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a b s t r a c t

MapReduce as a service enjoyswide adoption in commercial clouds today [3,23]. Butmost cloud providers
just deploy native Hadoop [24] systems on their cloud platforms to provide MapReduce services without
any adaptation to these virtualized environments [6,25]. In cloud environments, the basic executing units
of data processing are virtual machines. Each user’s virtual cluster needs to deploy HDFS [26] every time
when it is initialized, while the user’s input and output data should be transferred between the HDFS
and external persistent data storage to ensure that the native Hadoop works properly. These costly data
movements can lead to significant performance degradation of MapReduce jobs in the cloud.

We present Morpho—a modified version of the Hadoop MapReduce framework, which decouples
storage and computation into physical clusters and virtual clusters respectively. In Morpho, the
map/reduce tasks are still running in VMs without corresponding ad-hoc HDFS deployments; instead,
HDFS is deployed on the underlying physical machines. When MapReduce computation is performing,
the map tasks can get data directly from physical machines without any extra data transfers. We design
data location perception module to improve the cooperativity of the computation and storage layers,
which means that the map tasks can intelligently fetch information about the network topology of
physical machines and the VM placements. Additionally, Morpho also achieves high performance by two
complementary strategies for data placement and VM placement, which can provide better map and
reduce input locality. Furthermore, our data placement strategy can mitigate the resource contentions
between jobs.

The evaluation of our Morpho system prototype shows it achieves a nearly 62% speedup of job
execution time and a significant reduction in network traffic of the entire system compared with the
traditional cloud computing scheme of Amazon and other cloud providers.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The ability of processing and analyzing big data plays a key role
in most modern enterprises today. So, the technology of MapRe-
duce, which has the ability to automatically parallelize the appli-
cation on a cluster of commodity hardware and can efficiently and
quickly process terabytes and petabytes of data, has becomes pop-
ular to all sizes of enterprises. It allows the details of distributed
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execution, network communication and fault tolerance to be han-
dled by the MapReduce framework [1].

This technology is suitable and valuable to businesses, but
building and operating even a relatively small cluster can be a
formidable undertaking, requiring not just money but physical
space, power, and management resources [2]. For example, static
data center provisioning for the peak load should lead to under-
utilization at other times. The virtualization technology widely
adopted by most IaaS platforms not only eases the resource
management, system administration and deployment for cloud
providers, but also allows users to easily customize their exe-
cuting environments. Alternatively, cloud services (e.g., Amazon
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Fig. 1. The traditional cloud computing mode.
Elastic MapReduce) have become a good choice for most enter-
prises. Amazon Elastic MapReduce works in conjunction with EC2
(Elastic Compute Cloud) and Amazon S3 (Simple Storage Ser-
vice) [3–5]. The users upload into Amazon S3 the data that they
want to analyze, along with the mapper and reducer executables
that will process the data, and then send a request to Amazon EC2.
Subsequently, Amazon EC2will start a clusterwhich loads and runs
Hadoop and executes a job flow by downloading data from Ama-
zon S3 onto the cluster of slave nodes. When the data processing
is done, the results need to be uploaded back from the cluster to
Amazon S3 [6]. That represents the most common cloud comput-
ing mode today, just as the Fig. 1 shows.

Currently, most cloud providers directly deploy MapReduce
systems to the cloud environment without adaptation to the
cloud environment. Both Amazon and Microsoft provide their
MapReduce cloud services as extensions of the basic IaaS. Users
can simply create virtual MapReduce clusters to cost-effectively
analyze their large amounts of data. As described in the technical
papers of Amazon Elastic MapReduce and Microsoft Azure
HDInsight, the users’ virtual clusters for MapReduce computing
are hosted on the computing cluster (e.g. EC2), while the input
(output) data have to be read from (written to) the storage cluster
into (from) the local HDFS before (after) the job begins (finishes).
The virtual cluster will be destroyed just after the final output files
have been persistently stored on the storage cluster. To ensure
that MapReduce in VMs can work in its original way, we have to
build the traditional environment in a virtual cluster, including the
computing and storage. But we cannot store the users’ data in VMs
permanently as the VMs are used by different users at different
times. Thus, we have to store the data in a physical file system,
inducing the serious problem that every time a request arrives the
virtual cluster needs to load and run the HDFS and download and
upload data between the HDFS in the VMs and the file system
in the physical machines. These factors can lead to significant a
cross-rack datamovement overhead and prolong the job execution
time [7]. Many optimizations concerning data transfer between
physical storage and the virtual HDFS have been proposed [8] but
removal of the virtual HDFS is unique and the first attempt in this
field. We store the data of users on the physical machines which
run HDFS and VMs. Furthermore, neither computation nor storage
both run in VMs.We present a novel mechanism of decoupling the
storage and computation in VMs, namely, just computation runs in
the VMs and there is no longer any import and export. Fig. 2 shows
the changes of the process as the framework is simplified.

