
Peer-to-Peer Netw. Appl.
DOI 10.1007/s12083-013-0213-7

Handling partitioning skew in MapReduce using LEEN

Shadi Ibrahim · Hai Jin · Lu Lu · Bingsheng He ·
Gabriel Antoniu · Song Wu

Received: 1 November 2012 / Accepted: 24 April 2013
© Springer Science+Business Media New York 2013

Abstract MapReduce is emerging as a prominent tool for
big data processing. Data locality is a key feature in MapRe-
duce that is extensively leveraged in data-intensive cloud
systems: it avoids network saturation when processing large
amounts of data by co-allocating computation and data stor-
age, particularly for the map phase. However, our studies
with Hadoop, a widely used MapReduce implementation,
demonstrate that the presence of partitioning skew (Parti-
tioning skew refers to the case when a variation in either
the intermediate keys’ frequencies or their distributions or
both among different data nodes) huge amount of data
transfer during the shuffle phase and leads to significant
unfairness on the reduce input among different data nodes.
As a result, the applications severe performance degrada-
tion due to the long data transfer during the shuffle phase
along with the computation skew, particularly in reduce
phase. In this paper, we develop a novel algorithm named
LEEN for locality-aware and fairness-aware key partition-
ing in MapReduce. LEEN embraces an asynchronous map

S. Ibrahim (�) · G. Antoniu
INRIA Rennes-Bretagne Atlantique, Rennes, France
e-mail: shadi.ibrahim@inria.fr

G. Antoniu
e-mail: gabriel.antoniu@inria.fr

H. Jin · L. Lu · S. Wu
Cluster and Grid Computing Lab, Services Computing
Technology and System Lab, Huazhong University of Science
and Technology, Wuhan, China

H. Jin
e-mail: hjin@mail.hust.edu.cn

B. He
School of Computer Engineering, Nanyang Technological
University, Singapore, Singapore
e-mail: bshe@ntu.edu.sg

and reduce scheme. All buffered intermediate keys are parti-
tioned according to their frequencies and the fairness of the
expected data distribution after the shuffle phase. We have
integrated LEEN into Hadoop. Our experiments demon-
strate that LEEN can efficiently achieve higher locality
and reduce the amount of shuffled data. More importantly,
LEEN guarantees fair distribution of the reduce inputs. As a
result, LEEN achieves a performance improvement of up to
45 % on different workloads.

Keywords MapReduce · Hadoop · Cloud computing ·
Skew partitioning · Intermediate data

1 Introduction

MapReduce [1], due to its remarkable features in simplicity,
fault tolerance, and scalability, is by far the most successful
realization of data intensive cloud computing platforms [2].
It is often advocated as an easy-to-use, efficient and reliable
replacement for the traditional programming model of mov-
ing the data to the cloud [3]. Many implementations have
been developed in different programming languages for
various purposes [4–6]. The popular open source implemen-
tation of MapReduce, Hadoop [7], was developed primarily
by Yahoo, where it processes hundreds of terabytes of data
on tens of thousands of nodes [8], and is now used by other
companies, including Facebook, Amazon, Last.fm, and the
New York Times [9].

The MapReduce system runs on top of the Google File
System (GFS) [10], within which data is loaded, partitioned
into chunks, and each chunk replicated across multiple
machines. Data processing is co-located with data storage:
when a file needs to be processed, the job scheduler con-
sults a storage metadata service to get the host node for each

mailto:shadi.ibrahim@inria.fr
mailto:gabriel.antoniu@inria.fr
mailto:hjin@mail.hust.edu.cn
mailto:bshe@ntu.edu.sg

Peer-to-Peer Netw. Appl.

chunk, and then schedules a “map” process on that node,
so that data locality is exploited efficiently. The map func-
tion processes a data chunk into key/value pairs, on which
a hash partitioning function is performed, on the appear-
ance of each intermediate key produced by any running map
within the MapReduce system:

hash (hash code (Intermediate-Keys) module ReduceID)

The hashing results are stored in memory buffers, before
spilling the intermediate data (index file and data file) to
the local disk [11]. In the reduce stage, a reducer takes
a partition as input, and performs the reduce function on
the partition (such as aggregation). Naturally, how the hash
partitions are stored among machines affects the network
traffic, and the balance of the hash partition size is an
important indicator for load balancing among reducers.

In this work, we address the problem of how to efficiently
partition the intermediate keys to decrease the amount of
shuffled data, and guarantee fair distribution of the reduc-
ers’ inputs, resulting in improving the overall performance.
While, the current Hadoop’s hash partitioning works well
when the keys are equally appeared and uniformly stored in
the data nodes, with the presence of partitioning skew, the
blindly hash-partitioning is inadequate and can lead to:

1. Network congestion caused by the huge amount of
shuffled data, (for example, in wordcount application,
the intermediate data are 1.7 times greater in size
than the maps input, thus tackling the network conges-
tion by locality-aware map executions in MapReduce
systems is not enough);

2. unfairness of reducers’ inputs; and finally
3. severe performance degradation [12] (i.e. the variance

of reducers’ inputs, in turn, causes a variation in the
execution time of reduce tasks, resulting in longer
response time of the whole job, as the job’s response
time is dominated by the slowest reduce instance).

Recent research has reported on the existence of par-
titioning skew in many MapReduce applications [12–14],
but none of the current MapReduce implementations have
overlooked the data skew issue [15]. Accordingly, in the
presence of partitioning skew, the existing shuffle strategy
encounters the problems of long intermediate data shuffle
time and noticeable network overhead. To overcome the net-
work congestion during the shuffle phase, we propose to
expose the locality-aware concept to the reduce task; How-
ever, locality-aware reduce execution might not be able to
outperform the native MapReduce due to the penalties of
unfairness of data distribution after the shuffle phase, result-
ing in reduce computation skew. To remedy this deficiency,
we have developed an innovative approach to significantly

reduce data transfer while balancing the data distribution
among data nodes.

Recognizing that the network congestion and unfairness
distribution of reducers’ inputs, we seek to reduce the trans-
ferred data during the shuffle phase, as well as achieving a
more balanced system. We develop an algorithm, locality-
aware and fairness-aware key partitioning (LEEN), to save
the network bandwidth dissipation during the shuffle phase
of the MapReduce job along with balancing the reducers’
inputs. LEEN is conducive to improve the data locality
of the MapReduce execution efficiency by the virtue of
the asynchronous map and reduce scheme, thereby having
more control on the keys distribution in each data node.
LEEN keeps track of the frequencies of buffered keys hosted
by each data node. In doing so, LEEN efficiently moves
buffered intermediate keys to the destination considering
the location of the high frequencies along with fair dis-
tribution of reducers’ inputs. To quantify the locality, data
distribution and performance of LEEN, we conduct a com-
prehensive performance evaluation study using LEEN in
Hadoop 0.21.0. Our experimental results demonstrate that
LEEN interestingly can efficiently achieve higher locality,
and balance data distribution after the shuffle phase. In
addition, LEEN performs well across several metrics, with
different partitioning skew degrees, which contribute to the
performance improvement up to 45 %.

LEEN is generally applicable to other applications with
data partitioning and this will result in guaranteed resource
load balancing with a small overhead due to the asyn-
chronous design. The main focus of this paper and the pri-
mary usage for LEEN is on MapReduce applications where
partitions skew exists (e.g., many scientific applications
[12–14, 16] and graph applications [17]).

We summarize the contributions of our paper as follows:

– An in-depth study on the source of partitioning skew
in MapReduce and its impacts on application perfor-
mance.

– A natural extension of the data-aware execution by the
native MapReduce model to the reduce task.

– A novel algorithm to explore the data locality and fair-
ness distribution of intermediate data during and after
the shuffle phase, to reduce network congestion and
achieve acceptable data distribution fairness.

– Practical insight and solution to the problems of net-
work congestion and reduce computation skew, caused
by the partitioning skew, in emerging Cloud.

