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Abstract—Edge computing, as a new computing paradigm, brings cloud computing’s computing and storage capacities to network
edge for providing low latency services for users. The networked edge servers in a specific area constitute edge storage systems
(ESSs), where popular data can be stored to serve the users in the area. The novel ESSs raise many new opportunities as well as
unprecedented challenges. Most existing studies of ESSs focus on the storage of data replicas in the system to ensure low data
retrieval latency for users. However, replica-based edge storage strategies can easily incur high storage costs. It is not cost-effective to
store massive replicas of large-size data, especially those that do not require real-time access at the edge, e.g., system upgrade files,
popular app installation files, videos in online games. It may not even be possible due to the constrained storage resources on edge
servers. In this paper, we make the first attempt to investigate the use of erasure codes in cost-effective data storage at the edge. The
focus is to find the optimal strategy for placing coded data blocks on the edge servers in an ESS, aiming to minimize the storage cost
while serving all the users in the system. We first model this novel Erasure Coding based Edge Data Placement (EC-EDP) problem as
an integer linear programming problem and prove its NP-hardness. Then, we propose an optimal approach named EC-EDP-O based
on integer programming. Another approximation algorithm named EC-EDP-V is proposed to address the high computation complexity
of large-scale EC-EDP scenarios efficiently. The extensive experimental results demonstrate that EC-EDP-O and EC-EDP-V can save
an average of 68.58% (and up to 81.16% in large-scale scenarios) storage cost compared with replica-based storage approaches.

Index Terms—Edge Computing, Erasure Code, Data Placement, Approximation Algorithm.

✦

1 INTRODUCTION

IN recent years, the world has witnessed the explosive
growth of smart devices and mobile users. It is predicted

that by 2021 there will be 32 billion connected mobile
devices, and the global data traffic will reach 19.5 ZB per
year [1]. The transmission of such massive data incurs heavy
network traffic and consumes excessive network resources,
leading to network issues, including service interruptions
and high network latency. To tackle these challenges, edge
computing has emerged as a new computing paradigm. It
moves computing and storage resources onto edge servers
at the edge of the cloud [2], [3]. Edge computing offers two
key advantages to various online applications. First, users’
data retrieval latency can be significantly reduced because
they can retrieve data from their nearby edge servers rather
than from the cloud. From app vendors’ perspective, this en-
sures their users’ quality of experience (QoE) because latency
has become the key performance concern for online appli-
cations [4]. Second, service interruptions caused by network
congestion can be alleviated by reducing the network traffic
over the backhaul network [5]. This benefits app vendors by
reducing the costs incurred by transmitting their data from
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the remote cloud to edge servers [6], [7].
In the edge computing environment, adjacent edge

servers in an area are connected by high-speed links [8]
to form an edge server network that constitutes an edge
storage system (ESS) [3], [6], [9]. Compared with the edge-
cloud architecture, ESS overcomes the single-point failure
problem and performance bottleneck problem encountered
[6], [10]. New challenges raised by ESS are starting to
attract researchers’ attention in recent years, who attempt
to achieve various optimization objectives by caching data
replicas on edge servers, e.g., minimum data retrieval la-
tency [11], maximum cache hit ratio [12], [13], maximum
caching benefits [14], [15], maximum caching capacity [16],
[17]. A common assumption made by these replica-based
approaches is that storage resources on each edge server
in an ESS can always be hired on-demand or reserved in
advance for caching data replicas.

