
A Real-Time Scheduling Framework

Based on Multi-core Dynamic Partitioning
in Virtualized Environment

Song Wu, Like Zhou, Danqing Fu, Hai Jin, and Xuanhua Shi

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

{wusong,zhoulike,fdq1989,hjin,xhshi}@hust.edu.cn

Abstract. With the prevalence of virtualization and cloud computing,
many real-time applications are running in virtualized cloud environ-
ments. However, their performance cannot be guaranteed because cur-
rent hypervisors’ CPU schedulers aim to share CPU resources fairly and
improve system throughput. They do not consider real-time constraints
of these applications, which result in frequent deadline misses. In this
paper, we present a real-time scheduling framework in virtualized envi-
ronment. In the framework, we propose a mechanism called multi-core
dynamic partitioning to divide physical CPUs (PCPUs) into two pools
dynamically according to the scheduling parameters of real-time virtual
machines (RT-VMs). We apply different schedulers to these pools to
schedule RT-VMs and non-RT-VMs respectively. Besides, we design a
global earliest deadline first (vGEDF) scheduler to schedule RT-VMs.
We implement a prototype in the Xen hypervisor and conduct experi-
ments to verify its effectiveness.

Keywords: Virtualization, Real-time scheduling, Multi-core, Cloud
computing.

1 Introduction

Cloud computing is a rapidly emerging paradigm that cloud resources in data
centers are leased by users on demand. Cloud data centers, such as Amazon’s
Elastic Compute Cloud (EC2) [1], use virtualization technology to provide such
on-demand infrastructure services. In cloud data centers, a physical machine
(PM) always hosts many virtual machines (VMs), and various kinds of applica-
tions are running in these VMs. Many of them have real-time constraints, such
as streaming server, VoIP server, and real-time stream computing platforms.

Although more and more real-time applications run in virtualized cloud en-
vironments, their performance is hardly guaranteed [11][13][18]. The main rea-
son is that virtualization adds an additional layer, called hypervisor such as
Xen [8], between guest operating systems (guest OSes) and underlying hardware.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 195–207, 2014.
c© IFIP International Federation for Information Processing 2014

196 S. Wu et al.

CPU schedulers in hypervisors are not optimized for real-time applications, such
as Xen’s default Credit scheduler [9].

Previous studies [13][16][18] present some solutions to support real-time ap-
plications in virtualized environments. However, they are not good enough for
these applications and cloud environments. RT-Xen [16] does not support VMs
with multiple virtual CPUs (VCPUs). Schedulability analysis is important in
real-time scheduling, but these studies [13][18] do not analyze their schedulabil-
ity. More importantly, all these solutions favor the RT-VMs running real-time
applications, which may affect the performance of non-real-time applications and
violate the performance isolation guaranteed by cloud platforms.

Aiming at these problems, this paper presents a real-time scheduling frame-
work based on multi-core dynamic partitioning. First, it divides PCPUs into two
pools dynamically by taking non-uniform memory access (NUMA) architecture
into account according to the scheduling parameters of RT-VMs. It allows RT-
VMs to run on a pool and non-RT-VMs to run on the other pool, which brings
good performance isolation. Second, we design a global earliest deadline first
(vGEDF) scheduler to schedule RT-VMs. Moreover, we implement a working
prototype of the real-time scheduling framework in the Xen hypervisor, named
Risa, and evaluate its effectiveness through experiments.

In summary, the main contributions of this paper are as follows.

– We present a real-time scheduling framework to support real-time applica-
tions in virtualized environment. The framework provides good performance
isolation through multi-core dynamic partitioning.

– Considering the domination of multi-core processors in server market, we
present the vGEDF scheduler to schedule RT-VMs, which can support real-
time applications well and take full advantage of multi-core processors.

– We implement a prototype in the Xen hypervisor, and conduct experiments
to verify its effectiveness. The experimental results show that our framework
can support real-time applications well, reduce operation expense caused by
manual operations in VM management, and improve CPU utilization.