The rest of this paper is organized as follows. Section 2
briefly introduces MapReduce and Hadoop, and illustrates
the recent partitioning strategy used in Hadoop. The par-
titioning skew issue is explored and empirically analyzed
in Section 3. The design and implementation of the LEEN

Peer-to-Peer Netw. Appl.

approach is discussed in Section 4. Section 5 details the per-
formance evaluation. Section 6 discusses the related works.
Finally, we conclude the paper and propose our future work
in Section 7.

2 Background

In this section, we briefly introduce the MapReduce model
and its widely used implementation, Hadoop. Then we
briefly zoom on the workflow of job execution in Hadoop
introducing side by side the map, reduce and partition
functions.

2.1 MapReduce model

The MapReduce [1] abstraction is inspired by the Map and
Reduce functions, which are commonly used in functional
languages such as Lisp. Users express the computation
using two functions, map and reduce, which can be car-
ried out on subsets of the data in a highly parallel manner.
The runtime system is responsible for parallelizing and fault
handling.

The steps of the process are as follows:

– The input is read (typically from a distributed file
system) and broken up into key/value pairs. The key
identifies the subset of data, and the value will have
computation performed on it. The map function maps
this data into sets of key/value pairs that can be dis-
tributed to different processors.

– The pairs are partitioned into groups for processing, and
are sorted according to their key as they arrive for reduc-
tion. The key/value pairs are reduced, once for each
unique key in the sorted list, to produce a combined
result.

2.2 Hadoop

Hadoop [7] is a java open source implementation of MapRe-
duce sponsored by Yahoo! The Hadoop project is a col-
lection of various subprojects for reliable, scalable dis-
tributed computing. The two fundamental subprojects are
the Hadoop MapReduce framework and the HDFS. HDFS
is a distributed file system that provides high throughput
access to application data [7]. It is inspired by the GFS.
HDFS has master/slave architecture. The master server,
called NameNode, splits files into blocks and distributes
them across the cluster with replications for fault toler-
ance. It holds all metadata information about stored files.
The HDFS slaves, the actual store of the data blocks called
DataNodes, serve read/write requests from clients and prop-
agate replication tasks as directed by the NameNode.

The Hadoop MapReduce is a software framework for dis-
tributed processing of large data sets on compute clusters
[7]. It runs on the top of the HDFS. Thus data processing is
collocated with data storage. It also has master/slave archi-
tecture. The master, called Job Tracker (JT), is responsible
of: (a) Querying the NameNode for the block locations, (b)
considering the information retrieved by the NameNode, JT
schedule the tasks on the slaves, called Task Trackers (TT),
and (c) monitoring the success and failures of the tasks.

2.3 Zoom on job execution in Hadoop

The MapReduce program is divided into two phases, map
and reduce. For the map side, it starts by reading the records
in the Map process, then the map function processes a data
chunk into key/value pairs, on which the hash partitioning
function is performed as shown in Fig. 1. This intermedi-
ate result, refereed as record, is stored with its associate
partition in the buffer memory (100 MB for each map by
default). If the buffered data reaches the buffer threshold
(80 % of the total size), the intermediate data will be sorted
according to the partition number and then by key and
spilled to the local disk as an index file and a data file.
All files will be then merged as one final indexed file—by
indexed we mean indexed according to the partition number
that represents the target reduce. The reduce case is starting
as soon as the intermediate indexed files are fetched to the
local disk; the files from multiple local map outputs will be
written at the same time (by default five pipes will be avail-
able for the different nodes). The files will be buffered in
the memory in a “shuffle buffer”; when the shuffle buffer
reaches a threshold the files will be redirected to the local
disk, then the different files will be merged according to the
user specific application, and merged files from the shuffle
buffer will be tailed in the local disk. Finally the merged
data will be passed to the reduce function and then the out-
put will be written to the HDFS or elsewhere according to
the user specific application.

3 Partitioning skew in MapReduce

The outputs of map tasks are distributed among reduce tasks
via hash partitioning. The default hash-partitioning, how-
ever, is designed to guarantee evenly distribution of keys
amongst the different data nodes, that is, if we have n data
nodes and k different keys then the number of keys which
will be partitioned to each data node is k

n
, regardless of

the frequencies of each distinct key (usually the number
of records are associated with one key). The default hash-
partitioning therefore is only adequate when the number of
records associated with each key are relatively equal and the
key’s records are uniformly distrusted amongst data nodes.

Peer-to-Peer Netw. Appl.

Fig. 1 The workflow of the two phases in MapReduce job: the map phase and reduce phase

However, in the presence of partitioning skew the hash-
partitioning assumption will break and therefore reduce-
skew and network congestion can arise in practice [12–14,
18]. As we earlier stated the partition skew phenomena ref-
ereed to the case when the keys’ frequencies vary and/or
the key’s records among data node are not uniformly dis-
tributed. Consider the two examples which represent each
factor separately:

– Keys’ Frequencies Variation: Although the partition-
ing function perfectly distributes keys across reducers,
some reducers may still be assigned more data simply
because the key groups they are assigned to contain
significantly more values. Figure 2a presents the first
example considering three data nodes and six keys. We

vary keys frequencies to 3, 6, 9, 12, 15, and18 records
per key, accordingly using the blindly hash-partitioning
which is based on the sequence of the keys appear-
ance during the map phase, the distribution of reducers’
inputs will vary between the best partitioning: 21
records for each reducer, and the worst case parti-
tioning: the input of the reducers in node1, node2,
and node3 will be 9, 21 and 33 records respectively.
Despite that in both cases the number of keys assigned
to each data node is the same, two keys per node in our
example.

Accordingly reduce-skew will occur, in our example,
node3 will finish its reduce nearly four times slower
than node1; consequently, heavy reduce execution on
some nodes. Thus performance experiences degradation

Fig. 2 Motivational example:
demonstrates the worst and best
partitioning scenarios when
applying the current blindly key
partitioning in MapReduce in
the presence of Partitioning
skew. The keys are ordered by
their appearance while each
value represents the frequency
of the key in the data node. a
Keys’s frequencies variation. b
Inconsistency in key’s
distribution

a b

Peer-to-Peer Netw. Appl.

(i.e. waiting the last subtask to be finished), and less
resource utilization (i.e. node1 will be idle while node3
is overloaded). Schatz [18] and Kwon [12] have demon-
strated the existence of this phoneme in some biolog-
ical applications, for example, Kwon [12] has demon-
strated that because of the keys’ frequencies variation,
in CloudBurst [18] application, some reducers will
finish their task four times longer than other reduces.

– Inconsistency in Key’s Distribution: As a second exam-
ple, even when the keys have the same frequencies and
therefore the partitioning function perfectly distributes
keys across reducers—all reducers inputs are relatively
equal–. But, however, the blind hash-partitioning may
lead to high network congestion, especially when the
key’s recodes are not uniformly distributed among data
nodes. Figure 2b presents the second example consid-
ering three data nodes and six keys. All keys have the
same frequents, 6 records per key but the key’s distri-
bution is inconsistent among the nodes. Applying the
blindly hash-partitioning will result with evenly reduc-
ers’s inputs, but the data transfer, in contrast with the
total map output during the shuffle phase will vary
from 41.6 %,1 in the best case, to 83.3 % in the worst
case. Accordingly network congestion during the shuf-
fle phase is strongly depending on the hash-partitioning.

However, in the case of partitioning skew, when both
factors, keys’ frequencies variation and inconsistency in
key’s distribution, will occur the blind hash-partitioning
may result will both skew-reduce and network congestion
as demonstrated in Section 5.

3.1 Partitioning skew in MapReduce applications

MapReduce has been applied widely in various fields
including data- and compute-intensive applications,
machine learning, and multi-core programming. In this sub-
section we intend to classify the MapReduce application in
term of skewed intermediate data.