However, this assumption is not always realistic in
a real-world edge computing environment where edge
servers’ storage resources are limited by the constrained
physical sizes of base stations [18]. Even if it is feasible,
caching massive data replicas on dense edge servers in
an ESS - is often not cost-effective because the storage
resources on edge servers are expensive [19]. This issue is
especially critical when app vendors need to store large-
size data that do not require real-time access, e.g., system
upgrade files, popular app installation files, videos in online
games, in ESSs mainly to save on the expenses incurred by
transmitting data out of the cloud for every user. A new
approach is needed to enable the cost-effective storage of
such large data in ESSs.
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In this paper, we study the use of erasure coding in cost-
effective storage of large data in ESSs. Under an erasure
code scheme, a data X to be stored can be divided into
M data blocks and K parity blocks. These data and parity
blocks are distributed to be stored on different storage nodes
(e.g., edge servers in an ESS) accessible to users. A user can
retrieve M data and/or parity blocks (together referred to
as coded blocks hereafter) from any accessible edge servers
to construct X for use. Erasure codes have been widely
employed to reduce storage costs in cloud-based storage
systems [20], [21].

However, the unique characteristics that fundamentally
differentiate ESSs from cloud-based storage systems render
existing approaches obsolete and raise a number of new
challenges. First, in the edge computing environment, the
coverage of an edge server is limited. A user can only access
coded blocks from edge servers that cover the user. This is
the proximity constraint [22], [23]. A storage approach based
on erasure code (referred to as EC-based storage approach
hereafter) must ensure that every user in the area can
retrieve enough coded blocks to construct data X . This is
the encoding constraint. In addition, data can be transmitted
across edge servers over the edge server network topology
to be delivered to users, but only within a limited number
of transmission network hops [8], [18], [24]. Compared with
traditional cloud storage systems, coded data blocks cannot
be stored in different storage nodes arbitrarily in ESSs. This
is the transmission constraint [6], [23], [25].

From the perspective of app vendors, the coded blocks
of data stored in an ESS must be able to serve all the users at
minimum storage cost while fulfilling the proximity, cover-
age, and transmission constraints. This problem is referred
to as the erasure coding based edge data placement (EC-EDP)
problem. This paper makes the first attempt to study this
new problem, and the key contributions include:

• We formally model the EC-EDP problem as an inte-
ger linear programming problem and prove that it is
NP-hard.

• We propose EC-EDP-O, an approach for finding opti-
mal solutions to small-scale EC-EDP problems based
on integer programming solvers.

• We propose EC-EDP-V, an approximation approach,
which used to find approximate solutions to large-
scale EC-EDP problems with a lnΘlimit + 1 approx-
imation ratio guarantee.

• We evaluate the performance of EC-EDP-O and
EC-EDP-V against five representative approaches
through extensive experiments conducted on a
widely-used EUA dataset.

2 MOTIVATING EXAMPLE

Since Windows-10, Microsoft has employed peer-to-peer
distribution, in addition to traditional client-server distri-
bution, to deliver large upgrade packages to its clients
to reduce the network resource consumption incurred. In
the meantime, app vendors like Microsoft can significantly
reduce the costs of distributing such data to their clients
by storing it in the ESSs facilitated at the network edge -

Fig. 1: Example of edge storage system

Amazon Web Services charges up to US$0.11 to transfer 1GB
data out of its S3 data storage facilities to the internet1.

Fig. 1 presents an example of ESS comprised of ten
networked edge servers collectively serving the users in
a specific area, e.g., New York CBD. A straightforward
replica-based solution to the distribution of Microsoft’s 1GB
Windows-10 upgrade package is to store a replica on each
of the ten edge servers. In the edge computing environment,
a user can access the edge servers that cover the user. The
distance between the user and the edge server may impact
its data rate, as considered in some studies, but not the
latency between them. Thus, the latencies between users
and edge servers are not considered in the formulation of
EC-EDP strategies in this study. In this way, all the users in
the New York CBD can download the package from their
nearby edge servers.

