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Abstract—In the mobile edge computing (MEC) environment, edge servers with storage and computing resources are deployed at
base stations within users’ geographic proximity to extend the capabilities of cloud computing to the network edge. Edge storage
system (ESS), is comprised by connected edge servers in a specific area, which ensures low-latency services for users. However, high
data storage overheads incurred by edge servers’ limited storage capacities is a key challenge in ensuring the performance of
applications deployed on an ESS. Data deduplication, as a classic data reduction technology, has been widely applied in cloud storage
systems. It also offers a promising solution to reducing data redundancy in ESSs. However, the unique characteristics of MEC, such as
edge servers’ geographic distribution and coverage, render cloud data deduplication mechanisms obsolete. In addition, data
distribution must be balanced over edge storage systems to accommodate future data demands, which cannot be undermined by data
deduplication. Thus, balanced edge data deduplication (BEDD) must consider deduplication ratio, data storage benefits, and resource
balance systematically under the latency constraint. In this paper, we model the novel BEDD problem formally and prove its
NP-hardness. Then, we propose an optimal approach for solving the BEDD problem exactly in small-scale scenarios and a
sub-optimal approach to solve large-scale BEDD problems with a theoretical performance guarantee. Extensive and comprehensive
experiments conducted on a real-world dataset demonstrate the significant performance improvements of our approaches against four
representative approaches.

Index Terms—mobile edge computing, storage resource balance, edge storage system, data deduplication, optimization problem
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1 INTRODUCTION

THE data produced by mobile and smart devices have
grown exponentially in the last decade. Transmitting

this huge amount of data to the cloud for processing
consumes excessive network resources and incurs heavy
network traffic. Meanwhile, the traditional centralized cloud
computing architecture is failing to fulfill users’ increasing
low latency requirements, especially for latency-sensitive
applications such as autonomous driving, AR, and VR [1],
[2]. Mobile edge computing (MEC), as a new distributed
computing paradigm, pushes cloud-like functionalities and
resources to the network edge to provide users with low-
latency access to applications and data on edge servers [3],
[4].

Edge storage system (ESS), as an infrastructure to sup-
port edge computing-enabled applications, is comprised
of connected edge servers deployed in an area [5]. Fig. 1
illustrates an ESS comprises of four connected edge servers
{s1, . . . , s4} storing data {d1, d2, ..., d5} to serve the users in
the system. Application vendors can store popular data on
edge servers to reduce the latency in their users’ access to
these data and save the expenses incurred by transmitting

• R. Luo, H. Jin and S. Wu are with National Engineering Research Center
for Big Data Technology and System, Services Computing Technology
and System Lab, Cluster and Grid Computing Lab, School of Computer
Science and Technology, Huazhong University of Science and Technology,
China. Email: {rkluo, hjin, wusong}@hust.edu.cn.

• Q. He is with Department of Computing Technologies, Swinburne Uni-
versity of Technology, Melbourne, Victoria, Australia.

• X. Xia is with the School of Mathematics, Physics and Computing,
University of Southern Queensland, Queensland, Australia, e-mail: xi-
aoyu.xia@usq.edu.au

Fig. 1: Example of edge storage system. In this example, we
assume that every user requests all five data. In this way,
we keep the number of users minimum to present a concise
and clear scenario.

large amounts of data from the cloud to their users [5], [6].
Data produced by latency-sensitive and energy-limited IoT
and mobile devices can also be stored on an ESS locally for
sharing or processing. Unfortunately, edge servers’ storage
resources are significantly limited by their small physical
sizes [1], which is one of their fundamental differences from
cloud servers. This capacity constraint limits the amount of
data that can be stored on an ESS, and consequently impacts
the performance of the ESS and the applications deployed
on the ESS. Lots of studies have attempted to mitigate this
constraint by leveraging the collaboration between edge
servers [7], [8].

In the realistic MEC environment, edge servers are geo-
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(a) EDD solution p1 (b) BEDD solution p2

Fig. 2: Example of EDD and BEDD solutions with the same deduplication ratio of 0.5, and same data coverage as Fig. 1

graphically distributed [9]. Accordingly, the data stored on
edge servers, such as traffic data, shopping mall ads, often
exhibit and share the same geographic characteristics. This
results in data redundancy in an ESS [10], [11]. The same
files generated by different users or different updates may
be stored on multiple edge servers in the ESS. For example,
in Fig. 1, data d3 is stored on edge servers s2, s3, and s4.
As reported by [10] and [11], the similarity between users’
demands on IoT and mobile data can reach up to 70%.
Caching such data on edge servers without deduplication
leads to significant data redundancy and storage wastes
across edge servers. Given edge servers’ limited storage
capacities, how to reduce data redundancy is of tremendous
importance in improving storage utilization on edge servers.

An edge server can access data from other neighbor
edge servers over the edge server network to serve the
users within its coverage area while not violating the latency
constraint [5], [12]. Take Fig. 1 for example and suppose
that the latency constraint is one hop1. Edge servers s1, s3,
and s4 can retrieve d1 from s2 or s3 to serve the users
within their coverage. Thus, d1 can be removed from s1
to reduce data redundancy and save on storage resources.
This is the foundation for edge data deduplication (EDD). The
problem of edge data deduplication is crucial and practical
because redundant data need to be removed to release edge
servers’ constrained storage resources. For example, content
providers like YouTube and TikTok can cache videos on
edge servers to fulfill users’ data demands with low data
retrieval latency. Many users share the same demands for
popular videos at the network edge, as described in the
literature [13]. Note that EDD must not violate the latency
constraint - the system must still keep the ability to deliver
data to corresponding users within the latency constraint.
Take Fig. 1 for example, supposing that only one replica
of d2 can be retained on s1 in the ESS and all the other
replicas of d2 are removed, under the latency constraint,
mobile users u3 and u4 will not be able to retrieve d2. This
EDD solution is invalid.

Data deduplication has been widely employed to reduce
data redundancy in central cloud storage systems [14].
However, edge data deduplication is totally different from

1. Latency constraint can also be specified by milliseconds, e.g., 50ms.
Here, we use hops for ease of exposition.

the cloud data deduplication (CDD) because of MEC’s unique
characteristics. CDD approaches deduplicate data at the
chunk level. The general idea is to split data into multi-
ple fine-grained data chunks of the fixed or variable size
and then remove redundant data chunks based on chunk
fingerprints. When a data request comes, a metadata server
rebuilds the data based on unique chunks retrieved from
different storage nodes [15]. The expensive time overhead
incurred by rebuilding data from data chunks conflicts with
the requirements of low data retrieval latency in the MEC
environment. Therefore, EDD aims to remove duplicate data
at the file level rather than the chunk level. In addition, data
retrieval between edge servers must not violate the latency
constraint - an edge server can only retrieve data from edge
servers within its latency limitation, i.e., their nearby edge
servers in the ESS [1], [16], [17]. Thus, EDD must ensure
that after data deduplication, all the users can still retrieve
requested data under the latency constraint.