The rest of this paper is organized as follows. Section 2 presents the design
of the real-time scheduling framework in detail. We explain the experimental
environment and show the experimental results in Section 3. Section 4 briefly
surveys the related work. Finally, Section 5 concludes this paper.

2 Design of Real-Time Scheduling Framework

In this section, we present the design of our real-time scheduling framework,
which is shown in Fig. 1. In the framework, PCPUs are partitioned into two
pools (i.e. rt-pool and non-rt-pool) automatically according to the scheduling
parameters of RT-VMs. We apply our vGEDF scheduler to rt-pool to schedule
RT-VMs and the Credit scheduler to non-rt-pool to schedule non-RT-VMs. In
the following, we first describe how to partition PCPUs automatically. Then, we
propose the design of the vGEDF scheduler.

A Real-Time Scheduling Framework 197

RT-VM

Hypervisor

Hardware

Credit scheduler

non-rt-pool

vGEDF scheduler

Dynamic partitioning module

rt-pool

Applications

Guest OS

VCPU VCPU...

non-RT-VM

Applications

Guest OS

VCPU VCPU...

Domain0

Applications

Guest OS

VCPU VCPU...

PCPU PCPUPCPU PCPU PCPU PCPU...

Fig. 1. The real-time scheduling framework

2.1 Multi-core Dynamic Partitioning Mechanism

In the multi-tenant cloud environment, a PM hosts many VMs that run various
kinds of applications from different customers. However, a single CPU sched-
uler cannot support all the applications well. For example, although the Credit
scheduler supports CPU-intensive and memory-intensive applications well, it is
not suitable for real-time applications. Accordingly, the schedulers optimized for
real-time applications [12][13][16][18] always favor these applications, which may
affect the performance of non-real-time applications. Moreover, an important
requirement of multi-tenant cloud environment is performance isolation. As a
result, it is a challenge to support real-time applications while minimizing the
impact on non-real-time applications running on the same PM. In this paper,
we present the multi-core dynamic partitioning mechanism to meet this goal.

Currently, although administrators can divide PCPUs into multiple pools
and apply different schedulers to these pools manually, this method is not fit
for cloud environment. The reasons are as follows. On one hand, administra-
tors need to estimate the requirements of RT-VMs, and statically allocate peak
number of PCPUs to a pool, which probably results in resource over-provision
and increases operation expense. On the other hand, when the requirements of
RT-VMs change, administrators need to manually change the number of PCPUs
allocated to the pool. Otherwise, the performance of real-time applications may
not be guaranteed any more. Our multi-core dynamic partitioning mechanism
addresses these drawbacks well.

If a PM has RT-VMs, the real-time scheduling framework partitions PCPUs
into two pools automatically and applies different schedulers to these pools to
schedule RT-VMs and non-RT-VMs respectively. So, first of all, we need to
determine how many PCPUs should be allocated to rt-pool. Then, we allocate
corresponding PCPUs to rt-pool by taking NUMA architecture into account.

198 S. Wu et al.

How Many PCPUs Should Be Allocated to Rt-Pool. For the convenience
of description, we define some variables as follows:
– Ci: the worst-case execution time of the ith task.
– Ti: the inter-arrival period of the ith task (assumed to be equal to the relative

deadline).
– NP : the number of PCPUs should be allocated to rt-pool.
– NRT : the number of RT-VMs in a PM.
– NVi: the number of VCPUs of the ith RT-VM.
– pi: the period parameter of the ith RT-VM, which indicates the relative

deadline.
– si: the slice parameter of the ith RT-VM, which represents the worst-case

execution time.