Morpho decouples computation and storage layers but deploys
them on the same physical cluster. This kind of overlap of com-
putation and storage is similar to the traditional private Hadoop
cluster deployment. Data blocks and tasks are distributed by cen-
tral schedulers (e.g. JobTracker, NameNode, Mesos and Hadoop
YARN resource manager) to all machines in the cluster. Thanks to
the fine-grained task-level scheduling and delay scheduling, the
central task scheduler can balance data locality and resource fair
sharing among different jobs. This goal is hard to achieve in virtu-
alized cloud platforms because the basic scheduling units are vir-
tual machines which have much higher re-launch and migration
cost than tasks, while the users SLA of their cloud services can-
not be broken like soft fair sharing constraints in private Hadoop
clusters. Decoupling of computation and storage brings a series
of challenges along with the advantage of degradation of extra
overheads. As Fig. 2 shows, after decoupling, the computation and
storage layers become two relatively independent systems: virtual
machines and physical machines. Because of this, the computing
processes cannot fetch the block location information as before. On
the other hand, since the data is stored on physicalmachineswhich
run the VMs simultaneously, the VMs assignments can bring about
great performance variations. At this point, the problem of data-
location-aware VM placement should be taken into consideration.
Moreover, for each physical machine, its load capacity is limited,
which means the users whose data are stored on this machine will
compete for the limited capacity (VM slots) of thismachine. For ex-
ample, if there are 10 concurrent running jobs on the platform, the
location-aware VM scheduler may try to assign one VM for each
job to node a for data locality, because it stores input data blocks of
all 10 jobs locally. Suppose the PM a can only host up to 8 VMs un-
der the soft constraint of overprovisioning or the hard constraint
of non-overprovisioning (for simplicity we assume all the VMs are
homogeneous), the VM scheduler have to re-assign 2 VMs to an-
other idle PM that stores identical replicas of the corresponding
targeted data blocks due to the competition of the 8 VM slots of
PM a. It is important to mitigate these contentions to some degree
if not all. By addressing these issues, Morpho makes a number of
contributions:

(1) Decoupling of computation and storage. To our knowledge,
Morpho is the first system to decouple the storage and
computation in its true sense for a MapReduce service in
a cloud. In another words, it is the first system where the
map tasks in VMs can directly fetch the data they need from
physicalmachineswithout any downloading, and vice versa. In
comparison, recent commercial systems all use a mechanism
where map tasks get data from a coupled HDFS in VMs,
inducing extra uploading and downloading.

(2) Data perception mechanism after decoupling. Morpho intro-
duces an efficient and low-cost mechanism which allows the
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Fig. 2. The decoupled cloud computing mode.
independent computing framework running in VMs to intelli-
gently choose the data blocks in physical machines to process,
while the VMs are in themiddle. ‘‘Intelligently’’ heremeans that
amap taskwill choose the closest physical machine that stores
the data blocks it needs—generally, the closest machine is its
host machine.

(3) VM placement. As the data has been stored in physical ma-
chines, this strategy determines which physical machines run
the VMs. The first principle is that of placing VMs on the phys-
ical machines that contain the input data chunks for the map
task. But the first principle alone is not enough, there are al-
ways exceptions. Usually, a user will specify the number of VM
instances and the hardware configuration of the virtual cluster
applied for his/her MapReduce jobs according to the applica-
tions business requirement and this user’s budget for the ap-
plication. Intuitively, the cluster sizewill be proportional to the
job input data size for the same application. But this assump-
tion is often broken in reality, especially considering that it is
difficult to achieve linear speedup when you scale out the vir-
tual cluster due to the extra networking overhead. A user’s VMs
and the physical machines that contain his data do not always
exactlymatch. Howwehandle these circumstanceswill be dis-
cussed in particular later.

(4) Data placement. This strategy aims at optimization of the place-
ment of input data blocks. The data placement and the VM
placement are complementary, the latter is specific to the re-
duce input phase while the former is specific to the map input
phase. They complement each other to increase the locality of
the entire process of MapReduce jobs and then minimize the
total cost. Additionally, the data placement we talk about later
is also helpful in reducing the contentions among jobs to some
extent.