A typical MapReduce application includes four main
functions: map, reduce, combiner and shuffle functions.
Accordingly we could classify MapRduce applications in
respect to the main applied function in these applica-
tions into: map-oriented, combiner-oriented, map/reduce-
oriented , shuffle-oriented as shown in Table 1.

– Map-oriented. The map function is the main func-
tion in the application, while the reduce function is
only an identity function. An example of this type of
applications is the Distributed Grep application.2

1This value represents the ratio= transf erreddata during shuff le
map phase output

2http://wiki.apache.org/hadoop/Grep

– Combiner-oriented. The combiner function is applied
in such applications. The combiner performs as a
map-based pre-reducer which significantly reduces the
network congestion as in wordcount3 applications and
Count of URL Access Frequency.4

– Map/Reduce-oriented. These applications are typical
map and reduce jobs where no combine can be applied.
Also in this type of applications, all the keys is asso-
ciated with only one unique value as in distributed
Sort.5

– Shuffle-oriented. In these applications both map and
reduce functions are applied. However, they differ from
the previous application in that multi record are associ-
ated with the same key and they differ from the second
type in that no combiner could be used. Here when the
map output is shuffled to the reducer, this may cause
a network bottleneck. There is a wide range of appli-
cations in this category as graph processing, machine
learning and scientific application [12, 16, 18–20]. It
is important to note that many optimizations could be
applied in this category.

3.2 Empirical study on partitioning skew in Hadoop

In this section we empirically demonstrate the impacts of
the partition skew on MapReduce applications. For simplic-
ity, we mimic the first type of partitioning skew, frequencies
variation, which was in practise in some real applications.
We use wordcount benchmark but after disabling the com-
biner function.

3.2.1 Experimental environment

Our experimental hardware consists of a cluster with four
nodes. Each node is equipped with four quad-core 2.33 GHz
Xeon processors, 24 GB of memory and 1 TB of disk, runs
RHEL5 with kernel 2.6.22, and is connected with 1 GB Eth-
ernet. In order to extend our testbed, we use a virtualized
environment, using Xen [22]. In the virtualized environ-
ment, one virtual machine (VM) was deployed on one
physical machine (PM) to act as master node (Namenode).
We also deployed two VMs on each of the three left PM,
reaching a cluster size of 6 data nodes. Each virtual machine
is configured with 1 CPU and 1 GB memory.

All results described in this paper are obtained using
Hadoop-0.21.0. In order to show the case of partitioning

3http://wiki.apache.org/hadoop/WordCount
4http://code.google.com/intl/fr/edu/parallel/mapreduce-tutorial.html
5http://wiki.apache.org/hadoop/Sort

http://wiki.apache.org/hadoop/Grep
http://wiki.apache.org/hadoop/WordCount
http://code.google.com/intl/fr/edu/parallel/mapreduce-tutorial.html
http://wiki.apache.org/hadoop/Sort

Peer-to-Peer Netw. Appl.

Table 1 MapReduce
applications’ classification Map only MapReduce MapReduce without combiner

with combiner Single record Multi record

Distributed Wordcount Distributed Wordcount without combiner,

grep sort

Count of URL Graph processing [21],

access frequency

Machine learning [20],

Scientific application [16, 18, 19]

skew, we perform the wordcount applications without com-
biner function. Moreover, we have used up to 100 different
keys reaching an input data size of 6 GB: representing dif-
ferent words with the same length (to avoid variation in
values size), with different frequencies as shown in Fig. 3
(we vary the keys frequencies between 60 to 79860000
records), and uniform key distribution between nodes: if
a key frequency is 60, then each data node is hosting 10
records of this key.

3.2.2 Major results

As we mentioned earlier, the current partition function
blindly partitions the keys to the available reducers: it
ignores the keys’ frequencies variation and their distribu-
tion. This in turn will lead to skewed reducers inputs and
also reduce computation skew.

As shown in Fig. 4a, although the keys are uniformly
distributed between the nodes (the data locality of shuffled
keys is fixed to 1

n
, where n is the number of nodes “16 %”),

we observe a huge amount of data transfer during the shuf-
fle phase (almost 14.7 GB) which is by far greater than the

Fig. 3 Experiment setup: CDF of the Keys’ frequencies. The key
frequencies vary from 60 to 79860000 records per key

input data (6 GB). This supports our motivation on shuf-
fled data being an important source of network saturation in
MapReduce applications. Moreover, we observe an imbal-
anced network traffic among the different data nodes: some
nodes will suffer heavy network traffic while low traffic in
other nodes.

Moreover, the data distribution of reducers inputs is
totally imbalanced: it ranges from 340 MB to 3401 MB as
shown in Fig. 4b, which in turn will result in a reduce com-
putation skew as shown in Fig. 5. As the minimum size of
reducer input (node1) is almost 10 % compared to the maxi-
mum one (node6), this will result with misuse of the system
resources: for example one node1 will finish processing the
reduce function nearly nine times faster than node6 (node1
finishes the reduce function in 33 s while node6 finishes in
231 s). Accordingly some nodes will be heavily overloaded
while other nodes are idle.

As a result the application experiences performance
degradation: waiting for the last task to be completed.

4 LEEN: Locality-awarE and fairness-awarE key
partitioNing

To address the partitioning skew problem and limit its
adversary’s impacts in MapReduce: Network saturation and
imbalanced reduce execution, in this section we propose a
new key partitioning approach that exposes data locality to
the reduce phase while maintaining fair distribution among
the reducers’ inputs. We first discuss the asynchronous map
and reduce scheme (Section 4.1), later we discuss in details
the LEEN algorithm (Section 4.2) and finally we describe
the implementation of LEEN in Hadoop (Section 4.3).

4.1 Asynchronous map and reduce

In Hadoop several maps and reduces are concurrently run-
ning on each data node (two of each by default) to overlap
computation and data transfer. While in LEEN, in order to
keep a track on all the intermediate keys’ frequencies and

Peer-to-Peer Netw. Appl.

a b

Fig. 4 The size of data transferred from and into the data nodes dur-
ing the copy phase and the data distribution of reducers inputs: when
performing wordcount application on 6 GB of data after disabling
the combiners. a Data movement during shuffle phase: although the
number of keys per reducer task is the same, the data transferred in and

out vary in accordance to the number of records per key. b The data
distribution of reducers inputs: even though all reduce tasks receive the
same number of keys, the size of reducers inputs varies from 340MB
to 3401MB

key’s distributions, we propose to use asynchronous map
and reduce schemes, which is a trade-off between improving
the data locality along with fair distribution and concur-
rent MapReduce, (concurrent execution of map phase and
reduce phase). Although, this trade-off seemed to bring a
little overhead due to the unutilized network during the
map phase, but it can fasten the map execution because the
complete I/O disk resources will be reserved to the map
tasks. For example, the average execution time of map tasks
when using the asynchronous MapReduce was 26 s while
it is 32 s in the native Hadoop. Moreover, the speedup of
map executions can be increased by reserving more mem-
ory for buffered maps within the data node. This will be
beneficial, especially in the Cloud, when the executing unit
is a VM with a small memory size (e.g. In Amazon EC2

Fig. 5 Reducers function latency: there is a factor of nine difference
in latency between the fastest and the slowest reduce functions which
is due to the reducers inputs skew

[23], the small instance has 1 GB of virtual memory). In our
scheme, when the map function is applied on input record,
similar to the current MapReduce, a partition function will
be applied on the intermediate key in the buffer memory
by their appearance in the maps output, but the partition
number represents a unique ID which is the KeyID:

hash (hash code (Intermediate-Keys) module KeyID)

Thus, the intermediate data will be written to the disk as an
index file and data file, each file represents one key, accom-
panied by a metadata file, DataNode-Keys Frequency Table,
which include the number of the records in each file, repre-
sent the key frequency. Finally, when all the Maps are done
all the metadata files will be aggregated by the Job Tracker
then the keys will be partitioned to the different data nodes
according to the LEEN algorithm.