EDD must also balance data storage across edge servers.
If an EDD approach pursues the sole objective to maximize
the deduplication ratio like CDD approaches [18], [19], it
will tend to keep the data stored on edge servers that
can serve the most users under the latency constraint and
remove as many duplicates as possible from other edge
servers. Fig. 2(a) illustrates such an EDD solution p1 to Fig.
1. We can see that all the data on s2 remain and all the
duplicates are removed from s1, s3, and s4. Such an EDD
approach may overwhelm some edge servers, e.g., s2 in
Fig. 2(a) while others are underutilized over time, e.g., s3
in Fig. 2(a). No more data can be stored on overwhelmed
edge servers to accommodate future data demands. For
example, in Fig. 2(a), a new data d6 will have to be stored
on {s1, s3} or {s1, s4} to satisfy any user’s data retrieval
requests in the system. Thus, EDD must consider both data
deduplication ratio and storage space balance across edge
servers. Fig. 2(b) presents a solution p2 that achieves the
same deduplication ratio as p1. It also achieves the same
data coverage as p1 - all the users can still access all the data
in the system. Compared with p1, p2 balances data storage
across the four edge servers so that they have spare storage
to accommodate future data demands.

Some researchers have attempted to balance data stor-
age across distributed nodes [20], [21]. The key idea is
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to measure storage space balance with a fairness index
and maximize that index by evening data storage across
the nodes. Unfortunately, this does not work with EDD
without considering data storage benefits. Data popularity,
as a significant metric in the MEC environment, varies at
different locations [22]. Storing data on edge servers that
can serve the most users with low latency will produce the
highest data storage benefit [7]. If we take a look at Fig. 1,
we can see that in many cases, storing data on s2 tends to
produce high data storage benefits because it is close to all
other edge servers. Thus, EDD must not simply maximize a
storage fairness index as [20], [21] without considering data
storage benefits.

To summarize, EDD must consider the deduplication ra-
tio, data storage benefits, and storage space balance jointly,
as well as the latency constraint. This is challenging, and
even more so in realistic EDD scenarios larger and more
complex than the one presented in Fig. 1. In this paper,
we study this new balanced edge data deduplication (BEDD)
problem. Our contributions are summarised as follows:

• We motivate the BEDD problem and point out its
fundamental differences from the CDD problem and
the EDD problem.

• We formulate the BEDD problem comprehensively
and prove its NP-hardness theoretically.

• We design two approaches, one named BEDD-O
and the other named BEDD-A. BEDD-O solves
small-scale BEDD problems optimally based on inte-
ger programming. BEDD-A solves large-scale BEDD
problems efficiently based on Lagrange relaxation
and an improved subgradient method.

• We conduct comprehensive experiments on a wide-
used EUA dataset to test the performance of BEDD-O
and BEDD-A against four representative approaches.

2 PROBLEM AND MODEL FORMULATION

In this section, we first formulate the BEDD problem and
then prove its hardness theoretically. The main notations
and their definitions are summarized in Table 1.

2.1 Edge Data Deduplication Model
We consider an ESS denoted as S = {s1, . . . , sn}, comprised
of n edge servers in a specific geographic area. A set of
data, denoted as D = {d1, . . . , dm}, is stored on these edge
servers. Let a binary variable rij denote the deduplication
decision, where rji = 1 means that di is removed from
sj . Let h denote the latency constraint. In real-world MEC
scenarios, the transmission latency between edge servers
could be different. To generalize the models and approaches
presented in this paper, we measure the transmission con-
straint by the number of hops over the edge server network,
which can also be easily measured by specific milliseconds.
Let Sdi

represent the set of edge servers that store data di,
Ŝdi (Sdi ⊆ Ŝdi ⊆ S) denote the data coverage of di:

Ŝdi = {sk|hk,j ≤ h, sk ∈ S, sj ∈ Sdi} (1)

where hk,j is the minimum latency between sj and sk.
Let us employ S+

di
and S−

di
⊆ Sdi (S+

di
∪ S−

di
= Sdi)

to represent the set of edge servers that still have di and

TABLE 1: Summary of Notations

Notation Definition

Bp data storage benefits produced by BEDD strategy p

D set of data to be deduplicated

di data i to be deduplicated, di ∈ D

h latency constraint

hk,j minimum hops between sk and sj

Lp storage resource balance index produced by BEDD
strategy p

msj maximum storage space of edge server sj

N(sj) sj ’s neighbor edge servers while fulfilling the latency
constraint

Oj storage resource occupied ratio of edge server sj

p BEDD strategy

Ri deduplication ratio of data di

Rp deduplication ratio produced by BEDD strategy p

rji binary variable representing whether di is removed
from sj

S edge servers in edge storage system

Sdi edge servers that stores di before deduplication

S+
di

edge servers that stores di after deduplication

Ŝdi edge servers covered by Sdi

Ŝ+
di

edge servers covered by S+
di

sj jth edge server in ESS

U users in the area

those whose di are removed from Sdi after deduplication,
respectively:

S+
di

= {sj | rji = 0, sj ∈ Sdi}
S−
di

= {sj | rji = 1, sj ∈ Sdi
}

(2)

As discussed in Section 1, an EDD solution must retain
the same data coverage area, i.e., users covered by Sdi before
deduplication can still retrieve data di after deduplication
within the data retrieval latency limitation. This is named
coverage constraint :

Ŝdi
= Ŝ+

di
(3)

The deduplication ratio is the ratio of the number of edge
servers whose di are removed to the number of edge servers
that store di before deduplication. Thus, for each data di, the
deduplication ratio produced by a BEDD strategy p, can be
defined as Ri:

Ri =

∑
sj∈S rji

|Sdi |
(4)

The overall deduplication ratio achieved by the BEDD
strategy p is calculated as follow:

Rp =
∑
di∈D

Ri =
∑
di∈D

∑
sj∈S rji

|Sdi |
(5)

2.2 Data Storage Benefit Model
By storing data di, an edge server sj produces data storage
benefit by serving di to the users within h. When it is
removed from sj by a BEDD strategy p, some users may
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have to retrieve di from other edge servers with higher
latency. For example, if d2 is removed from s1 and s3 in
Fig. 1, user u1 has to retrieve d2 from s4 via two hops. This
reduces the overall data storage benefit produced by the
system. Let Bu,di

denote the storage benefit produced by
serving user u with di. It can be defined as follow:

Bu,di
= max{(h− hj,k) · cov(sj), 0} (6)

where cov(sj) denotes the number of users covered by sj ,
sj is the edge server that covers u, and sk is the edge server
that stores di.