However, there are two critical limitations to this solu-
tion. First, it costs Microsoft tremendously to save 10 data
replicas (10GB in total) in the ESS over a long time due to the
expensive storage resources on the edge servers [19], [23],
[26]. Second, it does not take advantage of the collaboration
of edge servers to transmit data to each other to deliver data
for users [8], [18], [24]. Take the ESS presented in Fig. 1 for
example. Assume that it allows data to be transmitted via
two hops over the topology of edge sever network. In real-
world EC-EDP scenarios, the transmission latency between
edge servers could be different. To generalize the models
and approaches presented in this paper, we measure the
transmission constraint by the number of hops over the
edge server network, which can also be easily measured
by specific milliseconds, similar to [6], [27]. On this edge
storage system, Microsoft only needs to store two replicas
of its Windows-10 upgrade package (2GB in total) in the
system to serve all the users in the area, e.g., v4 and v9, as
illustrated in Fig. 2(a), or v5 and v8.

To further reduce the storage cost of storing data in this
ESS, Microsoft can first encode the upgrade package into 2
data blocks (0.5GB each) and 1 parity block (0.5GB) through
erasure coding to be placed on 3 of the edge servers in the
ESS, e.g., v4, v5, and v8, as illustrated in Fig. 2(b). Under the

1. https://aws.amazon.com/s3/pricing/



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3152849, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL., NO., 2021 3

(a) Replica (b) EC(2,1) (c) EC(3,1) (d) EC(4,4)

Fig. 2: Replica-based solution vs. EC-EDP solutions

erasure coding scheme, a user can retrieve any 2 of the three
coded blocks from edge servers within two network hops
to construct the upgrade package. For example, the user in
Fig. 2(b) can retrieve a data block and a coded block from
v4 and v8, respectively, to construct the upgrade package. In
this way, Microsoft only needs to store a total of 1.5GB data
in the ESS to satisfy all the user’s access requests in the area,
much less than the above replica-based approach.

An alternative solution is to encode the package into
3+1 coded blocks, 0.33GB each, to be placed at v4, v5, v8,
and v9 as illustrated in Fig. 2(c). This solution requires
1.33GB storage resources in total. Fig. 2(d) illustrates the
third solution that encodes the package into 4 coded blocks
to be placed. A total of 2GB storage resource is needed.
Among the three solutions shown in Fig. 2, the EC(3, 1)
solution presented in Fig. 2(c) incurs the least storage cost.
Compared with replica-based storage solutions, EC-based
solutions are more flexible because they require less storage
occupation on individual edge servers. This is a critical
advantage in the edge computing environment where the
storage resources of edge servers are highly constrained and
expensive [19], [23], [26].

Given an ESS, there are usually a large number of fea-
sible EC-EDP solutions combining different data encoding
and placement strategies. These solutions incur different
storage costs. Meanwhile, in the real-world EC-EDP sce-
narios, the number of edge servers could be much larger
and the network topology could be more complex. Finding
the solutions to the EC-EDP problems in such scenarios is
challenging. Therefore, it is important for app vendors to
find the optimal one that serves all the users in the ESS at
minimum storage cost. Please note that EC-based approach
incurs computational overheads to users, i.e., the time taken
to construct data from coded blocks [28], [29]. Thus, EC-
based approaches are most suitable for storing large data
that do not require real-time access but consume a large
amount of network bandwidth, e.g., system upgrade files,
popular app installation files, videos in online games.

Fig. 3: EC(3,2) erasure coding scheme

3 PRELIMINARIES

Erasure coding is widely used in the field of distributed
storage system to yield low storage overhead and high
reliability, such as Microsoft’s Azure [20] and Facebook’s F4
[30]. By applying erasure coding, a piece of data is divided
into M data blocks, which are encoded into K parity blocks.
The total of M +K coded blocks is distributed to be stored
on M +K nodes. The data can be constructed from any M
of the M +K coded blocks [31]. Fig. 3 presents an example
whereEC(3, 2) erasure coding (M = 3,K = 2) is employed
to encode data X . Data X is divided into three data blocks
f1, f2, and f3, which are encoded into two parity blocks
f

′

1 and f
′

2. The five coded blocks can be distributed to be
stored on different edge servers. To construct data X , any
user needs to retrieve at least three of the five coded blocks
in the ESS. The encoding principle of the erasure code is to
multiply the data by the coding matrix, and the decoding
process is realized with the matrix inversion technique [28].
Actually, to ensure that the result of multiplication remains
within a fixed size such as one byte, the results of matrix
multiplication in the erasure code are obtained by mapping
the matrix multiplication to a finite field [29].