4.2 LEEN algorithm

In this section, we present our LEEN algorithm for locality-
aware and fairness-aware key partitioning in MapReduce.
In order to effectively partition a given data set of K keys,
distributed on N data nodes, obviously, we need to find the
best solution in a space of KN of possible solutions, which
is too large to explore. Therefore, in LEEN, we use a heuris-
tic method to find the best node for partitioning a specific
key, then we move on to the second key. Therefore, it is
important that keys are sorted. LEEN is intending to pro-
vide a solution which provides a close to optimal tradeoff
between data locality and reducers’ input fairness, that is,
to provide a solution where the locality of the keys parti-
tioning achieve maximum value while keeping in mind the
best fairness of reducers’ input (smallest variation). Thus

Peer-to-Peer Netw. Appl.

the solution achieves minimum value of the Fairness
Locality

. Local-
ity is the sum of keys frequencies in the nodes—which are
partitioned to—to the total keys frequencies.

LocalityLEEN =
∑K

i=1
FK

j
i

∑K

i=1
FKi

(1)

Where FK
j

i indicate the frequency of key ki in the data
node nj , if ki partitioned to nj , and FKi represents the total
frequency of key ki , which is the sum of the frequencies
of ki in all the data nodes: FKi = ∑nodes

j=1 FK
j
i . And the

locality in our system will be bounded by:

∑K

i=1
min1≤j≤nFK

j
i

∑K

i=1
FKi

< LocalityLEEN <

∑K

i=1
max1≤j≤nFK

j
i

∑M

i=1
FKi

(2)

Fairness is the variation of the reducers’ inputs. In
MapReduce systems, the response time is dominated by the
slowest sub-task, in our case the slowest reduce task, there-
fore, in terms of performance score the fairness of LEEN
can be presented by the extra data of the maximum reduc-
ers’ inputs to the average, called overload data, refereed as
Doverload:

Doverload = max(Reducers input) − Mean

= max(HostedDataN
j

K) − Mean (3)

Where HostedDataN
j
K is the data hosted in node nj

after partitioning all the K keys.

HostedDataN
j
i

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

SumKNj , the initial value

HostedDataN
j

i−1+(FKi −FK
j
i) , ki is partitioned

to nj

HostedDataN
j

i−1−FK
j

i , ki is not
partitioned

to nj

(4)

Where SumKNj represents the sum of the all keys frequen-
cies within that data node nj : SumKNj = ∑Keys

i=1 FK
j

i .
When processing keys in LEEN, it is important that the keys
are sorted. Thus we sort the keys according to their Fairness

Locality

values. As keys with small value will have less impact on
the global Fairness

Locality
, therefore, we sort the keys in descend-

ing order according to their Fairness-locality value, refereed
as FLK.

FLKi=Fairness in distribution of Ki amongst data nodes

Best Locality

(5)

The fairness of the key distribution is presented by using
the standard deviation of this key and refereed as DevKi .

DevKi =
√∑n

j=1(FK
j

i − Mean)2

N
(6)

Where FK
j
i indicate the frequency of key ki in the data

node nj , and Mean represents the mean of FK
j
i values.

Obviously, the best locality indicate partitioning ki to the
data node nj which has the maximum frequencies. FLKi

can be formulated as:

FLKi = DevKi

max1≤j≤nFK
j

i

(7)

Initially, the hosted data on each node is set to their ini-
tial values, with the assumption of equal maps outputs, the
initial value of hosted data on each node are equal and can
be presented as total data

the number of datanodes
. For a specific key

in order to achieve the best locality, we select the node
with maximum frequency, therefore, we sort the nodes in
descending order according to their FK

j
i (s). Then we com-

pare the current node with the next node (second maximum
frequency). If the Fairness-Score, which is the variation of
the expected hosted data among all the data nodes if this
key will be partitioned to this node, of the second node is
better than the current one, it is accepted. LEEN recursively
tries the next lower node. The node is determined when the
new node fairness-score is worse than the current one. After
selecting the node, it moves on to the next key and calculates
the new values of hosted data in the different data nodes
HostedDataN

j

i . The fairness-Score is defined as:

Fairness−Score
j

i =
√∑n

j=1(HosteddataN
j

i −Mean)2

N

(8)

It is very important that our heuristic method has run-
ning time at most K × N . In general, the overhead of the
LEEN algorithm is negligible at small/medium scale (for
example, in our experiments, the overhead of LEEN when
partitioning 1,000 keys to 30 VMs was beyond 1 s). How-
ever, to deal with large scale problems we introduce the
concept of Virtual Key (VK), this will be discussed further
in Section 4.3.

Peer-to-Peer Netw. Appl.

The complete algorithm is represented in Algorithm 1.

4.3 LEEN-Hadoop implementation

The LEEN core scheduling algorithm is implemented in the
cn.edu.hust.grid.leen package. Adopting Hadoop to work
with LEEN requires modifications to the Hadoop source
code. The changes relate to expose the key frequency statis-
tics and manage the shuffle I/O as shown in Fig. 6.

In particular, in the Task Tracker, we change the job par-
tition number from the reduce task number to the virtual key
number;6 therefore making the default hash partition func-
tion grouping the records that have the same virtual key into
the same partition. Then the collect() method records
the numbers of key-value pairs for each virtual key. After
the Job Tracker marks a map task successfully completed,
the Task Tracker will send the key frequency statistic to the
JobTracker associated with the task completion report. In
addition, we modified the Job Tracker to adopt with LEEN
scheduling behaviors. In particular, to collect the virtual
key frequencies of each map task from the task completion
report; consequently, when the map phase finishes, all the
necessary information is aggregated to form a key distribu-
tion matrix as the input of LEEN-Algorithm class, and then

6In order to make our system scalable in term of keys number and clus-
ter scale, that to minimize the overhead brought by LEEN algorithm,
we use the concept Virtual Key (VK) which may in turn be composed
of multiple keys. VK is a configurable parameter which can be set by
the system administrator.

the doAlgorithm() method is invoked to generate the
final partition list. This list will be wrapped along with the
current Task Tracker list of the Hadoop cluster and sent out
to all Task Trackers later.

Moreover, the LEEN-Hadoop implementation has two
important components for shuffle I/O management:

1. LEEN Fetcher manages the shuffle communication of
the reducers. The original shuffle class uses several
fetcher threads controlled by ShuffleScheduler to
fetch map outputs from Task Trackers. We modified it
to launch one LeenFetcher thread per Task Tracker
to register itself to and receive intermediate data from
the associated Task Tracker. Considering that the reduce
task does not need to share system memory space with
map tasks, the most merging work is performed inside
the shuffle memory buffer.

2. LEEN Shuffle Server that replaces the original
http-based MapOutputServlet. After all the
LeenFetcher threads register their communication
channels to the LeenShuffleServer, it will start
the shuffle process. It aggregates random disk I/O
operations into sequential I/O, thus shuffle manager of
Task Tracker sequentially reads map output files and
pushes each VK partition to the associated reduce task
according to the partition list one by one

5 Performance evaluation

5.1 Experiments setup

LEEN can be applied to Hadoop at different versions. LEEN
is currently built in Hadoop-0.18.0 (as presented in our
previous work [24]) and Hadoop-0.21.0. Our experimen-
tal hardware consists of a cluster with seven nodes. Each
node is equipped with four quad-core 2.33 GHz Xeon pro-
cessors, 24 GB of memory and 1TB of disk, runs RHEL5
with kernel 2.6.22, and is connected with 1 GB Ethernet.
We evaluate LEEN performance in two virtual clusters: on
6VM cluster—similar to the one described in Section 3.2—
and on 30VM virtual cluster: one virtual machine (VM) was
deployed on one physical machine (PM) to act as the mas-
ter node (Namenode). We also deploy five VMs on each of
the six left PMs, reaching a cluster size of 30 data nodes.
All virtual machines are configured with 1 CPU and 1 GB
memory.