Through an extensive experimental evaluation, we demon-
strate thatMorpho significantly improves the systemperformance,
including a 62% reduction in job execution time and reducing up
to 70% of the cross-rack network traffic in some scenarios as com-
pared with the Amazon cloud mode, which uses two separated
clusters as the computing cluster and persistent storage cluster—
the users’ virtual clusters for MapReduce computing are hosted
on the computing cluster, while the input (output) data have to
be read from (written to) the storage cluster into (from) the local
HDFS before (after) the job begins (finishes). On the other hand, we
compare our quantitative and user-oriented data placement with
the originally random placement of HDFS [9] with consideration
of the contentions. It significantly reduces the probability of VM
placement contentions of the data-location-aware VM scheduling
without forcibly splitting users’ data into fixed physical machine
partitions.

Section 2 of this paper presents the problem analysis and
algorithms of data and VM placement; Section 3 describes the
design and implementation of the Morpho system; Section 4
covers performance measurements of our implementation from
a variety of aspects. Related work is covered in Section 5, while
Section 6 concludes.

2. Problem analysis and Morpho algorithms

Typically, cloud service providers use two distinct infrastruc-
tures for storage and computing (e.g. Amazon S3 for storage and
Amazon EC2 for computing). Executing a MapReduce job in such
infrastructures requires an additional loading step, in which data
is loaded from the storage cloud into the HDFS of the MapReduce
VMs running in the computing cloud. Such additional loading ad-
versely impacts performance, as while the job is running there is a
copy in the compute cloud for MapReduce processing along with
the storage cloud original, leading to high costs for the provider.

In contrast, we propose a decoupled MapReduce in a cloud in
which data is directly stored on the same physical machines that
run MapReduce VMs. There are only computing processes in the
MapReduce VMs and they directly access the HDFS on the physical
machines without any explicit or implicit data-loading step. This
prevents any waste of resources for data loading before executing
a MapReduce job.

2.1. Problem analysis

There are several critical factors to large distributed systems,
e.g. scalability, response time, execution time and throughput. We
focus on the reduction of execution time and cost of the system. In
this section, wewill give a formal analysis concerning our data and
VM placement strategy in the decoupled data processing context.
We start with some notation.

AMapReduce job J is defined as a 3-tuple: (D, P, V ) [10], where
D is the set of input data chunks; P = {Mk : 1 ≤ k ≤ |P|} is
the set of physical machines that store dataset D; V = {Vk : 1 ≤
k ≤ |P|} is the set of VMs which executing the map and reduce
tasks of job J , and |V | represents the number of VMs requested by
the user. To simplify analysis of the model, we make the following
assumptions: the dataset D consists uniform sized blocks Bi : 1 ≤
|D|, where |D| represents the number of blocks for D and each
map has the same size of output. We denote the mean size of
the expected map output of each block of D by mapoutput(D). Let
dist(Ml,Mk) denote the network distance between the physical
machinesMl andMk and velo(Vl,Mk) denote the data transfer rate
between Vl andMk.

2.1.1. Execution time
As we can see from Fig. 2, the execution time T of a job

consists of many parts, but some of them are relatively stable
among different executions under the same CPU and memory
configurations of machines, such as the process time of map and
reduce functions and result output.We just focus on the critical and
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potentially optimizable parts: namely, the map input phase and
reduce input phase. So we can simplify T to T (J) = MT (J)+ RT (J),
where MT (J) is the map phase execution time of job j, and RT (J)
is the reduce phase execution time of job j. The mean time of one
map input loading can be calculated by

mt(B) =


1≤i≤|D|

Bi
velo(M(Bi),V (Bi))

|D|
(1)

where M(Bi) is the physical machine storing block Bi, and V (Bi) is
the virtual machine which is assigned the corresponding map task
of block Bi. According to the assumption, all the map tasks have
the same running time, in which case the map tasks complete in
rounds. If there are atmostm concurrentmappers and r concurrent
reducers in the system, one job consists of ⌈|D|/m⌉ rounds of map
tasks; thereforeMT (J) = ⌈|D|/m⌉×mt(B). Since each reduce task
needs to read the input data from all map tasks and the reduce
phase begins at the same time as the firstmap round ends, itmeans
the time of the two phases overlap. So we just consider the time of
data transfer from the last roundmap tasks to the reduce tasks. Let
the number of last round map tasks lrm = |D|%m,

rt =


1≤j≤r


1≤j≤r

mapoutput(D)
|D|×r×velo(V (mi),V (rj))

lrm

r
(2)

where V (mi) is the virtual machine executing the map i.
Ideally, in the formula formt(B), velo is approximately divided

into three orders of magnitude when map tasks read blocks from
different physical machines – PM-local, rack-local and none-local
– whose values increase gradually. To minimize mt(B) we expect
all the blocks can be read PM-locally. So by the data placement
we try to control the number of physical machines storing the
input data blocks of the job. Ideally, when we get |P| = |V |,
we can achieve 100% PM-locality, which will be decreased by the
competition among users in a real environment. Similarly, velo in
the formula for rt could be divided into inter-rack and outer-rack
rate values. So a set of compactly placed VMs can take advantage
of this well and get minimal rt .