In this research, we study the most general EC-EDP
scenarios where at most one coded block on each edge
server in the ESS. This storage limit generalizes the number
of coded blocks that can be stored on each edge server.
Allowing multiple coded blocks to be stored on each edge
server will make it easier to find a storage solution but will
lower the reliability of the data stored in the system. Take an
extreme case for example, where all theM+K coded blocks
are stored on only one of the edge servers in the ESS to serve
all the users. If that edge server fails, the data will become
unavailable to all the users. On the contrary, if only one
coded block can be stored on each edge server, the failure
of an edge server does not significantly lower the reliability
of the data. In fact, the ESS may still be able to serve all the
users as long as they can still retrieve M coded blocks. The
storage limit also generalizes our EC-EDP approach (to be
presented in Section 5) by relaxing the need for app vendors
to reserve a large number of storage resources on individual
edge servers.

4 MODEL AND PROBLEM FORMULATION

In this section, we first formulate the EC-EDP problem and
then reduce it to another classic NP-hard problem for prov-
ing its NP-hardness. The main notations used throughout
this paper with their definitions can be found in Table 1.
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TABLE 1: Summary of Notations

Notation Description

bj number of servers that user uj can access within
transmission constraint

cost(R) storage cost achieved by caching strategy R
cov(vi) set of users covered by edge server vi
di,j distance between user uj and edge server vi
ft coded block of the data X , where t = 1, 2, . . . , N

F set of coded blocks
G graph presenting a particular area
hi,w distance from server vi to server vw
hlimit maximum hops for data transmission over G
K number of parity blocks with erasure code of X
M number of data blocks with erasure code of X
N number of total coded blocks of X
P number of total users
qi number of coded blocks stored on server vi
ri,t binary variables indicating coded block dt on edge

server vi
R set of binary variables indicating coded blocks

placement strategies
size(ft) size of coded block ft
S number of total edge servers
uj edge user j
U set of user uj , where j = 1, 2, . . . , P

vi edge server i
V set of edge server vi, where i = 1, 2, . . . , S

X the original data
αi,j binary variable indicating whether uj can access

vi within hlimit hops
βi,j binary variable indicating whether uj can access

coded blocks on vi within hlimit hops

4.1 Problem Formulation

Similar to [6], the S networked edge servers in an ESS can
be modeled as a undirected graph G(V,E). In this graph
G, each edge server vi ∈ V corresponds to a vertex, and
the connection between two edge servers corresponds to
an edge. In the edge computing environment, encoding
multiple data for storage in an edge storage system is not
cost-effective. For example, if five data are encoded as a
bundle into a number of coded blocks, a user requesting
one of these data will have to retrieve the coded blocks for
constructing all five data. Transmitting these coded blocks
will consume extra network resources. It will also take extra
time for the user to construct data from the coded blocks.
Thus, encoding multiple data for storage is not cost-effective
in the context of this study.

Given a coded block ft, divided from X , and a set of
edge servers vi, a block placement decision, denoted by ri,t,
indicates whether block ft is placed on edge server vi:

ri,t =

{
0 if block ft is not placed on vi
1 if block ft is placed on vi

(1)

Let qi denote the number of coded blocks placed on
server vi. It can be calculated as follow:

qi =
N∑
t=1

ri,t,∀vi ∈ V,∀ft ∈ F (2)

Constraint (3) enforces the storage limit, i.e., at most one
coded block needs to be stored on any edge server.

qi ∈ {0, 1},∀vi ∈ V (3)

Let hlimit represent the transmission constraint intro-
duced in Section 1 and Section 2. Let αi,j ∈ {0, 1} indicate
whether user uj can access server vi, and bj indicate the
number of edge servers that user uj can access without
violating the transmission constraint. There is

αi,j =

{
1 if uj ∈ cov(vw), hi,w ≤ hlimit, vw ∈ V

0 otherwise
(4)

bj =
S∑
i=1

αi,j (5)

where hw,j is the distance (measured by hops) between user
uj and edge server vw with a coded block.