We conduct our experiments with native Hadoop-0.21.0
and then with LEEN. In our experiments using the keys’
frequencies variation and the key’s distribution are very
important parameters in the motivation of the LEEN design.
While, the keys’ frequencies variation will obviously cause

Peer-to-Peer Netw. Appl.

Fig. 6 LEEN Architecture

variation of the data distribution of reducers’ inputs, the
variation in the key’s distribution will affect the amount
of data transferred during the shuffle phase. To control the
keys’ frequencies variation and the variation of each key dis-
tribution, we modify the existing textwriter code in Hadoop
for generating the input data into the HDFS (the number of
generated keys varies from 100 to 1,000 keys), and we get
three different test sets shown in Table 2. We use primar-
ily the wordcount workload without combiner function as a
testing workload.

5.2 Data locality in LEEN

We first compare the data locality of reducers’ inputs in
both native Hadoop and LEEN. As shown in Fig. 7, for
the first test set (6VM 1), both LEEN and native Hadoop
achieve the maximum possible locality (16 %). This can be
explained due to the uniform distribution of each key among

Table 2 Test sets used in the experiments

6VMs 1 6VMs 2 30VMs

Nodes number 6VMs 6VMS 30VMs

Data size 6 GB 6 GB 7.5 GB

Keys frequencies variation 207 % 44 % 116 %

Key distribution variation (average) 0 % 206 % 130 %

Locality range 16 % 1-69 % 1-16 %

the data nodes (Key distribution variation= 0 %). Here
the data locality is depending on the number of data nodes
(Locality = 1

Numberof datanodes
). For the other two test sets,

LEEN achieves a higher locality than native Hadoop: the
data localities are 55 % and 12.5 % in LEEN while they
are 11.75 % and 2.5 % in Native Hadoop. While the data
locality varies in Hadoop in accordance to the sequence of
the key’s processing (different run of the same workload
may result with different data locality), the data locality

Fig. 7 Data locality in LEEN against native Hadoop with differ-
ent experiments setup: the light gray rectangles represent the locality
boundaries that could be achieved in each test (It is calculated using
the Locality LEEN boundaries defined in Section 4.2)

Peer-to-Peer Netw. Appl.

in LEEN is the same for the same workload it is propor-
tional to the key’s variation and varies in accordance to the
keys’ frequencies variation (LEEN is designed to achieve
close to optimal tradeoff between data locality and balanced
distribution of reducers’ inputs).

As a result of the higher data locality in LEEN, the total
data transferred in the shuffle phase is reduced by 49 %
(from 15.6 GB to 7.9 GB) for the test set (6VMs 2) and
reduced by 10/5 (from 21 GB to 19 GB) for the test set
(30VMs).

5.3 Data distribution of reducers’ inputs in LEEN

We compare the data distribution of reducers’ inputs in both
native Hadoop and LEEN. We use two metrics to measure
the balance of map tasks distribution [25]:

– The coefficient of variation:

cv = stdev

mean
× 100 % (9)

– The max-min ratio:

Min−Max Ratio = min1≤i≤n ReduceInputi

max1≤j≤n ReduceInputj
×100 %

(10)

Table 3 shows the variation in the data distribution of
reducers’ inputs. We can see that the variation is significant
in native Hadoop compared to LEEN. For example, for the
test set (6VMs 1), LEEN achieves 10 times better fairness
in the reducers’ input than native Hadoop: the co-efficient
of variation is almost 73 % and the min-max ratio is 200 %
in native Hadoop while they are 7 % and 20 % in LEEN,
respectively.

5.4 Latency of the MapReduce Jobs in LEEN

Regarding the latency of the whole job, we observe that,
in the presence of the partitioning skew, LEEN outper-
forms native Hadoop in all the test sets, with improvement
of up to 45 %. Moreover the performance improvements
of LEEN over native Hadoop varies according to the two
aforementioned factors along with two another important

Table 3 Variation of reducers’ inputs amongst different nodes for
LEEN against native Hadoop

cv Min-Max Ratio

Hadoop LEEN Hadoop LEEN

6VMs 1 73 % 7 % 200 % 20 %

6VMs 2 23 % 13 % 100 % 33 %

30VMs 81 % 15 % 290 % 35 %

factors which we are going to investigate in the future: com-
puting capacity of the nodes which can affect the execution
time of reduce tasks, and network latency which can affect
the time to shuffle the intermediate data among the different
data nodes.

For the test set (6VM 1), LEEN outperforms native
Hadoop by 11.3 %: Although the latency of the first two
phases—map phase and shuffle phase—in native Hadoop
is lower than LEEN (by only 9 s), which can be explained
due to the advantage of the concurrent execution of the map
phase and the reduce phase (it is worth to note that it was
expected that native Hadoop outperforms LEEN for the first
two phases, especially that they transfer the same amount of
data, but surprisingly the latency of these two phases were
almost the same, which can be explained due to the map-
skew [12] and the unfairness in the shuffled data between
the nodes). However, the better fairness in reducers’ inputs
data between nodes in LEEN results in balanced reduce
functions executions, which in turn makes all reducers finish
almost at the same time (the time taken by the best reduce
function is 150 s and the time taken by the worst reduce
function is 168 s). On the other hand, in native Hadoop, the
skew reduce computation is very high and this results with
longer execution time of the job: some nodes will be heavy
loaded while other nodes are idles (the time taken by the
best reduce function is 33 s and the time taken by the worst
reduce function is 231 s).

For the test set (6VM 2), LEEN speeds up native Hadoop
by 4 %: The latency of the first two phases—map phase
and shuffle phase—in native Hadoop is almost the same
as in LEEN (less by only 14 s), which can be explained
due to higher locality in LEEN and thus the smaller

Fig. 8 Detailed performance of each stage in LEEN against native
Hadoop for the three test sets

Peer-to-Peer Netw. Appl.

transferred shuffled data. Similar to test set 1, the better
fairness in reducers’ inputs data between nodes in LEEN
results in balanced reduce functions executions and thus
lower latency.

As we can see in Fig. 8, the latency in native Hadoop in
test set (6VMs 2) is lower that the one in test set (6VMs 1),
although they both achieve almost the same locality. This
can be explained due to the better fairness in data distri-
bution of reducers’ inputs. On the other hand, the latency
in LEEN in test set (6VMs 2) is lower that the one in test
set (6VMs 1), although the fairness in data distribution of
reducers’ inputs is better in test set (6VMs 1). This is due to
the almost 40 % reduction in data transfer that is achieved
by LEEN in test set (6VMs 1).

For the test set (30VMs), LEEN outperforms native
Hadoop by 45 %: LEEN achieves a higher locality than
in native Hadoop and thus a smaller transferred shuffled
data than native Hadoop. LEEN also achieves better fairness
in reducers’ inputs between nodes than in native Hadooop
which in turn results in balanced reduce functions execu-
tions, all reducers therefore finish almost at the same time
as shown in Fig. 9d (the time taken by the best reduce func-
tion is 40 s and the time taken by the worst reduce function

is 55 s). On the other hand, in native Hadoop, skew reduce
computation is very high as shown in Fig. 9c and this results
with longer execution time of the job: some nodes will be
heavy loaded while other nodes are idles (the time taken by
the best reduce function is 3 s and the time taken by the
worst reduce function is 150 s).

5.5 Influence on load balancing

Finally in this subsection, we compare the system load bal-
ancing in LEEN against native Hadoop. As we stated earlier,
LEEN is designed to mitigate the reduce computation skew
through fair distribution of data among reducers: LEEN
reduces the reduce computations variation by almost 85 %
compared to native Hadoop (from 90 % to 13 %). This
results with balancing the load between reducers and lower
latency in contrast to native Hadoop as shown in Fig. 8c
and d.