According to the schedulability test of EDF scheduling [14], a set of real-time
tasks is schedulable only if its total utilization does not exceed 100%.

n∑

i=1

Ci

Ti
≤ 1 (1)

In virtualized environments, in order to guarantee the schedulability of RT-
VMs in multi-core platforms, the scheduling parameters of RT-VMs and the
number of PCPUs must satisfy the following equation:

NRT∑

i=1

si ×NVi

pi
≤ NP (2)

Hence, derived from (2), NP can be calculated by (3). Actually, NP is the
minimal number of PCPUs should be allocated to rt-pool. It has a strong re-
lationship with the scheduler applied to rt-pool. Equation (3) defines how to
calculate NP for the vGEDF scheduler. Our real-time scheduling framework can
be easily extended to support other real-time schedulers. The only thing needed
to be done is to define how to calculate NP .

NP =

⌈
NRT∑

i=1

si ×NVi

pi

⌉
(3)

How to Partition PCPUs. Cloud is a highly dynamic environment. Vari-
ous operations are happened in a short time period, such as VM creation, VM
destroy, and VM reconfiguration. As a result, NP is changing as time goes on.
Considering such dynamic characteristic, we design a multi-core dynamic par-
titioning algorithm to support cloud environment. All the operations that may
change NP trigger the algorithm to allocate adequate number of PCPUs to rt-
pool. The pseudo-code of the algorithm is shown in Algorithm 1.

A Real-Time Scheduling Framework 199

Algorithm 1. Multi-core Dynamic Partitioning Algorithm

1 prev NP ← num pcpus(rt pool);
2 foreach vm in the list of RT-VMs do
3 new num← new num+ (vm.nvcpus ∗ vm.slice)/vm.period;
4 end
5 NP ← ceil(new num);
6 delete timer;
7 if NP > prev NP then
8 partition(non rt pool, rt pool,NP − prev NP);
9 else if NP < prev NP then

10 set timer to call partition(rt pool, non rt pool, prev NP −NP);
11 end

First, the algorithm reads the scheduling parameters of RT-VMs and calcu-
lates NP (line 2∼5). Then, it compares NP with the previous one. If NP is
greater than the previous one, the algorithm allocates more PCPUs to rt-pool
immediately. On the contrary, if it is less than the previous NP , the algorithm
shrinks rt-pool. However, the shrink operation is not executed instantly, because
it may cause fluctuation. For example, administrators may destroy a RT-VM
belonging to a customer and create the other RT-VM for the other customer
immediately. If the algorithm shrinks rt-pool immediately, it needs to expand
rt-pool after the shrink. In order to avoid such fluctuation, we adopt a delayed
shrink manner, which uses a timer to delay the shrink operation (line 6∼11).

Nowadays, an increasing number of new multi-core systems use the NUMA ar-
chitecture. There are multiple memory nodes in modern NUMA systems, and the
access latency of local nodes is shorter than that of remote nodes. Aimed at such
characteristic, our multi-core dynamic partitioning algorithm takes the NUMA
architecture into account when we partition PCPUs. It preferably allocates

Algorithm 2. NUMA-aware Partitioning Algorithm

1 prev num← num pcpus(rt pool);
2 if prev num == 0 and dst pool == rt pool then
3 select pcpu on which a RT-VM currently running or previously run;
4 remove pcpu from src pool;
5 add pcpu to dst pool;
6 pcpu num← pcpu num− 1;

7 end
8 local node← the local node associated with dst pool;
9 while pcpu num! = 0 do

10 remove pcpu from src pool that belongs to local node or other nodes if all
PCPUs in local node are allocated to dst pool;

11 add pcpu to dst pool;
12 pcpu num← pcpu num− 1;

13 end

200 S. Wu et al.

PCPUs belonging to a NUMA node to rt-pool instead of randomly selected PC-
PUs. The pseudo-code of the algorithm is shown in Algorithm 2, which shrinks
src pool and expands dst pool. If rt-pool is empty, the algorithm selects the PCPU
on which a RT-VM currently running or previously run, and allocates this PCPU
to rt-pool (line 2∼7). Then, it gets the NUMA topology of the PM and finds the
local node associated with dst pool (line 8). Finally, the algorithm preferably
allocates PCPUs belonging to this node to dst pool. If all the PCPUs belonging
to this node are allocated to dst pool, the algorithm picks PCPUs from other
nodes and allocates them to dst pool (line 9∼13).