2.1.2. Data transfer cost
It is easy to find that the data transfer cost of map input

Mcost(J) =


1≤i≤|D| Bi × dist(M(Bi), V (Bi)) and reduce input
Rcost(J) =


1≤i≤|D| B(i, j)× dist(V (Bi), V (rj)), where B(i, j) is the

processing output of block Bi which is transferred to reduce rj. Our
placement strategy can minimize both execution time and data
transfer cost.

In our system, when users upload their data onto the platform,
the datawill be brokenup into blocks corresponding toMapReduce
splits and stored on a distributed file system deployed on physical
machines. Our data placement strategy decides on which machine
to store each block and the VM placement strategy attempts to
place VMs on the physical machines that contain the input data
blocks for the map phase while the former is for the reduce
phase. Because data and VM co-placement involves a bin-packing
problem, giving an optimal solution for this problem is NP-
Hard [11].

2.2. Data placement

Before presenting the data placement strategy, we make some
statements about usage of our system. In our system, when a
user submits a job and input dataset, he also needs to provide
the number of VMs |V | and some extra parameters, such as the
number of map and reduce tasks and configuration parameters of
the VMs. A user may want to upload the data only and submit
the corresponding job later. In this case we take an estimated
value according to the size of his dataset instead of the submitted
parameter |V | when applying the data placement. Next, we will
demonstrate our data placement in the first case.

The goal of the data placement is minimizing the transfer cost
of reduce input. As each reduce task needs to read the output of
all map tasks, a sudden explosion of network traffic can degrade
the system performance significantly, with the data randomly
spreading across the entire system. So we expect data stored
compactly, thus the VMs can be placed compactly by applying the
VMplacement described in the next section, therefore reducing the
network traffic. Furthermore, we also take the storage utilization
of racks into our consideration. The data placement algorithm in
Morpho is shown in Algorithm 1.

Algorithm 1 Data placement algorithm
Require: F = {b1, ..., bn} the set of data blocks of the input file f
Ensure: assign all replicas to machines for data blocks in F
1: find the rack rackmin with the maximum available storage

capacity
2: T ← φ
3: add P machines randomly chosen from rackmin into the target

machine set T , |P| ≈ |V |
4: for all block bi ∈ F do
5: for all replica rj(bi) of block bi, j 5 freplicas do
6: randomly choose target machinemtarget from T
7: assign replica rj(bi) to machine mtarget
8: end for
9: end for

In Algorithm 1, for every uploading, we check the residual
storage capacity of each rack and select the maximum one. Then
we distribute the data blocks on |P| physical machines, where
|P| ≈ |V |; in the scope of the rack we just select to ensure that the
physical machines containing the dataset are close to each other.
Weprefer |P| ≈ |V | to |P| = |V |because, as shown in Fig. 3, dataset
A is placed on physical machines in rack 1 and B is placed in rack
2. When the dataset C arrives and three machines are requested, it
will be placed on two physical machines in rack 1 rather than three
machines across two racks, for which a few data transfers of map
input can avoid remarkable cross-rack network traffic.

On the other hand, the principlesmake the distribution of all the
data relatively average and can weaken competition among users
to some extent. For the most part, we just need to select one rack,
but sometimes when the residual storage capacity is not enough,
we should select the two or three largest ones. The number (of
rackswe select) should not be larger, as it indicates that the system
is loaded to full capacity.

Additionally, we set two block replicas, where the first one is
on the same rack as the primary replica and the second one is on
another rack. So we can use the former as a candidate in case of
contention and the latter for fault tolerance and failure recovery.

2.3. VM placement

Once data blocks are placed in a set of closely connected
nodes, VM placement ensures that VMs get placed on the physical
machines compactly either containing the input data or the close-
by ones. As each reduce task needs to read the output of all map
tasks [1], a sudden explosion of network traffic can significantly
degrade cloud performance. This is especially true when data has
to traverse a greater number of network hops while going across
racks of servers in the data center [12]. For this placement,mappers
of the jobs can read data locally, while reducers closer to each other
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Fig. 3. Example of data placement.
Algorithm 2 Data placement algorithm
Require: V = {v1, ..., vn} the set of virtual machines to be

scheduled
Require: P = {p1, ..., pn} the set of physical machines that stores

data blocks to be processed
Ensure: assign all virtual machines to physical machines
1: for all virtual machine vi ∈ V do
2: if physical machine pi can host vi, ∃pi ∈ P then
3: randomly choose the target machine mtarget that can host