As shown in Fig. 8a, in native Hadoop, even though all
map tasks receive the same amount of data, the slowest task
takes more than 170 s while the fastest one completes in
16 s. However, in LEEN the executions of map tasks vary
only by 19 % as shown in Fig. 8b: the slowest task takes

Fig. 9 Load balancing:
distribution of the tasks run time
for both map tasks and reduce
computation for the test set
30VMs. a Running time of map
tasks in native Hadoop. b
Running time of map tasks in
LEEN. c Running time of reduce
computations in native Hadoop.
d Running time of reduce
computations in LEEN

a b

c d

Peer-to-Peer Netw. Appl.

more than 58 s while the fastest one completes in 40 s. This
is because of the asynchronous map and reduce scheme:
we start the shuffle phase after all maps are completed so
here the complete I/O disk resources will be reserved to the
map tasks, while in native Hadoop map tasks and reduce
tasks will compete for the disk resources and this varies
according the distribution of the keys during partitioning
as well.

It is important to mention that this load balancing in
LEEN comes at the cost of fully resource utilization: the
network resources are not used during map phase and the
cpu usage is not utilized during the shuffle phase. We are
going to investigate some techniques to overlap the map and
the shuffle phase while preserving the same keys design in
LEEN in the future.

6 Related work

MapReduce has attracted much attention in the past few
years. Some research has been dedicated to adopting
MapReduce in different environments such as multi-core
[6], graphics processors (GPU)s [5], and virtual machines
[26, 27]. Many works on improving MapReduce perfor-
mance has been introduced through locality-execution in
the map phase [28, 29], tuning the schedulers at OS-kernel
[30]. Many case studies have demonstrated efficient usage
of MapReduce for many applications including scientific
applications [16, 31–33], machine learning applications [20,
34] and graph analysis [35, 36].

There have been few studies on minimizing the net-
work congestion by data-aware reduction. Sangwon et al.
have proposed pre-fetching and pre-shuffling schemes for
shared MapReduce computation environments [37]. While
the pre-fetching scheme exploits data locality by assigning
the tasks to the nearest node to blocks, the pre-shuffling
scheme significantly reduces the network overhead required
to shuffle key-value pairs. Like LEEN, the pre-shuffling
scheme tries to provide data-aware partitioning over the
intermediate data, by looking over the input splits before the
map phase begins and predicts the target reducer where the
key-value pairs of the intermediate output are partitioned
into a local node, thus, the expected data are assigned to
a map task near the future reducer before the execution of
the mapper. LEEN has a different approach: By separating
the map and reduce phase and by completely scanning the
keys’ frequencies table generating after map tasks, LEEN
partitions the keys to achieve the best locality while guar-
anteeing near optimal balanced reducers’ inputs. Chen et al.
have proposed Locality Aware Reduce Scheduling (LARS),
which de-signed specifically to minimize the data transfer in
their proposed grid-enabled MapReduce framework, called
USSOP [38]. However, USSOP, due to the heterogeneity of

grid nodes in terms of computation power, varies the data
size of map tasks, thus, assigning map tasks associated with
different data size to the workers according to their com-
putation capacity. Obviously, this will cause a variation in
the map outputs. Master node will defer the assignment of
reduces to the grid nodes until all maps are done and then
using LARS algorithm, that is, nodes with largest region
size will be assigned reduces (all the intermediate data are
hashed and stored as regions, one region may contain differ-
ent keys). Thus, LARS avoids transferring large regions out.
Despite that LEEN and LARS are targeting different envi-
ronments, a key difference between LEEN and LARS is that
LEEN provides nearly optimal locality on intermediate data
along with balancing reducers’ computation in homogenous
MapReduce systems.

Unfortunately, the current MapReduce implementations
have overlooked the skew issue [15], which is a big chal-
lenge to achieve successful scale-up in a parallel query
systems [39]. However, few studies have reported on the
data skew impacts on MapReduce-based systems [13, 40].
Qiu et al. have reported on the skew problems in some bioin-
formatics applications [13], and have discussed potential
solutions towards the skew problems through implementing
those applications using Cloud technologies. Lin analyzed
the skewed running time of MapReduce tasks, maps and
reduces, caused by the Zipfian distribution of the input and
intermediate data, respectively [14].

Recent studies have proposed solutions to mitigate the
skew problem MapReduce [41–43]. Gufler et al. have pro-
posed to mitigate reduce-skew by scheduling the keys to the
reduce tasks based on cost model. Their solution uses Top-
Cluster to capture the data skew in MapReduce and accord-
ingly identifies its most relevant subset for cost estimation.
LEEN approaches the same problem, which is computation
skew among different reducers caused by the unfair distri-
bution of reduces’ inputs, but LEEN also aims at reducing
the network congestion by improving the locality of reduc-
ers’ inputs. Kwon et al. have proposed SkewReduce, to
overcome the computation skew in MapReduce-based sys-
tem where the running time of different partitions depends
on the input size as well as the data values [42, 44]. At
the heart of SkewReduce, an optimizer is parameterized by
user-defined cost function to determine how best to parti-
tion the input data to minimize computational skew. In later
work, Kown et al. have proposed SkewTune [44]. SkewTune
is a system that dynamically mitigates skew which results
from both: the uneven distribution of data and also uneven
cost of data processing. LEEN approaches the same prob-
lem, which is computation skew among different reducers
caused by the unfair distribution of reduces’ inputs, while
assuming all values have the same size, and keeping in mind
reduce the network congestion by improving the locality
of reducers’ inputs. However, extending LEEN to the case

Peer-to-Peer Netw. Appl.

when different values vary in size is ongoing work in our
group.

7 Conclusions

Locality and fairness in data partitioning is an important
performance factor for MapReduce. In this paper, we have
developed an algorithm named LEEN for locality-aware and
fairness-aware key partitioning to save the network band-
width dissipation during the shuffle phase of MapReduce
caused by partitioning skew for some applications. LEEN
is effective in improving the data locality of the MapRe-
duce execution efficiency by the asynchronous map and
reduce scheme, with a full control on the keys distribution
among different data nodes. LEEN keeps track of the fre-
quencies of buffered keys hosted by each data node. LEEN
achieves both fair data distribution and performance under
moderate and large keys’ frequencies variations. To quantify
the data distribution and performance of LEEN, we con-
duct a comprehensive performance evaluation study using
Hadoop-0.21.0 with and without LEEN support. Our exper-
imental results demonstrate that LEEN efficiently achieves
higher locality, and balances data distribution after the
shuffle phase. As a result, LEEN outperforms the native
Hadoop by up to 45 % in overall performance for different
applications in the Cloud.

In considering future work, we are interested in adopt-
ing LEEN to the query optimization techniques [45, 46]
for query-level load balancing and fairness. As a long-
term agenda, we are interested in providing a compre-
hensive study on the monetary cost of LEEN in contrast
with Hadoop considering different pricing schemes (for
example the pay-as-you-go scheme and the pay-as-you-
consume scheme [47]), knowing that LEEN always guar-
antees resource load balancing at the cost of concurrent
resource access.

Acknowledgments This work is supported by NSF of China
under grant No.61232008, 61133008 and 61073024, the National
863 Hi-Tech Research and Development Program under grant
2013AA01A213, the Outstanding Youth Foundation of Hubei
Province under Grant No.2011CDA086, the National Science & Tech-
nology Pillar Program of China under grant No.2012BAH14F02, the
Inter-disciplinary Strategic Competitive Fund of Nanyang Techno-
logical University 2011 No.M58020029, and the ANR MapReduce
grant (ANR-10-SEGI-001). This work was done in the context of the
Héméra INRIA Large Wingspan-Project (see http://www.grid5000.fr/
mediawiki/index.php/Hemera).

