes of the hypervisor, the disk seek distance is
distributed in the range between —1 x 10° and —2.4 x 107 or
from 2.4 x 107 to 1 x 10°.

2) Disk 1/O efficiency for Data Intensive Applications:
To discuss the performance of Pregather for data intensive
applications, we evaluate Pregather with Hadoop [27] by
comparing Pregather with the other three schedulers in two
different scenarios: with and without a background VM that
run different applications. In the first scenario, we deploy
Hadoop (Hadoop-0.20.2) on a thirteen-node virtual cluster
running on a three-nodes physical cluster, and then use the
sort benchmark 3 to evaluate the efficiency of Pregather. In
this setup, we deploy five VMs in physical machine 1 (PM1),
and four VMs each in PM2 and PM3. Each PM has four
data nodes on each of which eight maps run simultaneously.
The data set is 6GB for the sort benchmark (64MB block
size). Fig. 6 shows the execution time and average bandwidth
of each physical machine under Pregather, CFQ, AS, and
Deadline. As shown in Fig. 6(b), Pregather improves the total
bandwidth of the physical cluster by 26%, 28%, and 38%
compared with CFQ, AS, and Deadline, respectively. Because
of the improvement of disk bandwidth, the execution time
of Pregather outperforms CFQ by 18% and AS by 20%.
The improvement of bandwidth under Pregather is due to the
correct judgment of the SPLA heuristic algorithm. Accordingly,
we analyze the distribution of the seek distance for each
physical machine of the cluster in Fig. 7. In contrast with
the non-work-conserving scheduling, Deadline sends as many
adjacent requests as possible without waiting for future closed
requests. Hence the seek overhead of Deadline is higher than
that of the other three schedulers, especially for PM2 and PM3
where only data nodes run. Although the distribution of disk
seek distance mainly concentrates the space range of the image
with Pregather, CFQ and AS for exploiting the spatial locality
among VMs, the proportion of seek distances at zero with
Pregather is much higher than with CFQ and AS.

In practice, data intensive applications and other applica-
tions may be deployed on a virtualized server simultaneously.
Given this situation, we run two different TPC-H * instances
(q2 and q19) on a VM (named TPC-H VM) when Hadoop
runs on other VMs in the second scenario. In this setup, we
deploy Hadoop VMs and TPC-H VM on a physical node where
six VMs run. In Hadoop, we generate a 2GB data set in four
VMs each of which has two maps. Fig. 8 shows the execution
time of the applications and the analysis of seek distance
under Pregather, CFQ, AS and Deadline. We still observe that
Pregather improves the performance of three applications in

3Sort benchmark: each mapper sorts the data locally, and each reducer
merges the results from different mappers. The map input and the reduce
output have the same data size as the input data. The sort benchmark has
complicated disk access patterns due to mixing the sequential access with the
random access.

4TPC-H is a decision support benchmark that processes business-oriented
queries against a database system to examine large volumes of data.

@ & a o
s 3 & 2
. 2. 2. ?

Bandwidth (Mb/s)

Execution Time (Sec)
N
S
S

[ Pregather,|
[ CFQ

)
L

. AS
[ Deadline
Deadline PM1 PM2 PM3

(b) Average bandwidth

0
Pregather CFQ AS

(a) Execution time

Fig. 6: The performance and throughput of three VMs when
running sort benchmark under Pregather, CFQ, AS and Deadline

100 :
9 |
80 }
70 |
£ 60 I
° |
= 50 I
c I
8 40 I
5 |
o 30 |
20 |
10 1 {0} B [-2.4E7, 2.4E7]{0} :

o B [-1E9, -2.4E7[ U |2.4E7, 1E9)]
2 Q y 9 20 v 9 2oy 9
§6°% 3078 §5°7%
2PM1 3 3IPM2 3 3PM3

Fig. 7: The distribution of seek distance of PMs when running
sort benchmark under Pregather, CFQ, AS and Deadline

1000 100
900/
800/ ] 80
700/
600/
500
400
300
200/
100]