vi from P
4: else
5: randomly choose the target machine mtarget that can host

vi close-by P
6: end if
7: assign virtual machines vi to physical machinemtarget
8: end for

have a short network distance. This can significantly speed up job
execution and reduce cumulative data center network traffic. The
VM placement algorithm in Morpho is shown in Algorithm 2.
|V | = |P|. This is a perfect condition. We just need to place VMs

on the physical machines that contain the input blocks, and this is
the basic principle.
|V | < |P|. In this situation, we prefer migrating VMs to trans-

ferring data apart from the basic principle.When data processing is
finishedwe shut down the VMon that physicalmachine and start a
VM on another physical machinewhilemaintaining the total num-
ber of VMs.
|V | > |P|. We place VMs on physical machines either storing

the input data or the close-by machines.
All of the three circumstances above may happen such that

some machine containing the input data blocks does not have
sufficient capacity. For such a case, the VM may be placed on the
node that stores the first replica on the same rack. If the required
resources of the machine are not available, the VM will be placed
on a node close-by which has enough capacity.

3. System design and implementation

Our Morpho system is developed, based and deployed on
a private cloud platform prototype in our lab, which is built
on a customized version of OpenNebula. Fig. 4 shows the
general architecture of Morpho. The Morpho client and server are
independent components written in Java, and the data perception
modular is implemented by modifying Hadoop Jobtracker and
NameNode plus a mapping plugin with the DNSToSwitchMapping
interface. We implement a virtual machine scheduling framework
with two pluggable algorithms (round-robin and data-location-
aware) within the Morpho server. The entire VM placement
information is also maintained in the Morpho server. We just
use deploy and cancel functions of OpenNebula to startup
and shutdown virtual machine instances on specified physical
machines. Therefore, OpenNebula can be replaced with any other
virtualized cloud software that has similar VM deploy and cancel
functions.

3.1. Morpho client

In our system, users can use the client-side tool to upload
thedata that will be processed and the job-specific Hadoop
MapReduce jar files or other types of compiled executable files
written in different languages. This step is similar to any typical
cloud servicewhich requires setting up of the application stack and
data. Then the client-side submits the jar file and some parameters
to the server-side through calling XML-RPC, it will return a web or
ssh address for users to view the status of their jobs at any time.
The command line interface (CLI) is also provided for the system
administrator to configure and manage the system, such as the
number of vCPUs of each VM, memory size, changing the number
of slave nodes and so on.

3.2. Morpho server

The Morpho server consists of several core components: Job
Queue, VM Scheduler, Job Runner, a three-layer mapping module,
OpenNebula front-end and the NameNode daemon. Just like Fig. 5
shows, first the submitted job goes into a queue, then when the
required system resources are available the VM Scheduler creates
VMs according to theVMplacement,whichwe talk about later, and
configures the virtual cluster. Then the Job Runner deploys Hadoop
on all nodes of the virtual cluster and runs Hadoop MapReduce
instanceswithoutHDFS.When the job finishes, Job Runner informs
VM Scheduler to destroy the virtual cluster in order that the
resources can be allocated to other users in a timely fashion. More
details of the operational processwill be described in the next part.

3.3. Data perception after decoupling

In this section, we will explain how the map tasks in VMs can
intelligently get the data they will process on physical machines.

In contrast to the traditional MapReduce architecture, which
only has a two-layermapping relation, knownas rack–PM(physical
machine), theMapReduce architecture in the cloud changes a lot as
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Fig. 4. General architecture of MORPHO.
Fig. 5. The concrete procedure of decoupled computing.
the VM is used. First of all, we build a three-layer mapping module
which stores the relation of rack–PM–VM of the system for the
specific purpose of searching. This mapping relationship changes
dynamically as virtual clusters are created anddestroyed,while the
mapping of rack–PM is relatively constant unless the administrator
refreshes it. So we let this module store the mapping relation of
rack–PM in advance and then access the OpenNebula front-end
repeatedly every several seconds to get the mapping relation of
PM–VM and finally get the whole latest mapping relationship of
the system. Furthermore, the relationship is stored in the structure
of a tree, similar to that shown in Fig. 6.

When a virtual cluster is created, every TaskTracker reports
the name of its host VM to the JobTracker while sending a
heartbeat according to the IP information of JobTracker. Then the
JobTracker accesses the mapping module to search the three-
layer mapping tree for the names just reported and gets the PM
and rack information of every VM in that virtual cluster. For
example, the JobTracker searches the mapping module for Vm1
and gets its host PM, named M2 and rack1, so it gets the topology
information /rack1/PM2/Vm1 of Vm1. Actually, in this course the
JobTracker also builds a three-layer tree, but the difference is that
this is only a part of the mapping tree in the mapping module.
Moreover, when the JobTracker receives the job submitted, it
accesses the NameNode to figure out where the data blocks to be
processed are located and creates the tasks. Ultimately, when a
TaskTracker requests a task, the JobTracker can intelligently assign
a task to it based on the mapping relation of the virtual cluster
it caches.