To ensure that each user can retrieve adequate coded
blocks for constructing data X , M , i.e., the number of data
blocks divided from X , should not exceed the minimum
number of edge servers accessible to any users uj ∈ U
within hlimit hops over G. Theoretically, an erasure coding
schemed divides X into at least 2 data blocks. Thus, there
is:

2 ≤M ≤ min{bj | ∀uj ∈ U} (6)

According to the encoding constraint, when users are
covered by more than one edge server, they can access any
one of these. Take Fig. 1 for example, u2 can only directly
access edge servers v4 and v5. Let di,j denote the minimum
distance from user uj ∈ U to server vi ∈ V and it can be
calculated as follow:

di,j = min{hi,w| qi = 1 , uj ∈ cov(vw)}, vi ∈ V (7)

To ensure that each uj ∈ U can retrieve adequate coded
blocks for constructing X , there must be at least M edge
servers with a coded block within hlimit hops over the edge
server network:

βi,j =

{
1 if di,j ≤ hlimit
0 otherwise

(8)

S∑
i

βi,j ≥M, uj ∈ U, vi ∈ V (9)

where
∑s
i βi,j is the number of coded blocks that user uj

can retrieve within hlimit network hops. Please note that
variable βi,j is defined to ensure the feasibility of the data
placement strategy by allowing users to retrieve necessary
coded blocks for constructing data X under the transmis-
sion constraint, which is different from the definition of
variable αi,j .

The optimization objective of the EC-EDP problem is
to minimize the total storage cost. It is calculated based
on the number and the size of the coded blocks stored in
the ESS. Since matrix multiplication and inverse operations
are involved in every erasure coding scheme, the size of
coded blocks must be divided equally. Thus, the size of each
coded block, denoted by size(ft) ∈ F can be calculated by
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size(ft) = size(X )/M . Let N ≜ M + K. Based on the
storage limit, there is:

N =
S∑
i=1

qi, vi ∈ V (10)

The total storage cost incurred by an EC-EDP strategy
is computed as N · (size(X )/M). Given that size(X ) is
a constant specific to X , the cost incurred by an EC-EDP
strategy R can be presented as follow:

cost(R) = N/M (11)

Thus, the optimization objective in the EC-EDP, i.e., to
minimize the storage cost incurred, can be expressed as
follow:

min cost(R) (12)

s.t.: (3), (6), (9) .

4.2 Problem Hardness

In this section, we reduce EC-EDP to a classic NP-hard
problem, i.e., minimum dominating set (MDS) problem [32],
for proving its NP-hardness.

Given an undirected graph G = (V,E), there is a subset
of V

′ ⊂ V . Given an arbitrary vertex D
′ ∈ V , we always

have D
′ ∈ V

′
or the neighbor of D

′ ∈ V
′
. The set V

′

with the minimum elements can be called the minimum
dominating set of graph G. For each vertex vi, we define
a binary variable yi to denote whether it is in V

′
(yi = 1)

or not (yi = 0). Let γ(i) denote the vertex set composed by
vertex vi and its adjacent vertexes in G. The MDS problem
can be expressed here.

min
∑
i∈V

yi (13)

s.t. :
∑
j∈γ(i)

yj ≥ 1, ∀i ∈ V (13a)

yi ∈ {0, 1}, i ∈ V (13b)

The reduction from the MDS problem to the EC-EDP
problem can be done as follows: 1) let the number of coded
blocks M be a deterministic value; 2) let every user access a
fixed edge server. Given an undirected graph G = (V,E) in
the MDS problem, we can find an instance of the MDS prob-
lem MDS(V