2.2 vGEDF Scheduler

Schedulability analysis is important in real-time scheduling. However, previous
solutions [13][18] do not analyze their schedulability. In this paper, we design
the vGEDF scheduler based on EDF scheduling algorithm, whose schedulability
is analyzed by previous studies [7].

Nowadays, multi-core processors have dominated server markets. Schedulers
must take full advantage of the multi-core processors. The Simple Earliest Dead-
line First (SEDF) scheduler [9] is not suitable for cloud environments because of
the lack of load balance among multi-cores. On the contrary, our vGEDF sched-
uler supports real-time applications in multi-core platform well through global
queues. Its architecture is shown in Fig. 2.

v21

v31

global queues

RunQ

WaitQ

ExtraQ

p1

rt-pool

head

v11

v41

v12

v51

v22

v32

p2 p3 p4

Fig. 2. Architecture of vGEDF

In the real-time scheduling framework, the vGEDF scheduler is applied to
rt-pool. All the PCPUs in rt-pool share three global queues: runnable queue
(RunQ), waiting queue (WaitQ), and extra queue (ExtraQ). Each VM also has
following scheduling parameters: pi, si, and xi. The meaning of pi and si is
described in Section 2.1. xi is a boolean value to indicate whether a VM can get
extra CPU time (i.e. work-conserving mode). The scheduler inserts VCPUs into
these queues according to their scheduling parameters. If a VCPU has remaining

A Real-Time Scheduling Framework 201

CPU slice in current period, it is inserted into RunQ. Otherwise, it is inserted
into WaitQ or ExtraQ according to the value of xi of the VCPU. The priority
of a VCPU is calculated according to their deadlines: the earlier the deadline,
the higher the priority. VCPUs in RunQ are sorted by their priorities, and the
VCPU in the head of RunQ has the highest priority. ExtraQ is used to support
work-conserving mode.

Algorithm 3. vGEDF Scheduling Algorithm

1 handle the bookkeeping for current in RunQ or ExtraQ;
2 update queues(RunQ, WaitQ);
3 snext ← CandidatePick(RunQ);
4 if snext == NULL then
5 snext ← CandidatePick(ExtraQ);
6 if snext == NULL then
7 return idle vcpu[cpu] ;
8 end

9 end
10 ret.task ← snext.vcpu;
11 snext.picked ← 1;
12 return ret.task ;

The pseudo-code of the vGEDF scheduling is shown in Algorithm 3. The
scheduler first conducts bookkeeping for the current running VCPU and updates
the parameters of VCPUs in RunQ andWaitQ (line 1∼2). Then, it picks a VCPU
from RunQ or ExtraQ to run (line 3∼10). For the convenience of bookkeeping
and updating queues, the picked VCPU is still in the queues. Therefore, when a
VCPU is picked to run, we need to mark it as picked (line 11).

Because our vGEDF scheduler picks the VCPU from global queues to run, a
VCPU may run on several PCPUs in a short time period, which may increase
cache misses. We present some approaches to reduce cache misses. On one hand,
the multi-core dynamic partitioning mechanism preferably allocates PCPUs be-
longing to a NUMA node to rt-pool and these PCPUs share the last-level cache.
The vGEDF scheduler applied to rt-pool will not increase the last level cache
misses if all the PCPUs in rt-pool belong to a NUMA node. On the other hand,
in order to further mitigate the impact of cache misses, we present a cache-aware
pick algorithm (shown in Algorithm 4), which takes cache affinity into account,
to reduce L1 and L2 cache misses.