The data storage benefits produced by a data deduplica-
tion strategy p is calculated as follow:

Bp =
∑
sj∈S

∑
di∈D

Bu,di
(7)

It can be normalized as follow:

Bp =
Bp

h · |U | · |D|
(8)

where h · |U | · |D| is the storage benefit in the theoretically
worst case where all the users retrieve data via h hops.

2.3 Storage Space Balance Model
As discussed in Section 1, EDD must balance data storage
across to allow spaces on individual edge servers for accom-
modating future data demands. Let msj denote the total
storage spaces on sj . Considering the heterogeneity in edge
servers’ storage spaces, we measure the storage occupancy
rate of an edge server sj as follow:

Oj =

∑
di∈D(1− rji )

msj
(9)

To evaluate the storage space balance across S produced
by p, we calculate the Jain’s fairness index [23] based on
edge servers’ storage occupancy rates after p is imple-
mented:

Lp =
|
∑

sj∈S Oj |2

|S|
∑

sj∈S Oj
2 (10)

where Lp ∈ [1/|S|, 1] and Lp = 1 indicates that data storage
is fully balanced, i.e., all edge servers share the same storage
occupancy rates.

2.4 Balanced Edge Data Deduplication
A BEDD strategy is evaluated based on its ability to dedupli-
cate data, retain data storage benefits, and balance data stor-
age. Accordingly, the optimization objective of the BEDD
problem can be expressed as follow:

BEDD: max : αRp + βBp + γLp

s.t. (3), (6)
(11)

where α, β, and γ are the adjustable weights of the three
terms (α+β+γ = 1). They indicate the preferences for data
deduplication ratio, data storage benefits, and storage space
balance. For example, when the edge data size is small in
general, such as text data, the benefit of a high resource
balance index is usually lower than that of a high data
deduplication ratio. In such cases, α > β is suggested. When

duplicate data is large in general, e.g., images and videos,
balancing data storage is more important than the dedupli-
cation ratio because the storage resource imbalance is more
likely to occur. In such cases, a high β is recommended.
For latency-sensitive applications like VR/AR, data storage
benefits are more significant than the other two objectives,
and a large γ is preferable.

2.5 Problem Hardness Proof

By reducing the BEDD problem from the classic NP-hard
bin packing (BP) problem [24], theNP-hardness of the BEDD
problem can be proved in this section.

Given a set of bins, E = {e1, . . . , ex}, where each bin ej
has a limited capacity size(ej). Given a set of items to be
packed into these x bins, F = {f1, f2, ..., fy}, where each
item fi has a size size(fi), the goal of the BP problem is to
pack all y items into a minimum number of bins. It can be
formulated as follows:

min
x∑

j=1

ηj (12)

s.t.

y∑
i=1

τ ji size(fi) ≤ ηmsize(ej) (13)

size(fi) ≤ size(ej) (14)
x∑

j=1

τ ji = 1 (15)

ηj , τ
j
i ∈ {0, 1} (16)

where binary variable ηj denotes whether bin ej is used,
binary variable τ ji denotes whether item fi is packed into
bin ej .

Now we make the following reductions of the BEDD
problem from the BP problem: 1) relax the latency constraint
to the maximum latency between any two edge servers in
the ESS; 2) allow only one replica of each data di ∈ D to
be stored in the ESS. Since the edge servers from which a
data di can be removed are fixed, i.e., the edge servers from
di within latency constraint, we can convert the objective of
the relaxed BEDD problem to the objective that minimizes
the number of edge servers that store data di after dedupli-
cation. Through the reduction, only one replica of each data
di ∈ D can be stored in the ESS. The optimization objective
of the BEDD problem is the same as Objective (12) in the
BP problem. Constraints (13) and (14) in the BP problem
ensure that the items packed in each bin do not exceed their
maximum size and the maximum size of each item does not
exceed the size of the corresponding bin. This is equivalent
to the range of rji . Constraint (15) in the BP problem en-
sures that each item must be packed. This is equivalent to
Constraint (3), i.e., all the edge servers covered by data di
should still be covered after deduplication. Constraint (16)
specifies the domains of ηj and τ ji . It is the same as the
constraint for binary variable rji .

In conclusion, any solution satisfying the NP-hard BP
problem can be reduced to the BEDD problem in polynomial
time. The BEDD problem is thus NP-hard.
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3 APPROACH DESIGN

We present BEDD-O and BEDD-A for finding optimal and
sub-optimal BEDD solutions in this section.

3.1 Optimal Approach

The optimal solution to solve the BEDD problem aims to
jointly maximize the data deduplication ratio, data storage
benefits, and storage space balance while ensuring all con-
straints. Let binary variable rji = 1 denote that data di is
removed from edge server sj , and 0 otherwise. The BEDD
problem can be formulated as follows:

max α
∑
di∈D

∑
sj∈S

R(rji ) + β
∑
u∈U

∑
di∈D

∑
sj∈S

B(rji , x
j
u)

+ γ
∑
di∈D

∑
sj∈S

L(rji ) (17)

s.t.
∑
di∈D

rji ≤ msj (18)

∪{rji=0} N(sj) = N(Sdi
) (19)

where N(sj) denotes the nearby edge servers of sj , i.e.,
the edge servers that can communicate with sj within h.
Objective (17) maximizes the produced deduplication ratio,
data storage benefits, and storage space balance combined.
Constraint (18) enforces the edge servers’ capacity con-
straint. Constraint (19) ensures equal data coverage before
and after deduplication.

BEDD-O can solve this integer linear programming (ILP)
problem exactly by integer programming solvers, such as
Gurobi2. The solution is an assignment of 0 or 1 to each
rji , where di ∈ D, sj ∈ S, that maximizes the optimization
objective (17) while fulfilling the capacity constraint (18), the
data coverage constraint (19), and the data retrieval latency
constraint (enforced by N(sj)). According to the solution,
the replica of di can be removed from edge server sj if rji is
1.

3.2 Sub-optimal Approach

BEDD-O finds the optimal BEDD solution but is computa-
tionally intractable in large-scale BEDD scenarios, e.g., when
the number of data to be deduplicated is large. To enable
high responsiveness to the dynamic data demands in real-
world MEC scenarios, we need to be able to find BEDD
solutions rapidly in such scenarios. To tackle this challenge,
we design an approach named BEDD-A to find sub-optimal
BEDD solutions based on the Lagrangian relaxation (LR)
method.

Unfortunately, LR can solve convex optimization prob-
lems only and cannot be directly applied to solve the BEDD
problem in the ILP (integer linear problem) form. Thus, we
first relax the ILP problem into a linear programming (LP)
problem. Then, the BEDD problem can be relaxed and
transformed into a Lagrange dual problem. After solving
the Lagrange dual problem with our specifically-designed
subgradient method, BEDD-A can make data deduplication
decisions following a greedy rounding strategy based on the
solved fractional solutions.