This paragraph discusses how the TaskTracker gets the data it
will process. When a TaskTracker is allocated a task, it will ask the
NameNode where it can get the closest data. For simplicity, we do
not change the topology tree the NameNode original stores, which
only includes rack–PMmapping relationship. We take the method
of inserting a node. The TaskTracker sends a request as well as
the name of its host VM to the NameNode, we just let NameNode
search the mapping module to get the information of its host PM
and then temporarily insert the VM node into the corresponding
PM node of the tree it stores. Thus, the NameNode can search its
own tree to find the closest PM node and return its information to
the TaskTracker, then the TaskTracker can directly send the request
to get data from that PMnode. After processing, the data canupload
into physical machines directly while applying the data placement
strategy we discuss subsequently.
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Fig. 6. The three-layer mapping relationship.
4. Evaluation

4.1. Performance evaluation

We perform all our experiments in a 22-node testbed from
a 322-node educational HPC cloud in our school which has two
clusters: a 17-node compute cluster (cluster A, one master and
16 workers) and a 5-node external storage cluster (cluster B, one
master and four workers). Each node in cluster A is equipped with
two 6-core 2.67 GHz Intel Xeno CPU, 16 GB RAM and one 1 TB
SAS disk, while two 4-core 2.4 GHz Intel Xeno CPU, 24 GB RAM
and one 1 TB SATA disk in cluster B respectively. All the nodes are
interconnected by a gigabit Ethernet network, and the rack-level
switches are linked by a backbone switch. Cluster A is managed
by a IaaS system called Crane, which was developed in our lab.
The core component of Crane is a modified version of OpenNebula
with customized virtual machine scheduling policies. To bypass
Crane’s scheduling policies, Morpho communicates directly with
the OpenNebula master through XML-RPC to launch and destroy
virtual machines. We compare Morpho with the native Hadoop
1.0.0 using the Amazon Elastic MapReduce workflow. The Morpho
Map/Reduce tasks running in the virtual machines read/write
directly from/to the internal HDFS deployed on the cluster A;
while the Amazon Elastic MapReduce workflow first loads the
input files from the external HDFS deployed on cluster B, and then
transfers the output files in the temporary HDFS launched inside
the virtual cluster into the external HDFS after the job finishes.
In the Amazon mode, all the virtual machines will be placed on
physical machines by the VM scheduler in a round-robin manner.
Each worker node of cluster A could allocate at most 8 CPU cores
and 8 GB memory to the virtual machines, and all the masters of
virtual clusters will be placed on the master node of cluster A. We
use two VM types: each type-a VM is allocated one VCPU core and
1 GB memory and configured with 1 mapper slot and 1 reducer
slot; the type-b VM has two VCPU cores and 2 GB memory with
2 map/reduce slots. We pick three built-in example applications
from Hadoop: Grep (searching for a single word), WordCount and
Sort, which generate 10–30 bytes, less-than-input and equal-to-
input sized intermediate/output data respectively. The input files
of Grep, WordCount are 48 GB randomly generated words written
by the built-in RandomTextWriter, and the input files of Sort are
48 GB randomly generated integers written by RandomWriter. To
validate the data-aware VM scheduling, all the input data blocks in
the internal HDFS are distributed on only 8 nodes of cluster A.

We find in Fig. 7 that Morpho has up to 150% faster total
execution time when compared to native Hadoop. The speedup
increases along with the increase of the number of the virtual
Fig. 7. Performance evaluation.

machines because the additional load/store transfer overhead is
almost constantly high, even ramping up the capacity of the virtual
cluster, due to the network topology of our testbed. The pure job
execution times of Morpho are slightly longer than the execution
times of the Amazon mode jobs, since the coupled MapReduce
framework and HDFS deployed inside the virtual cluster can fully
utilize the data locality of map tasks, while Morpho jobs cannot
achieve the same level of data locality under our setup even using
the data-aware VM placement. We also notice that the per-VM
performance decreases along with the increase of the number of
co-located VMs on a same PM and the intermediate/output data
size, because the co-located VMs compete for the I/O bandwidth of
their host’s single disk. In the simulation evaluation, we assume all
virtual machines have the same disk I/O bandwidth irrespective of
the co-located VM number.