Besides, although the vGEDF scheduler uses global queues to manage VCPUs,
the scalability is not a problem for the scheduler. This is because schedulers that
use global queues can also scale to a certain number of PCPUs. Moreover, only
a part of applications running in cloud environment is real-time applications.
As a result, our framework allocates a small amount of PCPUs to rt-pool and
only these PCPUs share the global queues. Even a PM has many PCPUs and
all these PCPUs should be allocated to rt-pool, the scalability problem can also
be addressed by our framework through partitioning multiple real-time pools.

202 S. Wu et al.

Algorithm 4. CandidatePick Algorithm

1 ret ← NULL;
2 foreach vcpu in queue do
3 if vcpu.cpu mask¤t pcpu! = 0 then
4 if vcpu.processor! = current pcpu&&((vcpu.picked == 1&&vcpu! =

current)||vcpu is cache hot) then
5 continue;
6 end
7 ret ← vcpu;
8 break;

9 end

10 end
11 return ret ;

3 Performance Evaluation

We implement a working prototype of the proposed real-time scheduling
framework in Xen-4.2.1, called Risa. In this section, we evaluate the effective-
ness of Risa through several experiments. We first describe the experimental
environment, and then present the experimental results.

3.1 Experimental Environment and Methodology

Our evaluations are conducted on a server which has two quad-core 2.4GHz
Intel Xeon CPUs, 24GB memory, 1TB SCSI disk, and 1Gbps Ethernet card. We
use Xen-4.2.1 as the hypervisor and CentOS 5.5 distribution with the Linux-
2.6.32.40 kernel as the OS. The network I/O of a VM is handled via a software
bridge in Domain0. Unless otherwise specified, the configurations of VMs running
on the server are as follows: 1VCPU, 1GB memory and 8GB virtual disk. Our
experiments are targeted at understanding the effect of each component of Risa.

How to Evaluate the Effect of Multi-core Dynamic Partitioning Mech-
anism. As described in Section 2.1, a practical way to support different kinds of
applications simultaneously and provide performance isolation in multi-tenant
cloud environment is to partition PCPUs into multiple pools and to apply dif-
ferent schedulers to these pools. As a result, we conduct experiments under two
multi-core partitioning mechanisms.

One is the multi-core dynamic partitioning mechanism of Risa, which can
manage rt-pool automatically according to the scheduling parameters of RT-
VMs. The other is the multi-core static partitioning mechanism. It uses cpupools,
a new feature of Xen since Xen 4.2, to partition PCPUs into rt-pool and non-rt-
pool, but in a static method. It allocates the peak number of PCPUs to rt-pool
manually according to the estimation of the requirements of RT-VMs before the
creation of them, and deletes rt-pool when all the RT-VMs are destroyed.

A Real-Time Scheduling Framework 203

How to Evaluate the Effect of the vGEDF Scheduler. When we eval-
uate the vGEDF scheduler, we conduct experiments under four strategies to
demonstrate the advantages of the vGEDF scheduler. We dedicate four PCPUs
to Domain0 to handle communication and interrupts for other VMs, which iso-
lates Domain0 to all other domains. Fourteen VMs (VM1∼VM14) are running
on the other PCPUs. VM1 hosts testing real-time applications and the others
are interfering VMs which run lookbusy [4]. The details of these strategies are
as follows.

baseline is the default configuration in cloud environment that only the Credit
scheduler is adopted to schedule VMs.

Risa is our framework. In this strategy, seven VMs (VM1∼VM7) are set as
RT-VMs. The scheduling parameters of VM1 are set as (pi=5ms, si=1ms). The
others are set as (pi=10ms, si=2ms). Therefore, Risa allocates two PCPUs to rt-
pool according to (3) and applies the vGEDF scheduler to rt-pool automatically.

sp+SEDF uses the multi-core static partitioning mechanism to simulate an
environment like Risa. It partitions PCPUs into two pools and allocates two
PCPUs to rt-pool manually, and the SEDF scheduler is adopted to schedule
RT-VMs in rt-pool. Because it does not support load balance among multiple
PCPUs, the distribution of these RT-VMs is as follows: a PCPU hosts four
RT-VMs (VM1∼VM4) and the other hosts three RT-VMs (VM5∼VM7).

sp+SEDF(overload) is similar with sp+SEDF, except that a PCPU is over-
loaded. Because the SEDF scheduler does not support load balancing among
multiple PCPUs, it is possible that a PCPU is overloaded while the other has
slight load. This strategy is used to simulate such situation that a PCPU hosts
six RT-VMs (VM1∼VM6) and only one RT-VM (VM7) runs on the other PCPU.