2. https://www.gurobi.com/products/gurobi-optimizer/

First, we relax all the binary variables into a fractional
value from 0 to 1. With the relaxation, we can find that the
data storage benefit Bp cannot be bounded by Eq. (6) as
the upper bound approaches 1. Thus, we redefine a binary
variable xj

u to indicate whether user u is covered by edge
server sj and substitute cov(sj) in Eq. (6) with

∑
u∈U xj

u.
With the above relaxation, Constraint (3) can be replaced
with xj

uhjk(1 − rki ) ≤ h. After that, the ILP model built in
Section 3.1 can be transformed to the following forms:

Relaxed BEDD: max : αRp + βBp + γLp (20)

s.t. xj
uhjk(1− rki ) ≤ h (21)

max{(h− hjk) ∗
∑
u∈U

xj
u, 0} ≤ |U | ∗max{|h− hjk|} (22)

0 ≤ rji ≤ 1,∀di ∈ D,∀sj ∈ S (23)

0 ≤ xj
u ≤ 1,∀u ∈ U,∀sj ∈ S (24)

In the relaxed BEDD problem, we can see that Eq.
(21) couples binary variables rji and xj

u while other con-
straints only involve one variable each. Thus, we introduce
a Lagrange multiplier µ(µ ≥ 0) to Eq. (21). Then, the
optimization objective of the relaxed BEDD problem can be
reformulated as the Lagrange dual function below:

ϕ(µ) =max αRp + βBp + γLp + µ(h− xj
uhjk(1− rki ))

=max α
∑
di∈D

∑
sj∈S

R(rji ) + β
∑
u∈U

∑
di∈D

∑
sj∈S

B(rji , x
j
u)

+ γ
∑
di∈D

∑
sj∈S

L(rji ) +
∑
di∈D

∑
sj∈S

µ(h− xj
uhjk(1− rki ))

(25)
As a result, the dual problem of Eq. (25) is:

min ϕ(µ) (26)

Now, we can solve (25) by equivalently solving (26). Let
us name it LD(µ). Note that for all the µ values, the solution
to (25) is the lower bound of the relaxed BEDD problem, and
the solution to (26) is the closest to the optimal solution to
the primal problem.

Now we achieve LD(µ) with a subgradient method that
updates the Lagrange multiplier µ by adjusting the step size
iteratively. Algorithm 1 presents the pseudo code of this
method. Let µt denote the Lagrange multiplier in the t-th
iteration and the update process is expressed as follow:

µt+1 = µt + θt(h− Y (1− rt)) (27)

where rt represents the optimal solution of the ϕ(µt) prob-
lem, Y ≜ xj

uhjk denotes the other parameters not related
to rt, θt is the updating step size at the t-th iteration.
According to [25], the step size in the subgradient method
can converge to 0. However, the convergence must not be
overly fast. Otherwise, the search for the solution to the
relaxed BEDD problem will easily fall into a local optimum.
The convergence must not be overly slow either. Otherwise,
it will take a long time for the method to converge and
incur excessive time overheads. To strike a trade-off, BEDD-
A adjusts the step size according to the results obtained at
each iteration:

θt =
LD(µt)− LD∗

||h− Y (1− rt)||2
∆t (28)
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where LD∗ is the upper-bound solution of the primal prob-
lem (11) and ∆t ∈ (0, 2] is an adjustment factor that controls
the direction of updating Lagrange multiplier and ensures
algorithm converge. If LD(µt) is not updated to a better
lower bound of problem (11), BEDD-A halves ∆t to reduce
the updating step size.

The Lagrange relaxation method is often employed to
solve combinatorial optimization problems. With the re-
laxation, the problem can be transformed into a less con-
strained or an unconstrained problem. Then, the Lagrange
relaxation method can find a lower-bound solution to the
primal problem by updating the Lagrange multiplier it-
eratively. Typical applications of the Lagrange relaxation
method need to estimate the value of the upper-bound solu-
tion to the primal problem and use a fixed adjustment factor
of step size to update the Lagrange multiplier. These often
slow down and even undermine algorithm convergence.
In the BEDD problem, the upper bound LD∗ cannot be
estimated accurately due to constraints (21) and (22). To
tackle these challenges, Algorithm 1 employs an adaptive
updating mechanism with a variable-length upper bound
Zl = Zl/

√
l instead of a fixed Zl. In this way, the upper-

bound solution can be adjusted in a more fine-grained
manner iteratively. In general, as the number of adjustments
increases, the updating step size will decrease. This adjust-
ment mechanism allows the algorithm to converge faster
than the traditional updating approach using Polyak-based
step size. This will be experimentally evaluated in Section 4.

Algorithm 1 BEDD-A

1: Initialization:
2: t = 1, rtrec = 0, µ0 = 0,∆t = 0, gt = 1, l = 0;
3: End of initialization
4: while µt − µt−1 ≥ δ and gt ̸= 0 do
5: rt ← argminLD(µt)
6: calculate the subgradient gt ← h− Y (1− rt)
7: if LD(rt) ≤ LDrec(r

t−1) then
8: LDrec(r

t) = LD(rt)
9: rtrec = rt

10: else
11: LDrec(r

t) = LDrec(r
t−1)

12: rtrec = rt−1
rec

13: end if
14: if LD(rt) ≤ LDrec(r

t−1)−Zl/2 then
15: LDlev(r

t) = LDrec(r
t)−Zl

16: else
17: LDlev(r

t) = LDrec(r
t−1)−Zl

18: l = l + 1
19: Zl = Zl/

√
l

20: end if
21: update µt with (27)
22: update θt with (28)
23: t← t+ 1
24: if LD(µt)− LD(µt−1) ≤ threshold then
25: ∆t = ∆t/2
26: end if
27: end while
28: return rtrec

Algorithm 1 first initializes the iteration number t, the

current best solutions rtrec, the Lagrange multiplier µ0, step
size θt, subgradient gt, and the number of upper-bound ad-
justments l in Line 2. Then, it starts to update the Lagrange
multiplier iteratively to find the final solution. In each
iteration, a solution rt can be calculated first by finding the
minimum LD(µt) and the subgradient gt can be obtained
accordingly (Lines 2-3). Then, LD(rt) is compared with the
last best value of function LD(rt−1), i.e., LDrec(r

t−1). If
LD(rt) is smaller than LDrec(r

t−1), LDrec(r
t) is replaced

by LD(rt) and rt is recorded as the current best solution
rtrec. Otherwise, the current values of LDrec(r

t) and rtrec
are still the best values (Lines 7-13). Next, the algorithm
measures the difference between the last optimal function
value and the current function value, and updates the upper
bound LDlev(r

t) accordingly (Lines 14-20). Next, it updates
the Lagrange multiplier µt and the step size adjustment
factor with Eq. (27) and Eq. (28), respectively (Lines 21-22).
To ensure algorithm convergence, if the improvement is less
than a given threshold threshold, the algorithm adjusts ∆t

in Lines 24-25. The iteration stops when the updated value
of the Lagrange multiplier is less than δ or the subgradient
is equal to 0. Finally, in Line 28, the algorithm returns rtrec
as the solution to the relaxed BEDD problem.