[ Pregather
I CFQ
I AS

[ 1Deadline

60

40

Execution Time (Sec)
Percentile (%)

[ Pregather 20
I CFQ

. AS
[ Deadline 0

04
TPC-H(q2)

TPC-H(q19) ) [-2.4E7, 2.4E7) [7]1 E9, -24E7]U

2.4E7, 1E9]

(SonHEfg’r&?\enark)
(a) Execution time (b) The distribution of seek distance
Fig. 8: The performance and distribution of seek distance when
the sort benchmark and TPC-H are running together under
Pregather, CFQ, AS and Deadline

contrast to other schedulers. For instance, compared with CFQ,
Pregather reduces the execution time of the q2, q19, and sort
benchmarks by 10%, 8% and 12%, respectively, because the
proportion of minimal seek distance with Pregather is 63%.

C. Memory Overhead

To predict the access regularity of sub-regions with future
spatial locality, the vNavigator model stores the historical
information about the accessed zone including the arrival time
and LBA of the last request, the temporal access-density, the
number of arrived requests and the total arrival time interval.
Therefore, our model may cause extra memory overhead® in
the hypervisor when guiding Pregather to exploit the sub-
regional spatial locality of VMs. To evaluate the overhead of
the vNavigator model, we monitor the memory utilization of
the hypervisor in the read dominated experiment. As shown in

5The vNavigator model also introduces a small CPU overhead; however,
as discussed earlier in Section VI-A, the cost of the CPU overhead is trivial
and negligible with respect to the performance improvement.



2.0938x101 —e .
Pregathel

g 2.0936x104 1
>
o 7
€ 2.0034x10- 1
[}
=
[0]
@ 2.0932x11 .
(TR

2.0930x10 1

0 50 100 150 200 250
Execution Time (Sec)

Fig. 9: The change of free memory of hypervisor under Pregather
and CFQ

Fig. 9, we compare the change of free memory under Pregather
and under CFQ, because CFQ also stores the historical access
information of each VM. With the arrival of requests from
VMs, the rate of decline of free memory under Pregather
is faster than under CFQ. Compared with CFQ, Pregather
uses no more than 916KB additional free memory. Therefore,
in contrast to the total free memory, the memory overheads
caused by Pregather can be neglected.

VII. CONCLUSION

In this study, we investigate the disk access patterns of
VMs encapsulating mixed applications. Our studies reveal
that disk accesses can be grouped into regions bounded by
the virtual disks sizes, and within each region the disk data
accesses are grouped into sub-regions, which correspond to the
applications’ access patterns. Ignoring the two types of spatial
locality (i.e., the regional and sub-regional spatial locality)
when scheduling I/O requests causes performance degradation
due to high seek delay and the rotation overhead. We address
this issue by developing Pregather, a new spatial-locality-
aware disk scheduler that makes full use of this special spatial
locality for improving disk-intensive applications. Pregather
embraces an intelligent prediction model, named vNavigator,
to predict the distribution of sub-regions’ accesses within each
region, and the arrival times of future requests accessing these
sub-regions. We perform extensive experiments that involve
multiple simultaneous applications of both synthetic bench-
marks and a MapReduce application on Xen-based platforms.
Our experiments demonstrate the accuracy of our prediction
model and indicate that Pregather results in the high spatial
locality and a significant improvement in disk throughput.
Regarding future work, to alleviate the lower spatial locality
that occurs in the presence of disk fragments in virtualized
environments (i.e., the disk space taken by the VM image is
not continuous, and therefore the size of the region may be
larger than the image size), we intend to extend Pregather to
enable an intelligent allocation of physical blocks.

ACKNOWLEDGEMENTS

The research is supported by National Science Foun-
dation of China under grant No.61232008, National 863
Hi-Tech Research and Development Program under grant
No0.2013AA01A213, EU FP7 MONICA Project under grant
No0.295222, Chinese Universities Scientific Fund under grant
No. 2013TS094, Guangzhou Science and Technology Program

under grant 2012Y2-00040, and the ANR MapReduce grant
(ANR-10-SEGI-001).