3.2 Effect of Multi-core Dynamic Partitioning Mechanism

In this test, we evaluate the effect of the multi-core dynamic partitioning mech-
anism. We launch two non-RT-VMs with 8 VCPUs on the server and each runs
eight hungry loop applications as non-real-time applications, which can exhaust

Fig. 3. Total CPU utilization of non-RT-VMs under different partitioning strategies.
Risa uses dynamic partitioning, and sp means static partitioning.

204 S. Wu et al.

the available CPU resources. We monitor the total CPU utilization of these VMs,
which is the performance metric in this test. A shell script is running to create
and destroy RT-VMs as time goes on, and the tasks of this script are as follows.
1) at time t1, it creates two RT-VMs and sets their scheduling parameters as
(pi=10ms, si=6ms); 2) at time t2, it changes si of a RT-VM to 2ms; 3) at time
t3, it destroys these RT-VMs. In the multi-core static partitioning mechanism,
the first thing needs to be done is to estimate the number of PCPUs which
should be allocated to rt-pool. Then, two PCPUs are allocated to rt-pool before
the creation of RT-VMs according to (3). Finally, rt-pool is destroyed at t3 and
the number of PCPUs of non-rt-pool is increased (it cannot be increased auto-
matically when rt-pool is destroyed). Moreover, RT-VMs need to be assigned to
rt-pool by administrators explicitly. In the multi-core dynamic partitioning, the
only thing needs to be done is to run the shell script. The test results are shown
in Fig. 3.

From the test results, we can observe that Risa automatically reduces the
number of PCPUs of rt-pool at time t2. This is because the needed number
of PCPUs of rt-pool turns to 1 according to (3) when the script adjusts the
scheduling parameter of the RT-VM. Besides, because Risa adopts a delayed
shrink manner, the increase of CPU utilization at t3 under Risa is 15 seconds
(implementation defined) later than sp. As a result, compared to the multi-core
static partitioning mechanism, the multi-core dynamic partitioning mechanism
of Risa can reduce operation expense and improve CPU utilization.

3.3 Effect of vGEDF Scheduler

In this test, we perform two experiments to evaluate the effectiveness of the
vGEDF scheduler of Risa. They are conducted under different guest OSes. One
is general purpose operating system (GPOS). The other is real-time operating
system (RTOS), which is designed to serve real-time application requests.

(a) Average PESQ of concurrent calls (b) Statistics of 50 concurrent calls

Fig. 4. Call quality under different strategies

A Real-Time Scheduling Framework 205

Experiments with VoIP Server Running in GPOS. Voice over Internet
Protocol (VoIP) server is a typical soft real-time application. Asterisk [2] is a
famous and open source telephone private branch exchange. In this test, we use
Asterisk to conduct experiments to evaluate the vGEDF scheduler of Risa.

We use VM1 to host Asterisk, and run SIPp [6] on a machine in the same LAN
as a VoIP client. We start up several concurrent calls that range from 5 to 50 to
simulate the real world environment, and measure call quality with the ITU-T
PESQ (Perceptual Evaluation of Speech Quality) metric [15], which ranges from
0 to 4.5. Typically, if the value is greater than 4, it means that the VoIP service
has good quality. The test results are shown in Fig. 4.