Algorithm 2 Greedy Rounding

1: while rtrec ̸= ∅ do
2: sort each rji in {rtrec} from high to low and select the

highest one named rmax

3: remove rmax from {rtrec}
4: if rmax satisfies constraints (3) and (6) then
5: fix the value of rmax to 1
6: for each rji ∈ rtrec do
7: if rji not satisfies constraints (3) and (6) then
8: fix the value of rji as 0
9: remove rji from {rtrec}

10: end if
11: end for
12: else
13: fix the value of rmax to 0
14: end if
15: end while

After running Algorithm 1, the solution rtrec may involve
a set of fractional values from 0 to 1 due to the relaxation
and thus is not the optimal solution to the BEDD problem.
Next, BEDD-A employs a rounding algorithm for obtaining
the optimal solution to the relaxed BEDD problem (20). It
goes through the following steps: 1) select the rmax ∈ {rtrec}
with the highest unfixed fractional value in Line 2; 2) if rmax

satisfies Constraints (3) and (6), fix its value to 1 and remove
rmax from {rtrec}, otherwise 0; 3) fix other rji ∈ {rtrec} to 0
if it does not satisfy Constraints (3) and (6); 4) iterate steps
1-3 until all the rji ∈ {rtrec} are fixed.

3.3 Convergence Analysis
Now we analyze the convergence of BEDD-A to show that
it can effectively stop. For ease of exposition, we define rt

as the solution found by Algorithm 1. The following holds:

LD∗ = inf
t∈T

LD(rt)>−∞ (29)
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Theorem 1. When t → ∞, there is limt→∞ LDrec(r
t) =

LD∗ and the number of upper bound adjustments l →
∞ and liml→∞Zl = 0.

Proof 1. Assuming l ≤ ∞, from Lines 14-20 in Algorithm 1,
there exists a T ∈ N∗ to make the following hold:

LD(rt) ≤ LD(rt−1)− Zl

2
, ∀t ≥ T (30)

Thus, there is

LD(rt) ≤ LD(rT−1)− (t− T )
Zl

2
, ∀t ≥ T (31)

From (31), we can easily infer limt→∞ LD(rt) = −∞,
which contradicts (29). Thus, there is l → ∞. Now
we employ the contradiction method to prove Theo-
rem 1. From (29), we know that LDrec(r

t) decreases
monotonically when t increases and has a lower bound.
Thus, limt→∞ LDrec(r

t) exists and is unique. Since the
solution to LD(µ) must be convex due to the duality
transform [26], the following holds:

||rt+1 − rt|| ≤ ||µt − rt||,∀t ∈ N∗ (32)

When t ≥ T and r̂t ∈ L∗, combining (32) and Lines
21-26 in Algorithm 1, we have the following:

||rk+1 − r̂t||2 ≤ ||µt − r̂t||2

= ||rt − ∆t(LD(rt)− LDrec(r
t))

||gt||2
gt − r̂t||2

= ||rt − r̂t||2 − 2∆t(LD(rt)− LDlev(r
t))

||gt||2
·

⟨rt − r̂t, gt⟩+ ∆2
t (LD(rt)− LDt

rec)
2

||gt||2
(33)

Since gt ∈ ∂LD(rt) and LD(r̂t)<LDrec(r
t), we have:

⟨r̂t − rt, gt⟩ ≤ LD(r̂t)− LD(rt) (34)

Combining (33) and (34), the following holds:

||rt+1 − r̂t||2 ≤||rt − r̂t||2 −∆t(2−∆t)·
(LD(rt)− LDrec(r

t))2

||gt||2
(35)

According to Lines 14-20 in Algorithm 1, we have:

(LD(rt)−LDrec(r
t))2 ≥ Z

2(l − 3)

4l(l + 1)
≥ Z

2(t− 3)

4l(t+ 1)
(36)

Combining (35) and (36), the following holds:

||rt+1− r̂t||2 ≤ ||rt− r̂t||2− ∆t(2−∆t)Z2(t− 3)

4t(t+ 1)
(37)

We can find that (37) holds for any t ≥ T so
that

∑∞
t=T

t−3
t(t+1)<∞. This is an obvious contradiction.

Therefore, Theorem 1 holds.

4 EVALUATION

Extensive and comprehensive experiments are conducted
to evaluate the performance of BEDD-O and BEDD-A in
different BEDD scenarios.

4.1 Experimental Settings

Dataset. EUA dataset, as a widely used dataset in research
on mobile edge computing [1], [5], [27], contains the geo-
graphic coordinates of real-world users and edge servers in
Metropolitan Melbourne, Australia.
Competing Approaches. In the experiments, BEDD-O and
BEDD-A are compared with four representative approaches:

• Random: This baseline approach deduplicates re-
dundant data replicas from edge servers randomly,
one by one, until any constraint is violated.

• Greedy: This baseline approach removes redundant
data replicas from the edge server with the maximum
storage occupancy, one by one, until any constraint
is violated.

• HotDedup [11]: Implemented based on the k-MST
algorithm, this heuristic approach aims to maximize
the deduplication ratio and data service rate based
on data popularity.

• EDDE-A [28]: This state-of-the-art approach employs
an approximation algorithm to remove redundant
data, aiming to maximize storage resource savings.

TABLE 2: Parameter Settings. Compared with Set #1, the
scale of Set #2 is much larger in terms of n. This allows us
to evaluate the scalability of BEDD-A in Set #2.

Θ n h

Set #1.1 0.4, 0.5, ..., 0.8 20 1
Set #1.2 0.6 10, 15, ..., 30 1
Set #1.3 0.6 20 1, 2, ..., 5
Set #2.1 0.4, 0.5, ..., 0.8 150 2
Set #2.2 0.6 50, 100, ..., 250 2
Set #2.3 0.6 150 1, 2, ..., 5

Parameter Settings. To evaluate the proposed BEDD-O and
BEDD-A comprehensively, three major parameters are taken
into consideration:

• Maximum data redundancy ratio (Θ): This param-
eter depicts the maximum ratio of edge servers that
store the replicas of a data in the system. For exam-
ple, Θ = 1 denotes that every di ∈ D may be stored
on every edge server. This parameter varies from 0.4
to 0.8 in Set #1.1 and Set #2.1, similar to the settings
in [10], [11].