4.2. Simulation evaluation

4.2.1. Simulation setup

Metrics: We evaluate our strategy using two metrics: (1) job
execution time: techniques that allow jobs to read data directly
and locally result in faster execution; (2) Cross-rack data transfer
amount: techniques that read a lot of data across racks result in
poorer throughput.
Simulation setup: Since MapReduce is widely used in modern
production data centers for large-scale data intensive jobs, we
choose several typical MapReduce jobs in Table 1 as the workloads
and conducted measurements in the Hadoop 1.0.0 platform by a
implemented simulator, similar to the existing NS-2 [13] based
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(a) Job execution time. (b) Cross-rack traffic.

Fig. 8. The technique of data perception.
Table 1
Different types of jobs.

Job Sort Grep WordCount

Input data (GB) 40 80 80

MRPerf simulator [14]. The simulation framework simulates a data
center of 400nodeswith a 1Gbps network configured in the typical
tree topology. The 400 nodes are uniformly organized in 10 racks.
In the experiments, each server has two 4-core CPUs and 32 GB
memory, running KVM-based virtual machines and is connected
to a 1 Gbps switch. By default, each VM is allocated a core and 4 GB
memory and has 2 mapper slots and 2 reducer slots. Because each
physical server reserves 2 CPU cores for the VM hypervisor and the
HDFS DataNode, it can host up to 6 VMs, which is 240 VMs per rack
with non-overprovisioning. All the jobs are generated by GridMix
(a Hadoop built-in workload generator) with default parameters.
Each job applies 20–50 VMs, the actual number being randomly
chosen and independent of the job size.

To bootstrap the simulator, we used measurements obtained
from the performance experiments to configure the simulator
parameters, e.g. map and reduce execution time and data transfer
rate under different locality levels.
Simulation scenarios:

• Decoupled but Locality-aware Cloud Computing (DLCC): this is
what we present in this paper.
• Traditional Cloud Computing (TCC): this model is widely

adopted in commercial clouds today, as Fig. 1 shows in the
introduction section. It has frequent data transfer between the
HDFS in the virtual cluster and the physical device.
• Only Decoupled Cloud Computing (ODCC): in this system we

just apply our decoupled strategy without the data perception
or data placement.
• DLCC with random data placement (RDLCC): RDLCC uses

random data placement in the traditional HDFS instead of the
data placement we propose.

4.2.2. Results analysis

The technique of data perception. We conduct this experiment in
ODCC and RDLCC. In Fig. 8, we compare the job execution time and
cross-rack traffic of the two schemes for the three workloads in
Table 1.

To reduce the overhead of transferring data between the HDFS
in the virtual cluster and the physical device we decouple the
storage and computation, but after decoupling the two modules
become relatively independent. That is why ODCC has a poor
performance. In RDLC, we apply our data perception technique
to address the problem of independency, which brings intelligent
data reading because of the fundamental VM placement. So RDLC
gives a 30% reduction in job execution times and reduces up to 40%
of cross-rack network traffic.
The technique of data placement. In this experiment, we compare
two data placement schemes: our proposed quantitative and
compact data placement in DLCC and the random data placement
in RDLCC. In contrast, the random data placement scheme places
data blocks in a set of randomly chosen physical machines that
have available storage capacity without any provisions about the
VM placement. We also study the impact of varying the number of
jobs in Fig. 9 using the sameworkload Sort. In Fig. 9(a), the number
of jobs is varied from 1 to 50 and the average job execution time
and cross-rack traffic are compared.

Firstly we compare the two data placements. For RDLCC the
data blocks have been distributed all over the network randomly,
so the VMs are spread across the system and hence the reduce
input phase obtains poor locality, leading to longer execution times
in Fig. 9(a). The normalized cross-rack traffic in Fig. 9(b) is also
indicative of the same trend. On the other hand, in DLCC the
mean job execution time keeps stable with an initial increase jobs.
When the number of jobs is up to 30 it shows a tiny increase,
which means some contentions occur among jobs. Importantly,
even the maximum number of jobs brings only a 5% increase of
mean execution time, which is totally within the acceptable limits.
The Comparison of DLCC and TCC. We conduct this experiment
in both one-job and multi-job environments, because a one-job
test can demonstrate the ideal difference of performance of our
system and a multi-job test can show how the system performs
while contentions occur. For the multi-job test we use a mixed
workload of jobs, consisting of equal proportions of all workloads
in Table 1, and the arrival rate of the jobs on the datasets is
uniformly distributed from 200 to 2000 s. We use a 80 GB dataset
for both the WordCount and Grep workloads and a 40 GB dataset
for Sort workload. A total of 60 datasets were used, 20 for each of
the workload types.