Seen from Fig. 4(a), Risa is the best among these scheduling strategies, and
the call quality is guaranteed under Risa. This is because Risa is designed for
real-time applications and takes full advantage of underlying multi-core proces-
sors. The Credit scheduler is a proportional fair share scheduler and does not
consider real-time constraints. Thus, it even cannot guarantee the call quality
with small concurrent calls. With the increase of concurrent calls, the SEDF
scheduler cannot support the VoIP server any more. This is because the SEDF
scheduler cannot make full use of multi-core processors. Besides, the call quality
under the strategy of sp+SEDF(overload) is very low, which also shows the im-
portance of load balancing among multiple PCPUs. Compared with the Credit
scheduler, Risa achieves 68.1% improvement in call quality according to the av-
erage PESQ when we start up 50 concurrent calls. Accordingly, compared with
the SEDF scheduler, Risa enhances the call quality by 13.7%.

Moreover, Fig. 4(b) shows the statistics of the call qualities of 50 concurrent
calls under different strategies. We find that call quality is very steady under
Risa, which is crucial for the VoIP server to provide stable services.

Experiments with Cyclictest Running in RTOS. Cyclictest [3] is a widely
used real-time testing tool, which can evaluate kernel latencies of real-time Linux
kernel. In this test, we use cyclictest to conduct experiments under a RTOS
to demonstrate whether Risa supports the RTOS and hardware-assisted VMs
(HVMs).

Table 1. Cyclictest test results under different strategies

Strategy Min Latencies (us) Avg Latencies (us) Max Latencies (us)

Credit 5 5862 181559

sp+SEDF 0 3224 58634

Risa 0 2342 55700

The guest RTOS is CentOS 5.5 with Linux-2.6.32.40 kernel plus PREEMPT-
RT patch [5], which is installed in a HVM. We replace VM1 in the four strategies
with the HVM, and use cyclictest to evaluate the kernel latency of the RTOS
by collecting data for 500,000 times. However, we observe that the RTOS is not
responded under the strategy of sp+SEDF(overload) because of the features of

206 S. Wu et al.

the HVM. As a result, the experimental results only include three strategies,
which are shown in Table 1. From the test results, we can find that the kernel
latency is the smallest under Risa. Compared with the Credit scheduler and the
SEDF scheduler, the kernel latency is reduced by 60% and 27.4% according to the
average latencies, respectively. However, the reduction on maximum latencies is
small compared to the SEDF scheduler. This is because both SEDF and vGEDF
are based on the EDF scheduling algorithm.

4 Related Work

Hu et al. [10] present an I/O scheduling model of VM based on multi-core
dynamic partitioning. They divide PCPUs into three subsets, and apply an
identical scheduler with different strategies to these subsets. However, real-time
scheduling is much more complex than I/O scheduling. Designing different sched-
ulers for various subsets is more suitable for supporting real-time applications.

Lee et al. [13] introduce a concept named laxity to denote the scheduling la-
tency that a VM desires. The VCPU of a VM running soft real-time applications
is inserted into the middle of run queue according to its laxity so that it can be
scheduled within its desired deadline. Kim et al. [12] present an approach to
reallocate credits for the VMs running client-side multimedia applications adap-
tively according to their qualities. Our previous work [17][18] proposes a parallel
soft real-time scheduling algorithm, which addresses real-time constraints and
synchronization problems simultaneously, to support parallel soft real-time ap-
plications in virtualized environment. Hwang et al. [11] design a soft real-time
scheduling to support virtual desktop infrastructures. However, all these stud-
ies lack the schedulability analysis, which is important for real-time scheduling.
RT-Xen [16] presents a hierarchical real-time scheduling framework for Xen, but
it only supports single core VMs.

5 Conclusion

In this paper, we present a real-time scheduling framework based on multi-core
dynamic partitioning in virtualized environment. If the system has RT-VMs,
PCPUs are partitioned into two pools (rt-pool and non-rt-pool) automatically
according to the scheduling parameters of RT-VMs. rt-pool uses the vGEDF
scheduler, which takes full advantage of multi-core processors, to schedule RT-
VMs. Non-RT-VMs are scheduled by the Credit scheduler in non-rt-pool. We
implement a prototype in the Xen hypervisor and evaluate its effectiveness. The
experiments results show that Risa supports real-time applications well, reduces
operation expense, and improves CPU utilization.