• Number of edge servers (n): This parameter dictates
the scale of a BEDD scenario. It varies from 10 to 30
in Set #1.2 and 50 to 250 in Set #2.2, respectively.

• Latency constraint (h): The parameter is the basis
for the identification of an edge server sj ’s neighbor
edge servers N(sj). It can be specified in hops or
milliseconds. To facilitate easy calculation of N(sj),
in the experiments, it is measured by hops and varies
from 1 to 5.

The specific parameter settings are summarized in Table
2. To minimize the impacts of extreme cases on the results,
e.g., those with overly-sparse or overly-dense edge servers,
each experiment is conducted 200 times and the average
values are reported when any of the above three parameters
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Fig. 4: Deduplication benefits vs. parameters in Set #2

vary. For BEDD-A, the convergence threshold threshold is
set to 0.001. The weight factors α, β, γ used in (17) are set
as 1

3 ,
1
3 ,

1
3 to balance the importance of the optimization

objectives. Considering that BEDD-O takes excessive time
to find a solution in large-scale BEDD scenarios, BEDD-O is
thus not included in Set #2 so that Set #2 can highlight the
performance of BEDD-A.
Performance Metrics. The performance of BEDD-O and
BEDD-A is evaluated based on two metrics.

• Deduplication Benefits (benefits): This metric is
calculated with (11). It indicates the total benefits
produced by a deduplication strategy.

• Computational overheads (time): This efficiency
metric is measured by the computational time spent
by the CPU to run an approach to find a solution.

4.2 Effectiveness Evaluation
Fig. 3 and Fig. 4 demonstrate the deduplication benefits
achieved by the approaches in Set #1 and Set #2, respec-
tively. In Set #1, BEDD-O is the winner in all the cases with
slight advantages over BEDD-A. In Set #2, with BEDD-O
excluded, BEDD-A wins the competition with significant
advantages, outperforming HotDedup, EDDE-A, Greedy,
and Random by an average of 30.51%, 57.69%, 73.06%, and
137.85%, respectively.
Impact of Data Redundancy Ratio (Θ). Fig. 3(a) and Fig.
4(a) show the impact of the maximum data redundancy
ratio (Θ) on the overall benefits in Set #1 and Set #2, re-
spectively. In Fig. 3(a), BEDD-O always achieves the highest

deduplication benefits, 5.23%, 38.51%, 64.21%, 87.62%, and
124.37% higher than BEDD-A, HotDedup, EDDE-A, Greedy,
and Random on average. BEDD-A seconds to BEDD-O
but outperforms HotDedup, EDDE-A, Greedy, and Ran-
dom significantly by 36.02%, 67.84%, 82.75%, and 146.87%
on average. When n in the ESS is fixed, as Θ increases,
data redundancy in the system increases in both settings.
Adjacent edge servers are more likely to have duplicate
data replicas. This allows the approaches to remove more
duplicate date replicas without reducing the data coverage.
The data storage benefit may drop but it is not as signif-
icant as the increase in the benefit produced by removing
duplicate data replicas. When Θ increases, the advantages
of our approaches increase. Take Fig. 4 for example. When
Θ increases from 40% to 80%, its average advantage over
HotDedup, EDDE-A, Greedy, and Random increases from
86.26% to 104.09% by 20.67%. The results demonstrate the
importance of highly-effective EDD, especially in systems
with high data redundancy.

Impact of Number of Edge Servers (n). Fig. 3(b) and Fig.
4(b) demonstrate the significant importance of n on dedu-
plication benefits. BEDD-O again achieves the highest ben-
efits with an average advantage of 6.42%, 34.25%, 41.51%,
48.17%, and 89.77% over BEDD-A, HotDedup, EDDE-A,
Greedy, and Random in Set #1. BEDD-A is the clear win-
ner in Set #2, with a 28.44% advantage over HotDedup,
53.29% over EDDE-A, 89.13% over Greedy, and 169.71%
over Random. When n increases, its advantage increases, as
shown in Fig. 3(b). With a fixed data redundancy ratio Θ, the
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Fig. 6: Computation time vs. parameters in Set #2

increase in n further spreads duplicate data replicas across
edge servers. It is less likely for adjacent edge servers to
have duplicate data replicas. This reduces the room for EDD
and decreases the deduplication benefits. In the meantime,
it becomes more difficult to balance the storage resources
across edge servers. This also reduces the deduplication
benefits. Thus, as n increases, the deduplication benefits
obtained by all approaches decrease.

Impact of Latency Constraint (h). Fig. 3(c) and Fig. 4(c)
illustrate the results of Set #1.3 and Set #2.3, respectively.
Again, BEDD-O outperforms all other approaches, by 5.76%
against BEDD-A, 27.34% against HotDedup, 40.51% against
EDDE-A, 63.91% against Greedy, and 105.03% against Ran-
dom. BEDD-A achieves the second-highest deduplication
benefits, 19.39% higher than HotDedup, 29.64% higher than
EDDE-A, 51.80% higher than Greedy, 93.55% higher than
Random in Set #1.3. In Set #2.3, BEDD-A’s performance
advantages are more significant than in Set #1.3. When the
latency constraint h is relaxed, allowing each cached data
replica to cover more users and produce high storage ben-
efits. It also reduces the number of data replicas after EDD
to keep the data coverage and makes it easier to balance
storage resources across edge servers. Take d3 in Fig. 1 as an
example. When h = 0, d3 must be retained on s2, s3, and s4.
However, if the latency constraint is relaxed to 1 hop, some
replicas of d3 can be removed to produce deduplication
benefits. Thus, when h increases, the deduplication benefit
increases for all the approaches in both Set #1.3 and Set #2.3.

Performance over Time. The discussion above has focused

on the deduplication ratio (Rp) and data storage benefit
(Bp), but not the storage space balance (Bp), i.e., the third
term in the optimization objective (11) of EDD. As discussed
in Section 2.3, we balance storage spaces across edge servers
so that they can accommodate future data demands flexi-
bly. To demonstrate the importance of considering storage
space balance in EDD, we run BEDD-A in Set #2 with
θ = 0.6, n = 150, h = 2 over 100 time slots and compare
it with a variant of BEDD-A named EDD-A that does not
consider storage space balance. The parameters of (11) are
set to α = 1

2 , β = 1
2 , γ = 0 for EDD-A. In each time slot,

100 users are randomly selected from the EUA dataset, each
requesting one of the 8 data randomly. The state-of-the-
art edge data caching (EDC) approach introduced in [7] is
employed to formulate a data caching strategy for caching
data replicas, aiming to maximize data storage benefit based
on data popularity and storage spaces on edge servers. After
that, we run BEDD-A to formulate an EDD solution and
remove duplicate data replicas accordingly.