We find in Fig. 10(a) that DCLL has up to 62% faster execution
time when compared to TCC. TCC performs poorly since it has
an extra data transfer, as Fig. 1 shows, and it uses random data
placement. Our quantitative and compact data placement with
locality awareness in VM placement ensures that the mappers are
placed on the physical machines containing the input data and the
reducers are packed close to each other so that reduce traffic does
not traverse a long distance on the network. So Fig. 10(b) shows
the cross-rack traffic in DLCC is only 30% of that in TCC.
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(a) Job execution time. (b) Cross-rack traffic.

Fig. 9. The technique of data placement.
(a) One-job execution time. (b) One-job cross-rack traffic.

Fig. 10. The comparison of DLCC and TCC (one-job).
(a) Job execution time. (b) Cross-rack traffic.

Fig. 11. The comparison of DLCC and TCC (multi-job).
Though we do not explicitly design an exclusive mechanism or
module to address the resource contentions among jobs, every step
and principlewe take is a precaution against them. From themulti-
job measurement in Fig. 11 we can tell it does well. When the total
number of jobs reaches 60, the mean job execution time becomes
longer, but still 58% faster compared to TCC.We find an 8% increase
in execution time by comparing the one-job and the multi-job
experiments, while the result in TCC turns out to 13%. Importantly,
the cross-rack traffic increases by 10 times as the jobs increase by
60 times. In contrast, this number in TCC is 40 times. This accounts
for our system being more efficient and energy-saving.
5. Related work

To the best of our knowledge, Morpho, with its decoupled
MapReduce mechanism and complementary data and VM place-
ment, is unique in exploiting MapReduce in cloud computing.
We briefly review some of the current situation in this area. Za-
haria et al. [15] have proposed a new speculative task schedul-
ing algorithm called Longest Approximate Time to End (LATE) to
improve the performance of Hadoop in a heterogeneous (espe-
cially virtualized) environment. Sangwon et al. [16] have proposed
pre-fetching and pre-shuffling schemes for a shared MapReduce
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computation environment. While the pre-fetching scheme works
by assigning the map tasks to the nearest node to the blocks and
then pre-fetching the blocks considering a list generated by a pre-
diction model, the pre-shuffling scheme works by looking over
the input split before the map phase begins and predicting the
target reducer where the intermediate output is partitioned into
local nodes. Starfish [17] improves MapReduce performance by
automatically tuning Hadoop configuration parameters. Sandholm
et al. [18] present a system for allocating resources in shared data
that uses regulated and user-assigned priorities to offer differ-
ent service levels to jobs and users over time. Zaharia et al. [19]
have proposed a simple scheduling algorithm called delay schedul-
ing to achieve locality and fairness in multi-user MapReduce job
scheduling. BitDew-MapReduce [20] adopted optimizations in-
clude aggressive task backup, intermediate result backup, task re-
execution mitigation and network failure hiding for the Internet
Desktop Grid.

Much work has explored the placement of applications (VMs)
in a virtualized data center to reduce resource consumption
and achieve high performance. Tashi [21] proposes that location
awareness is important, without providing a complete solution.
Quincy [22] is a resource allocation system for scheduling
concurrent jobs on clusters while considering input data locality.
In recent work, Mantri [1] identifies that cross-rack traffic
during the reduce phase is a crucial factor for MapReduce
performance. However, it has limited performance improvements
during task placement without a locality-aware data placement.
Purlieus [8] is different from those, as it considers both input
and intermediate data locality for MapReduce. However, it has
some assumptions that we think are not feasible, such as the
expected load on each dataset is known and dividing all the
jobs into three distinct classes according to the amount of data
accessed in the map and reduce phases. So we learn from it and
improve it without any unreasonable assumptions, as discussed
in Section 4, for our decoupled MapReduce framework to achieve
high performance. Moreover, we agree that without an efficient
underlying data placement, even a sophisticated locality-aware
compute placement may not be able to achieve the high data
locality presented in Purlieus. Last, we think our decoupled
framework without data transfer is much better than its seamless
data-transfermannerwith techniques of loopbackmounts and VM
disk-attach [8].

6. Conclusion

This paper presents Morpho, a decoupled but locality-aware
MapReduce framework for cloud computing. We describe how
existing cloud MapReduce services lead to longer job execution
times and large amounts of cross-rack network traffic in the
data center. To address the problems of frequently loading and
running HDFS in virtual clusters and downloading and uploading
data between virtual clusters and physical machines, Morpho
uniquely proposes a decoupled MapReduce mechanism that
decouples the HDFS from computation in a virtual cluster and
loads it onto physical machines permanently. Moreover, we apply
complementary data and VM placement in this decoupled system
to give relative independence after decoupling and achieve high
performance at the same time. Our detailed evaluation shows
significant performance gains, with a close to 60% reduction in
execution time, an up to 70% reduction in the cross-rack network
traffic, and an acceptable increase when contentions occur.
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