Acknowledgments. The research is supported by National Science Foundation
of China under grant No.61232008, National 863 Hi-Tech Research and Devel-
opment Program under grant No.2013AA01A208, Doctoral Program of MOE
under grant 20110142130005, EU FP7 MONICA Project under grant No.295222,
and Chinese Universities Scientific Fund under grant No. 2013TS094.

A Real-Time Scheduling Framework 207

References

1. Amazon’s Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
2. Asterisk, http://www.asterisk.org/
3. Cyclictest, https://rt.wiki.kernel.org/index.php/Cyclictest
4. Lookbusy - a synthetic load generator, http://www.devin.com/lookbusy/
5. Real-Time Linux Wiki, https://rt.wiki.kernel.org
6. SIPp, http://sipp.sourceforge.net/
7. Baker, T.P.: An analysis of edf schedulability on a multiprocessor. IEEE Trans.

Parallel Distrib. Syst. 16(8), 760–768 (2005)
8. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proc. SOSP 2003,
pp. 164–177 (2003)

9. Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three cpu schedulers in
Xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42 (2007)

10. Hu, Y., Long, X., Zhang, J., He, J., Xia, L.: I/O scheduling model of
virtual machine based on multi-core dynamic partitioning. In: Proc. HPDC 2010,
pp. 142–154 (2010)

11. Hwang, J., Wood, T.: Adaptive dynamic priority scheduling for virtual desktop
infrastructures. In: Proc. IWQoS 2012 (2012)

12. Kim, H., Jeong, J., Hwang, J., Lee, J., Maeng, S.: Scheduler support for video-
oriented multimedia on client-side virtualization. In: Proc. MMsys 2012, pp. 65–76
(2012)

13. Lee, M., Krishnakumar, A.S., Krishnan, P., Singh, N., Yajnik, S.: Supporting soft
real-time tasks in the Xen hypervisor. In: Proc. VEE 2010, pp. 97–108 (2010)

14. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (JACM) 20(1), 46–61 (1973)

15. Rix, A.W., Beerends, J.G., Hollier, M.P., Hekstra, A.P.: Perceptual evaluation of
speech quality (pesq)-a new method for speech quality assessment of telephone
networks and codecs. In: Proc. ICASSP 2001, vol. 2, pp. 749–752 (2001)

16. Xi, S., Wilson, J., Lu, C., Gill, C.: RT-Xen: Towards real-time hypervisor scheduling
in Xen. In: Proc. EMSOFT 2011, pp. 39–48 (2011)

17. Zhou, L., Wu, S., Sun, H., Jin, H., Shi, X.: Supporting parallel soft real-time
applications in virtualized environment. In: Proc. HPDC 2013, pp. 117–118 (2013)

18. Zhou, L., Wu, S., Sun, H., Jin, H., Shi, X.: Virtual machine scheduling for parallel
soft real-time applications. In: Proc. MASCOTS 2013, pp. 525–534 (2013)

http://aws.amazon.com/ec2/
http://www.asterisk.org/
https://rt.wiki.kernel.org/index.php/Cyclictest
http://www.devin.com/lookbusy/
https://rt.wiki.kernel.org
http://sipp.sourceforge.net/

	A Real-Time Scheduling Framework
Based on Multi-core Dynamic Partitioning
in Virtualized Environment

	1 Introduction
	2 Design of Real-Time Scheduling Framework
	2.1 Multi-core Dynamic Partitioning Mechanism
	2.2 vGEDF Scheduler

	3 Performance Evaluation
	3.1 Experimental Environment and Methodology
	3.2 Effect of Multi-core Dynamic Partitioning Mechanism
	3.3 Effect of vGEDF Scheduler

	4 Related Work
	5 Conclusion
	References