′
, E, ws), where ws =

∑
i∈V yi. We can also

construct an instance of the EDP problem EDP (V ∗, E∗, cs)
with the reduction above where |V ∗| = |V ′ | and |E∗| = |E|,
and cs =

∑
j∈U,i∈V (βi,j). Then, constraint (9) can be con-

verted to
∑
j∈Υ(i) yj ≥ M , where Υ(i) represents a vertex

set comprised of vertex vi and the vertexes within hlimit
hops over G. We can easily see that it is equal to constraint
(13a). According to (3), at most one coded block can be
placed on each edge server. Thus, constraint (13b) can be
fulfilled. In conclusion, any M values always satisfy the
MDS problem. Thus, the EC-EDP problem is NP-hard.

5 APPROACH DESIGN

In this section, we first model the EC-EDP problem as an
integer linear programming problem. Then, we propose two

approaches, i.e., EC-EDP-O and EC-EDP-V. The EC-EDP-
O approach is proposed to solve the small-scale EC-EDP
scenarios based on integer programming. The EC-EDP-V is
proposed to solve the large-scale EC-EDP scenarios with a
ln(Θlimit + 1) approximation ratio guarantee.

5.1 Optimal Approach
The EC-EDP problem can be modeled as a integer linear pro-
gramming (ILP). Given an edge server network G = (V,E),
where V = {v1, . . . , vS} and E = {e1, . . . , eP }, let us define
a set of variable Y = {y1, . . . , yS} to represent an EC-EDP
strategy, where yi = {0, 1}. If yi = 1, it indicates that a
coded block is placed on the edge server i, and yi = 0 if not.
Therefore, the formula of the ILP model for the EC-EDP
problem is presented here:

min

∑
ui∈U yi

M
(14)

s.t.: yi ∈ 0, 1,∀i ∈ [1, S] (15)

dw,i ≤ hlimit,∀i, w ∈ [1, S] (16)

S∑
i

βi,j ≥M, ∀i ∈ [1, S],∀j ∈ [1, P ] (17)

Constraint (16) guarantees that the users covered by
edge server vi can only retrieve coded blocks within the
transmission limit. Constraint (17) is converted from (9)
to guarantee that every user can retrieve adequate coded
blocks to construct data X .

This ILP can be solved by some classic widely-used inte-
ger programming solvers, such as IBM CPLEX Optimizer2.
This optimal approach for solving the EC-EDP problem
named EC-EDP-O. It uses three binary variables, i.e., ri,t,
αi,j , and βi,j , and must fulfil three constraints. There are a
total of CMN CMS AMM feasible solutions. Since the number of
data blocks obtained from encoding data X is between 2 and
S−1, the size of the solution space is ( S!N !

M !(N−M)!(S−M)! )
S−1.

It takes long time for EC-EDP-O to explore such a large solu-
tion space even in a small-scale EC-EDP scenario discussed
in Section 2.

5.2 Approximation Approach
As proven in Section 4.2, the EC-EDP problem is NP-
hard. EC-EDP-O may solve small-scale EC-EDP problems.
However, it is not tractable in large-scale EC-EDP scenarios.
To address the complexity of solving large-scale EC-EDP
scenarios, an efficient approximation approach named EC-
EDP-V is proposed. Algorithm 1 presents the pseudocode of
EC-EDP-V, and Fig. 4 illustrates its approximation process
for finding the solution to the EC-EDP problem presented
in Fig. 2.

The key idea of EC-EDP-V is to select the edge servers
that produce the maximum benefits by storing coded blocks
in the edge storage system. We design a new voting mech-
anism where EC-EDP-V adjusts the voting weight for each
edge server and each edge server votes for the edge servers
within its hlimit hops iteratively. In each iteration, the edge
server with the highest number of votes will be selected.