Fig. 7 shows the experimental results. BEDD-A clearly
outperforms EDD-A in maximizing deduplication benefits
across all the 100 time slots. On average, its deduplica-
tion benefit is 31.07% higher than EDD-A’s. In addition,
by balancing storage spaces across edge servers, BEDD-A
manages to stabilize the deduplication benefits over time,
achieving a standard deviation of 0.011 across 100 time slots,
71.27% lower than EDD-A’s 0.037. As discussed in Section
1, we deduplicate edge data to free up the storage resources
for data caching. To demonstrate how BEDD-A achieves this
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objective, Fig. 7 also presents the caching benefits achieved
by the EDC approach over time with the support of BEDD-
A and EDD-A, respectively. We can see that with BEDD-A in
place instead of EDD-A, EDC achieves much higher caching
benefits, with a 48.46% advantage on average across 100
time slots. The results indicate that it is important to balance
storage spaces across edge servers while performing EDD.

Fig. 7: Performance over time in Set #2.1 (Θ = 0.6)

4.3 Efficiency Evaluation

Computation Time. Fig. 5 and Fig. 6 show the computa-
tion overheads taken by different approaches to find an
BEDD solution in small-scale BEDD scenarios and large-
scale BEDD scenarios, respectively. Unsurprisingly, time
taken by BEDD-O to find a solution is maximum as BEDD-O
pursues to find the optimal solution to the NP-hard BEDD
problem. When Θ increases in Set #1.1, the data redundancy
in the system increases, making it harder for BEDD-O to find
the optimal solution. When n increases in Set #1.3, BEDD-
O’s computation time increases rapidly. This confirms the
problem hardness of the BEDD problem is NP-hard as
proved in Section 2.5. An interesting phenomenon can be
presented in Fig. 5(c). When h increases from 1 to 3, the
computation time taken by BEDD-O increases because it
needs to explore more potential solutions to find the optimal
one. As h continues to increase from 3, each data needs to
be stored on only a few edge servers to cover all users in the
edge storage system. Thus, the further increase in h makes
BEDD-O easier to find these edge servers.

Fig. 6(b) demonstrates the results in Set #2, where we
can observe the computation times of BEDD-A, HotDedup,
Greedy, EDDE-A, and Random clearly. Among the five
approaches, BEDD-A’s computation time is maximum while
Random takes the least computation time. BEDD-A’s com-
putation time increases only mildly when Θ or h increases,
as shown in Fig. 6(a) in Fig. 6(c), but significantly in Fig. 6(b).
This again tells us n is the main influence in the hardness
of the EDD problem. Even so, BEDD-A is highly efficient,
taking only an average of 1.55 seconds to find a solution
in the largest-scale experiment with 250 edge servers, as
demonstrated in Fig. 6(b). Considering the significant per-
formance improvements produced by BEDD-A, BEDD-A is
the best option in large-scale BEDD scenarios.
Algorithm Convergence. As introduced in Section 3.2,
BEDD-A iterates to find the final solution. The number

Fig. 8: Convergence of BEDD-A in Set #1.1 (Θ = 0.6, n =
20, h = 1) and Set #2.2 (Θ = 0.6, n = 150, h = 2)

of iterations taken to find a solution as its convergence
time to measure the efficiency of the approach. Fig. 8 il-
lustrates the convergence of BEDD-A in Set #1.1 and Set
#2.1, with a comparison with the classical Polyak step size
based subgradient algorithm [29], a standard benchmark
approach for LR-based approaches [30]. The results clearly
show that BEDD-A converges much earlier than its com-
petitors in both Set #1.1 and Set #2.2, taking 52.31% and
23.32% fewer iterations. This validates the usefulness of the
variable-length upper-bound updating mechanism specif-
ically designed for BEDD-A in Section 3.2 in accelerating
the convergence of BEDD-A. The high efficiency of BEDD-
A allows more frequent EDD to free up storage spaces on
edge servers rapidly. This is particularly important in the
MEC environment where data demands often vary quickly
[22].

5 RELATED WORK

As the number of smart and mobile devices has grown
exponentially at an increasing pace, storing data in edge
storage systems (ESSs) constituted by connected edge servers
can provide users with low-latency data access [5]. Unfor-
tunately, edge server’s storage resources are significantly
limited by their small physical size [31], [32], [33]. This sets a
boundary on an ESS’s storage capacity and the performance
of the applications deployed on the ESS [7], [8]. To utilize
ESSs cost-effectively, data deduplication offers a promising
solution and may save up to 70% of an ESS’s storage
resources [10], [11].

Cloud data deduplication (CDD), as a classic data reduction
technology, has been studied extensively [18], [19], [34]. The
main challenge in CDD is to maximize deduplication ratio.
To maximize deduplication ratio, CDD is performed at the
chunk level. Specifically, data stored at different cloud nodes
are partitioned into chunks so that duplicate chunks can
be identified and removed across these cloud nodes. To
name a few representative CDD approaches, Ni et.al [19]
propose a content-defined chunking algorithm to acceler-
ate data deduplication based on rolling hash and content
locality. Fu et.al [18] propose AppDedup, an application-
aware distributed deduplication framework that strikes a
trade-off between scalable deduplication throughput and
deduplication ratio by exploiting data similarity and data

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3247061

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



11

locality. What’s more, few of researchers start to address the
imbalance problem raised by data deduplication. Xu et.al
[34] consider the read imbalance problem in cloud storage
systems caused by data deduplication. They propose a
heuristic algorithm to place data evenly across all the nodes
with the aim to maximize read balance. They assume that
any two storage nodes are reachable, which is unrealistic in
the MEC environment.

Edge data deduplication (EDD) is a new problem funda-
mentally different from the CDD problem because of the
unique constraints in the MEC environment, such as the
capacity constraint, coverage constraint, latency constraint.
These constraints have raised many new challenges that
have attracted researchers’ attention. Very recently, there is
a tendency for researchers to start focusing on the problem
of edge data redundancy. Li et. al [11] propose an approach
named HotDedup that goes through two phases to reduce
edge data redundancy. First, it employs a k-Minimum-
Spanning-Tree algorithm to partition the target set of files
into two subsets, one to be stored on edge nodes and the
other in the cloud. Then, it identifies and removes duplicate
chunks across edge nodes based on a distributed hash-
chunk table. It considers the capacity constraint, but makes
the same assumption as existing CDD approaches - one can
retrieve any chunks from any edge nodes. In addition, it
rebuilds data from chunks retrieved from edge nodes, ignor-
ing the critical latency constraint in the MEC environment
completely. A variant of HotDedup is implemented as one
of the competing approaches in our experiments. The results
presented and discussed in Section 4 demonstrate that its
performance is fairly poor in the MEC environment. Edge
storage has widely acknowledged as a promising solution
for ensuring low data retrieval latency and reducing back-
haul network traffic.