References

1. Dean J, Ghemawat S (2008) Mapreduce: simplified data process-
ing on large clusters. Commun ACM 51:107–113

2. Jin H, Ibrahim S, Bell T, Qi L, Cao H, Wu S, Shi X (2010) Tools
and technologies for building the clouds. Cloud computing: prin-
ciples systems and applications, Computer Communications and
Networks. Springer-Verlag, Berlin, pp 3–20

3. Jin H, Ibrahim S, Qi L, Cao H, Wu S, Shi X (2011) The mapreduce
programming model and implementations. In: Buyya R, Broberg
J, Goscinski A (eds) Cloud computing: principles and paradigms.
Wiley, Hoboken, pp 373–390

4. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: dis-
tributed data-parallel programs from sequential building blocks.
In: Proceedings of the 2nd ACM European conference on com-
puter systems (EuroSys ’07), Lisbon, pp 59–72

5. He B, Fang W, Luo Q, Govindaraju NK, Wang T (2008) Mars:
a mapreduce framework on graphics processors. In: Proceedings
of the 17th international conference on parallel architectures and
compilation techniques, Toronto, pp 260–269

6. Ranger C, Raghuraman R, Penmetsa A, Bradski G, Kozyrakis C
(2007) Evaluating mapreduce for multi-core and multiprocessor
systems. In: Proceedings of the 2007 IEEE 13th international sym-
posium on high performance computer architecture (HPCA-13),
Phoenix, pp 13–24

7. Hadoop project (2011) http://lucene.apache.org/hadoop
8. Yahoo! (2011) Yahoo! developer network, http://developer.yahoo.

com/blogs/hadoop/2008/02/yahoo-worldslargest-production-
hadoop.html

9. Hadoop (2011) Applications powered by hadoop: http://wiki.
apache.org/hadoop/PoweredB

10. Ghemawat S, Gobioff H, Leung S-T (2003) The Google file
system. SIGOPS - Oper Syst Rev 37(5):29–43

11. Condie T, Conway N, Alvaro P, Hellerstein JM, Elmeleegy K,
Sears R (2010) Mapreduce online. In: Proceedings of the 7th
USENIX conference on networked systems design and implemen-
tation (NSDI’10), San Jose

12. Kwon Y, Balazinska M, Howe B, Rolia J (2011) A study of skew
in mapreduce applications, http://nuage.cs.washington.edu/pubs/
opencirrus2011.pdf

13. Qiu X, Ekanayake J, Beason S, Gunarathne T, Fox G, Barga R,
Gannon D (2009) Cloud technologies for bioinformatics appli-
cations. In: Proceedings of the 2nd workshop on many-task
computing on grids and supercomputers (MTAGS ’09)

14. Lin J (2009) The curse of zipf and limits to parallelization: a look
at the stragglers problem in mapreduce. In: Proceedings of the
7th workshop on large-scale distributed systems for information
retrieval (LSDS-IR’09)

15. DeWitt DJ, Stonebraker M (2008) Mapreduce: a major step
backwards, http://databasecolumn.vertica.com/databaseinnovation/
mapreduce-a-major-step-backwards

16. Wiley K, Connolly A, Gardner JP, Krughof S, Balazinska M,
Howe B, Kwon Y, Bu Y (2011) Astronomy in the cloud: using
MapReduce for image coaddition, CoRR abs/1010.1015

17. Chen R, Yang M, Weng X, Choi B, He B, Li X (2012) Improv-
ing large graph processing on partitioned graphs in the cloud. In:
Proceedings of the third ACM symposium on cloud computing,

http://www.grid5000.fr/mediawiki/index.php/Hemera
http://www.grid5000.fr/mediawiki/index.php/Hemera
http://lucene.apache.org/hadoop
http://developer.yahoo.com/blogs/hadoop/2008/02/yahoo-worldslargest-production-hadoop.html
http://developer.yahoo.com/blogs/hadoop/2008/02/yahoo-worldslargest-production-hadoop.html
http://developer.yahoo.com/blogs/hadoop/2008/02/yahoo-worldslargest-production-hadoop.html
http://wiki.apache.org/hadoop/PoweredB
http://wiki.apache.org/hadoop/PoweredB
http://nuage.cs.washington.edu/pubs/opencirrus2011.pdf
http://nuage.cs.washington.edu/pubs/opencirrus2011.pdf
http://databasecolumn.vertica.com/databaseinnovation/mapreduce-a-major-step-backwards
http://databasecolumn.vertica.com/databaseinnovation/mapreduce-a-major-step-backwards

Peer-to-Peer Netw. Appl.

SoCC ’12, ACM, New York, pp 3:1–3:13. doi:10.1145/
2391229.2391232. http://doi.acm.org/10.1145/2391229.2391232

18. Schatz MC (2009) Cloudburst: highly sensitive read mapping with
mapreduce. Bioinformatics 25:1363–1369

19. Verma A, Llorà X, Goldberg DE, Campbell RH (2009) Scaling
genetic algorithms using MapReduce. In: Proceedings of the 2009
9th international conference on intelligent systems design and
applications, pp 13–18

20. Ng AY, Bradski G, Chu C-T, Olukotun K, Kim SK, Lin Y-A,
Yu Y (2006) MapReduce for machine learning on multicore.
In: Proceedings of the twentieth annual conference on neu-
ral information processing systems (NIPS ’06), Vancouver,
pp 281–288

21. Lin J, Schatz M (2010) Design patterns for efficient graph
algorithms in mapreduce. In: Proceedings of the eighth
workshop on mining and learning with graphs, Washington,
pp 78–85

22. Xen hypervisor homepage (2011) http://www.xen.org/
23. Amazon elastic compute cloud (2011) http://aws.amazon.com/

ec2/
24. Ibrahim S, Jin H, Lu L, Wu S, He B, Qi L (2010) Leen:

locality/fairness-aware key partitioning for mapreduce in the
cloud. In: Proceedings of the 2010 IEEE second international
conference on cloud computing technology and science (CLOUD-
COM’10), Indianapolis, pp 17–24

25. Jain R, Chiu D-M, Hawe W (1984) A quantitative measure of fair-
ness and discrimination for resource allocation in shared computer
systems, DEC Research Report TR-301

26. Ibrahim S, Jin H, Lu L, Qi L, Wu S, Shi X (2009) Evaluating
mapreduce on virtual machines: the hadoop case. In: Proceed-
ings of the 1st international conference on cloud computing
(CLOUDCOM’09), Beijing, pp 519–528

27. Ibrahim S, Jin H, Cheng B, Cao H, Wu S, Qi L (2009) Cloudlet:
towards mapreduce implementation on virtual machines. In:
Proceedings of the 18th ACM international symposium on
high performance distributed computing (HPDC-18), Garching,
pp 65–66

28. Zaharia M, Borthakur D, Sen Sarma J, Elmeleegy K, Shenker
S, Stoica I (2010) Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling. In: Proceed-
ings of the 5th ACM European conference on computer systems
(EuroSys’10), Paris, pp 265–278

29. Ibrahim S, Jin H, Lu L, He B, Antoniu G, Wu S (2012) Maestro:
replica-aware map scheduling for mapreduce. In: Proceedings of
the 12th IEEE/ACM international symposium on cluster, cloud
and grid computing (CCGrid 2012), Ottawa

30. Ibrahim S, Jin H, Lu L, He B, Wu S (2011) Adaptive disk i/o
scheduling for mapreduce in virtualized environment. In: Proceed-
ings of the 2011 international conference on parallel processing
(ICPP’11), Taipei, pp 335–344

31. Menon RK, Bhat GP, Schatz MC (2011) Rapid parallel genome
indexing with MapReduce. In: Proceedings of the 2nd interna-
tional workshop on MapReduce and its applications, San Jose,
pp 51–58

32. Ekanayake J, Pallickara S, Fox G (2008) Mapreduce for
data intensive scientific analyses. In: Proceedings of the
2008 fourth IEEE international conference on eScience,
pp 277–284

33. Gunarathne T, Wu T-L, Qiu J, Fox G (2010) MapReduce in the
clouds for science. In: Proceedings of the 2010 IEEE second inter-
national conference on cloud computing technology and science,
pp 565–572

34. Ganjisaffar Y, Debeauvais T, Javanmardi S, Caruana R, Lopes CV
(2011) Distributed tuning of machine learning algorithms using
MapReduce clusters. In: Proceedings of the 3rd workshop on large
scale data mining: theory and applications, San Diego, pp 2:1–2:8