2. https://www.ibm.com/products/ilog-cplex-optimization-studio
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Fig. 4: Approximation process

Algorithm 1: EC-EDP-V
Input: G(V,E), M , hlimit

Output: Minimum storage cost C, the best solution set
S∗

1 Initialization:
2 S∗ ← ∅ ;
3 Ai ← servers that vi can access within hlimit;
4 A∗

i ← the size of the edge server set Ai, vi ∈ V ;
5 End of initialization
6 for M ← 2 to argminA∗

i do
7 initialize the number of coded blocks required per

edge server mi ←M ;
8 CM ← 0;
9 S∗

M ← ∅ ;
10 while ∃vi ∈ V,mi ̸= 0 do
11 update the vote weight of edge server Vi by

wi ← mi;
12 for vi ∈ V do
13 Vote for vj ∈ Ai \ S∗

M with wj ;
14 end
15 sort the edge servers in V by their votes;
16 find vk, i.e., the edge server with the most votes;
17 S∗

M ← S∗
M ∪ {vk};

18 for vr ∈ Ak do
19 mr ← mr − 1;
20 end
21 end
22 CM ← |S∗

M |/M ;
23 if CM<C then
24 C ← CM ;
25 S∗ ← S∗

M ;
26 end
27 end
28 return C, S∗

During the voting process, if multiple edge servers have the
same highest number of votes, EC-EDP-V will randomly
select one of them and update the vote weight for each edge
server.

First, the algorithm starts with an initial S∗ = ∅, which
is used to save the current optimal solution of EC-EDP
problem (Line 2). Note that Ai (i = 1, ..., n) on Line 3
is the set of edge servers within hlimit hops from vi. On
Line 4, A∗

i is the number of neighbor edge servers of edge
server vi within hlimit network hops limit. To find the final
solution, the algorithm iterates for n times, one for each of
the number of data blocks M , to produce n candidate EC-
EDP solutions on Lines 7-21. In each iteration, the algorithm
initiates the number of coded blocks needed for each edge

server mi = M (Line 7), the current storage cost CM = 0,
and the set of selected candidate edge servers S∗ = ∅ (Lines
7-9).

Take the ESS presented in Fig. 4(a) for example. Let us
assume that data can be transmitted via two network hops.
Edge servers v1, v2, ..., v10 are initialized with the same vote
weight of 3, i.e., the number of coded blocks needed for
each edge server. Then, the algorithm loops Lines 10-21. In
each iteration of the loop, it assigns mi as the vote weight
wi to each edge server vi ∈ V without a coded block (Line
11). Next, all the edge servers within hlimit hops from vi
vote for vi with vote weight wj (Lines 12-14). As shown in
Fig. 4(b), edge servers v4 and v5 receive 27 votes from their
neighbor edge servers within 2 hops, i.e., 3 votes from each
of v1, ..., v9 and 3 votes from each of v1, ..., v6 and v8, ...,
v10, respectively. In this example, v4 is chosen over v5. After
that, all the edge servers in V are sorted by the number of
their votes, the algorithm selects the one (vk) with the most
votes to be included into S∗, i.e., the set candidate edge
servers (Lines 15-17). Next, for each edge server vr ∈ Ak,
the number of its required coded blocks mr decreases by 1
(Lines 18-20).

In this way, as shown in Fig. 4(b), when edge server
v4 is chosen, its vote weight m4 will decrease to 0. Let us
now take a look at Fig. 4(c), where v4 and v5 are chosen for
their highest votes. The vote weights of their neighbor edge
servers within 2 hops, including v1, v2, v3, v6, v8, v9, and v10,
decrease by 1. Next, it compares the current storage cost CM
with all the candidate EC-EDP solutions. If it is lower than
the current lowest storage cost, the corresponding EC-EDP
solution S∗

M replaces the current best solution (Lines 22-25).
As shown in Fig. 4(d), the final solution contains v4, v5, v8,
and v9. It achieves the lowest storage cost ratio of 1.33.