Compared with cloud data redundancy, edge data re-
dundancy is even a more critical problem because of edge
servers’ constrained storage resources. Unfortunately, it has
yet to be properly solved. In this paper, we attempt to tackle
this new balanced edge data deduplication (BEDD) problem,
considering the unique constraints in the MEC environ-
ment plus the need to balance storage spaces across edge
servers. Cheng et.al [9] propose a file storage strategy named
Lofs, which employs a three-layer hash mapping scheme
to detect data similarity, aiming to facilitate efficient data
deduplication. However, this strategy does not consider
data popularity, i.e, data storage benefits, which is a key
characteristic in the MEC environment [11]. Thus, Lofs is
not capable of balancing data retrieval latency and data
deduplication ratio. To fully accommodate the unique char-
acteristics of MEC, Luo et al. [28] propose a heuristic EDD
approach to maximize data deduplication ratio. However,
their approach does not consider data storage benefits and
load balancing. Most of the data will be placed on edge
servers with the most neighbor edge servers. This may serve
all the users but does not ensure minimum data retrieval
latency for them. As demonstrated in Section 4, the other
critical limitation is that it will be very difficult for these
edge servers to accommodate future data demands.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce, motivate, formulate, and solve
the balanced edge data deduplication (BEDD) problem, taking
into account the data deduplication ratio, data storage ben-
efit, and storage space balance while fulfilling the unique
constraints in the MEC environment. We proved its NP-
hardness and designed two approaches to solve small-scale
and large-scale BEDD problems, respectively. Experimental
results conducted on a widely used EUA dataset demon-
strated the significant performance improvements of our
approaches. In the future, we will study the BEDD problem
further by taking the network robustness and data reliability
into consideration.

ACKNOWLEDGMENTS

This work was supported by National Key Research and
Development Program under grant 2022YFB4500704 and
National Science Foundation of China (NSFC) under grant
No.62032008. The corresponding author is Qiang He.

REFERENCES

[1] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 3, pp. 515–529, 2019.

[2] R. Shinkuma, T. Nishio, Y. Inagaki, and E. Oki, “Data assessment
and prioritization in mobile networks for real-time prediction of
spatial information using machine learning,” EURASIP Journal on
Wireless Communications and Networking, vol. 2020, pp. 1–19, 2020.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[4] Q. He, Z. Dong, F. Chen, S. Deng, W. Liang, and Y. Yang, “Pyramid:
enabling hierarchical neural networks with edge computing,” in
Proceedings of the ACM Web Conference (WWW), 2022, pp. 1860–
1870.

[5] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2020.

[6] R. Luo, H. Jin, Q. He, S. Wu, and X. Xia, “Cost-effective edge
server network design in mobile edge computing environment,”
IEEE Transactions on Sustainable Computing, 2022.

[7] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He,
“Constrained app data caching over edge server graphs in edge
computing environment,” IEEE Transactions on Services Computing,
2021.

[8] Q. He, C. Wang, G. Cui, B. Li, R. Zhou, Q. Zhou, Y. Xiang,
H. Jin, and Y. Yang, “A game-theoretical approach for mitigating
edge DDoS attack,” IEEE Transactions on Dependable and Secure
Computing, 2021.

[9] G. Cheng, D. Guo, L. Luo, J. Xia, and S. Gu, “LOFS: A lightweight
online file storage strategy for effective data deduplication at net-
work edge,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 10, pp. 2263–2276, 2021.

[10] H. Yan, X. Li, Y. Wang, and C. Jia, “Centralized duplicate removal
video storage system with privacy preservation in IoT,” Sensors,
vol. 18, no. 6, p. 1814, 2018.

[11] S. Li and T. Lan, “Hotdedup: Managing hot data storage at net-
work edge through optimal distributed deduplication,” in Proceed-
ings of IEEE Conference on Computer Communications (INFOCOM).
IEEE, 2020, pp. 247–256.

[12] X. Xia, F. Chen, Q. He, G. Cui, J. Grundy, M. Abdelrazek,
A. Bouguettaya, and H. Jin, “Ol-medc: An online approach for
cost-effective data caching in mobile edge computing systems,”
IEEE Transactions on Mobile Computing, 2021.

[13] N. Carlsson and D. Eager, “Ephemeral content popularity at the
edge and implications for on-demand caching,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 6, pp. 1621–1634,
2016.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3247061

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



12

[14] Y. Shin, D. Koo, and J. Hur, “A survey of secure data deduplication
schemes for cloud storage systems,” ACM Computing Surveys,
vol. 49, no. 4, pp. 1–38, 2017.

[15] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A comprehensive study of the past,
present, and future of data deduplication,” Proceedings of the IEEE,
vol. 104, no. 9, pp. 1681–1710, 2016.

[16] H. Jin, R. Luo, Q. He, S. Wu, Z. Zeng, and X. Xia, “Cost-effective
data placement in edge storage systems with erasure code,” IEEE
Transactions on Services Computing, 2022.

[17] X. Xia, F. Chen, Q. He, J. C. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
31–44, 2020.

[18] Y. Fu, N. Xiao, H. Jiang, G. Hu, and W. Chen, “Application-aware
big data deduplication in cloud environment,” IEEE Transactions
on Cloud Computing, vol. 7, no. 4, pp. 921–934, 2017.

[19] F. Ni and S. Jiang, “Rapidcdc: Leveraging duplicate locality to
accelerate chunking in cdc-based deduplication systems,” in Pro-
ceedings of the ACM Symposium on Cloud Computing, (SoCC), 2019,
pp. 220–232.

[20] C. Cai, J. Weng, X. Yuan, and C. Wang, “Enabling reliable keyword
search in encrypted decentralized storage with fairness,” IEEE
Transactions on Dependable and Secure Computing, 2018.

[21] S. Di, D. Kondo, and W. Cirne, “Host load prediction in a google
compute cloud with a bayesian model,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, (SC). IEEE, 2012, pp. 1–11.

[22] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen,
“Content popularity prediction towards location-aware mobile
edge caching,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp.
915–929, 2018.

[23] A. B. Sediq, R. H. Gohary, R. Schoenen, and H. Yanikomeroglu,
“Optimal tradeoff between sum-rate efficiency and jain’s fairness
index in resource allocation,” IEEE Transactions on Wireless Com-
munications, vol. 12, no. 7, pp. 3496–3509, 2013.

[24] N. Karmarkar and R. M. Karp, “An efficient approximation
scheme for the one-dimensional bin-packing problem,” in Pro-
ceedings of Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 1982, pp. 312–320.

[25] A. Juttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relax-
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