35. Blanas S, Patel JM, Ercegovac V, Rao J, Shekita EJ, Tian Y (2010)
A comparison of join algorithms for log processing in mapre-
duce. In: Proceedings of the 2010 international conference on
Management of data, Indianapolis, pp 975–986

36. Logothetis D, Trezzo C, Webb KC, Yocum K (2011) In-situ
mapreduce for log processing. In: Proceedings of the 2011
USENIX conference on USENIX annual technical conference,
Portland, pp 9–9

37. Seo S, Jang I, Woo K, Kim I, Kim J-S, Maeng S (2009)
Hpmr: prefetching and pre-shuffling in shared mapreduce
computation environment. In: Proceedings of the 2009 IEEE
international conference on cluster computing (CLUSTER’09),
New Orleans

38. Su Y-L, Chen P-C, Chang J-B, Shieh C-K (2011) Variable-sized
map and locality-aware reduce on public-resource grids. Futur
Gener Comput Syst 27(6):843–849

39. DeWitt D, Gray J (1992) Parallel database systems: the future of
high performance database systems. Commun ACM 35:85–98

40. Chen S, Schlosser SW (2008) Map-reduce meets wider varieties
of applications, Tech. Rep. IRP-TR-08-05, Technical Report. Intel
Research Pittsburgh

41. Ananthanarayanan G, Kandula S, Greenberg A, Stoica I, Lu Y,
Saha B, Harris E (2010) Reining in the outliers in map-reduce
clusters using mantri. In: Proceedings of the 9th USENIX confer-
ence on operating systems design and implementation (OSDI’10),
Vancouver, pp 1–16

42. Kwon Y, Balazinska M, Howe B, Rolia J (2010) Skew-resistant
parallel processing of feature-extracting scientific user-defined
functions. In: Proceedings of the 1st ACM symposium on Cloud
computing (SoCC ’10)

43. Gufler B, Augsten N, Reiser A, Kemper A (2012) Load balancing
in mapreduce based on scalable cardinality estimates. In: Pro-
ceedings of the 2012 IEEE 28th international conference on data
engineering (ICDE ’12)

44. Kwon Y, Balazinska M, Howe B, Rolia J (2012) Skewtune: mit-
igating skew in mapreduce applications. In: Proceedings of the
2012 ACM SIGMOD international conference on management of
data (SIGMOD ’12)

45. He B, Yang M, Guo Z, Chen R, Lin W, Su B, Wang H, Zhou L
(2009) Wave computing in the cloud. In: Proceedings of the 12th
conference on hot topics in operating systems (HotOS’09)

46. He B, Yang M, Guo Z, Chen R, Su B, Lin W, Zhou L (2010)
Comet: batched stream processing for data intensive distributed
computing. In: Proceedings of the 1st ACM symposium on Cloud
computing (SoCC ’10)

47. Ibrahim S, He B, Jin H (2011) Towards pay-as-you-consume cloud
computing. In: Proceedings of the 2011 IEEE international con-
ference on services computing (SCC’11), Washington, DC, pp
370–377

http://dx.doi.org/10.1145/2391229.2391232
http://dx.doi.org/10.1145/2391229.2391232
http://doi.acm.org/10.1145/2391229.2391232
http://www.xen.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

Peer-to-Peer Netw. Appl.

Shadi Ibrahim is a postdoc-
toral researcher within the
KerData team at INRIA
Rennes, working on scalable
distributed data processing
in the Cloud. He holds a
Ph.D. in Computer Science
from Huazhong University of
Science and Technology in
Wuhan of China. He has sev-
eral years of experience with
academic research at Huaz-
hong University of Science
and Technology, INRIA resea-

rch center and Microsoft research center in Asia. His research inter-
ests are in the areas of cloud computing, data-intensive computing,
virtualization technology and file and storage systems.

Hai Jin is a Cheung Kung
Scholars Chair Professor of
computer science and engi-
neering at Huazhong Univer-
sity of Science and Technol-
ogy (HUST) in China. He is
now Dean of the School of
Computer Science and Tech-
nology at HUST. Jin received
his PhD in computer engineer-
ing from HUST in 1994. In
1996, he was awarded a Ger-
man Academic Exchange Ser-
vice fellowship to visit the

Technical University of Chemnitz in Germany. Jin worked at The Uni-
versity of Hong Kong between 1998 and 2000, and as a visiting scholar
at the University of Southern California between 1999 and 2000. He
was awarded Excellent Youth Award from the National Science Foun-
dation of China in 2001. Jin is the chief scientist of ChinaGrid, the
largest grid computing project in China, and the chief scientist of
National 973 Basic Research Program Project of Virtualization Tech-
nology of Computing System. Jin is a senior member of the IEEE
and a member of the ACM. Jin is the member of Grid Forum Steer-
ing Group (GFSG). He has co-authored 15 books and published over
400 research papers. His research interests include computer architec-
ture, virtualization technology, cluster computing and grid computing,
peer-to-peer computing, network storage, and network security.

Lu Lu received his Bachelor
degree in computer science
and technology from Naval
University of Engineering
(China) in 2008. He is now
a PhD candidate student in
Service Computing Technolo
gy and System Lab (SCTS)
and Cluster and Grid Lab (CG
CL) at Huazhong University
of Science and Technology
(China). His research interests
focus on distributed data pro-
cessing and graph computing.

Bingsheng He received the
bachelor degree in computer
science from Shanghai Jiao
Tong University (1999-2003),
and the PhD degree in com-
puter science in Hong Kong
University of Science and
Technology (2003-2008). He
is an assistant professor in
Division of Networks and
Distributed Systems, School
of Computer Engineering
of Nanyang Technological
University, Singapore. His

research interests are high performance computing, cloud computing,
and database systems.

Gabriel Antoniu is a senior
research scientist at INRIA.
He is leading of the Ker-
Data research team at INRIA
Rennes - Bretagne Atlantique.
He received his Ph.D. degree
in Computer Science in 2001
from ENS Lyon and his Habil-
itation for Research Supervi-
sion (HDR) from ENS Cachan
in 2009. His research inter-
ests include: big data, grid and
cloud storage, large-scale dis-
tributed data management and

sharing, data consistency models and protocols, grid and peer-to-peer
systems. In the area of distributed data storage, he is leading the
MapReduce ANR project (2010- 2013) in partnership with Argonne
National Nab (USA), University of Illinois at Urbana Champaign
(USA), and INRIA-UIUC Joint Lab for Petascale Computing and IBM
France. He is co-leading the AzureBrain INRIA-Microsoft Research
project (2010-2013) on optimized cloud storage for joint genetics and
neuroimagiong analysis.

Song Wu is a Professor of
Computer Science and Engi-
neering at Huazhong Univer-
sity of Science and Technol-
ogy (HUST). He received his
Ph.D. from HUST in 2003.
He is now the head of Par-
allel and Distributed Comput-
ing Institute of HUST,and also
serves as the vice director of
Service Computing Technol-
ogy and System Lab (SCTS)
and Cluster and Grid Comput-
ing Lab (CGCL) of HUST. His

research interests are in the areas of cloud computing, virtualization
technology and system architecture.

	Handling partitioning skew in MapReduce using LEEN
	Abstract
	Introduction
	Background
	MapReduce model
	Hadoop
	Zoom on job execution in Hadoop

	Partitioning skew in MapReduce
	Partitioning skew in MapReduce applications
	Empirical study on partitioning skew in Hadoop
	Experimental environment
	Major results

	LEEN: Locality-awarE and fairness-awarE key partitioNing
	Asynchronous map and reduce
	LEEN algorithm
	LEEN-Hadoop implementation

	Performance evaluation
	Experiments setup
	Data locality in LEEN
	Data distribution of reducers' inputs in LEEN
	Latency of the MapReduce Jobs in LEEN
	Influence on load balancing

	Related work
	Conclusions
	Acknowledgments
	References