REFERENCES
[1] Amazon Web Services. http://aws.amazon.com/.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.

[3] D. Le, H. Huang, and H. Wang, “Understanding performance impli-
cations of nested file systems in a virtualized environment,” in Proc.
FAST’12, 2012, pp. 8-8.

[4] S.Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Antfarm: Track-
ing processes in a virtual machine environment,” in Proc. ATC’06, 2006,
pp. 1-14.

[5] S.Ibrahim, H. Jin, L. Lu, B. He, and S. Wu, “Adaptive disk I/O schedul-
ing for mapreduce in virtualized environment,” in Proc. ICPP’11, 2011,
pp. 335-344.

[6] M. Kesavan, A. Gavrilovska, and K. Schwan, “On disk I/O scheduling
in virtual machines,” in Proc. WIOV’10, 2010, pp. 6-6.

[71 S. Seelam and P. Teller, “Virtual I/O scheduler: a scheduler of schedulers
for performance virtualization,” in Proc. VEE’07, 2007, pp. 105-115.

[8] X. Ling, H. Jin, S. Ibrahim, W. Cao, and S. Wu, “Efficient disk I/O
scheduling with qos guarantee for xen-based hosting platforms,” in
Proc. CCGrid’12, 2012, pp. 81-89.

[9] Y.XuandS. Jiang, “A scheduling framework that makes any disk sched-
ulers non-work-conserving solely based on request characteristics,” in
Proc. FAST’11, 2011, pp. 9-9.

[10] D. Boutcher and A. Chandra, “Does virtualization make disk scheduling
passé?”” ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 1, pp. 20-24, Mar.
2010.

[11] Y. Hu, X. Long, and J. Zhang, “I/O behavior characterizing and
predicting of virtualization workloads,” Journal of Computers, vol. 7,
no. 7, pp. 1712-1725, 2012.

[12] 1. Ahmad, “Easy and efficient disk I/O workload characterization in
vmware esx server,” in Proc. IISWC’07, 2007, pp. 149-158.

[13] 1. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija, “An
analysis of disk performance in VMware ESX server virtual machines,”
in Proc. WWC’03, 2003, pp. 65-76.

[14] A. Gulati, C. Kumar, and I. Ahmad, “Storage workload characterization
and consolidation in virtualized environments,” in Proc. VPACT’ 09,
2009.

[15] N. Tran and D. Reed, “Automatic arima time series modeling for
adaptive 1/0 prefetching,” IEEE TPDS, vol. 15, no. 4, pp. 362-377,
2004.

[16] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “Diskseen:
exploiting disk layout and access history to enhance I/O prefetch,” in
Proc. USENIX ATC’07, 2007, pp. 1-14.

[17] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou, “C-miner: Mining block
correlations in storage systems,” in Proc. FAST 04, vol. 186, 2004.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164-177, 2003.

[19] A. Kopytov, “Sysbench manual,” http://sysbench.sourceforge.net/docs/.

[20] J. Axboe and A. D. Brunelle, “Blktrace User Guide,”
http://www.cse.unsw.edu.au/aaronc/iosched/doc/blktrace.html.

[21] The QCOW Image Format. http://people.gnome.org/ markmc/qcow-
image-format-version-1.html.

[22] C. Tang, “FVD: a high-performance virtualmachine image format for
cloud,” in Proc. USENIX ATC’11, 2011, pp. 18-18.

[23] 1. Axboe. Completely Fair
http://en.wikipedia.org/wiki/CFQ, 2010.

[24] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous 1/0,” ACM
SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 117-130, 2001.

[25] KVM. http://www.linux-kvm.org/page/mainpage.

(CFQ).

Queuing

[26] Linux VServer. http:/linux-vserver.org/Documentation, 2010.
[27] Apache Hadoop Project. http://hadoop.apache.org.