5.3 Theoretical Analysis

In this section, we theoretically analyze the approximation
ratio and time complexity of the proposed approach EC-
EDP-V.

5.3.1 Approximation Ratio
Given an edge server network G = (V,E), let Nhlimit(vi)
denote the set of edge server vi’s neighbor edge servers
within hlimit hops, Θhlimit(G) denote the maximum num-
ber of Nhlimit(vi), λopt = {λ0opt, ..., λn−1

opt } denote the opti-
mal solution to the EC-EDP problem, and λ denote the sub-
optimal solution found by EC-EDP-V. For each edge server
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over the network topology of edge servers, the number of
its neighbor edge servers within hlimit network hops is less
than Θhlimit + 1. When an edge server with the most votes
is included into OPT , we have the following inequality:

n ≤ (Θhlimit + 1) + Θhlimit · (|λOPT | − 1) (18)

From (18), we can infer |λOPT | ≥ (n − 1)/Θhlimit . Let
us assume that the number of remaining encoded blocks to
be placed after the i-th iteration in Algorithm 1 is ψi with
ψ0 = n. Considering the i-th iteration, the optimal solution
can reduce the number of coded blocks by ψi − 1. Thus, the
lower bound of the number of selected edge servers in the
i-th iteration by Algorithm 1 is ⌈(ψi− 1)/|λOPT |⌉. Now, we
can infer:

ψi+1 ≤ ψi − ⌈(ψi − 1)/|λOPT |⌉

≤ ψi(1−
1

|λOPT |
) +

1

|λOPT |
(19)

By the inductive proof, we can easily prove (20) based
on (19). The details of the proof are omitted here.

ψi ≤ ψ0(1−
1

|λOPT |
)i +

1

|λOPT |

i−1∑
j=0

(1− 1

|λOPT |
)j

= (ψ0 − 1)(1− 1

|λOPT |
)i + 1

(20)

When i = |λOPT | ∗ ln ψ0−1
|λOPT | , and the ith sub-decision

is made, we can obtain the number of the remaining coded
blocks to be placed as follow:

ψi ≤ (ψ0 − 1)(1− 1

|λOPT |
)i + 1

= (ψ0 − 1)(1− 1

|λOPT |
)
|λOPT |ln ψ0−1

|λOPT | + 1

≤ (ψ0 − 1)(
1

e
)
ln

ψ0−1
|λOPT | + 1 = (ψ0 − 1)

|λOPT |
ψ0 − 1

+ 1

= |λOPT |+ 1

(21)

This proves that after the |λOPT | · ln ψ0−1
|λOPT | -th iteration,

the number of remaining coded blocks will not exceed
|λOPT | + 1. Let us assume that the iterative process will
end by selecting ψf more edge servers. The total number of
selected edge servers fulfills:

|λ| = |λOPT |·ln
ψ0 − 1

|λOPT |
+ψf ≤ ln(Θhlimit+1)·|λOPT | (22)

Therefore, the approximation ratio of EC-EDP-V algo-
rithm is ln(Θhlimit + 1).

5.3.2 Time Complexity
Suppose an EC-EDP problem with n edge servers V =
{v1, v2, ..., vn} in a geographic area. For each edge server
vi ∈ V , let p denote the average number of its neighbor edge
servers within hlimit hops. We first analyze the time com-
plexity of Lines 11-14 of Algorithm 1. The voting process
takes O(n) time because all of n edge servers will vote. The
time complexity of sorting these edge servers and selecting
the highest one on Line 15 at most O(log n). The upper limit
of M impacts the number of inner iterations (Lines 10-21),
which is determined by argmin|A|. When argmin|A∗| ≥ p,
the complexity of the overall process in the worst-case

EC-EDP scenario is no more than O((n − p) log n). After
the inner iteration (Lines 10-21), Algorithm 1 has obtained
a total of n − 2 candidate solutions. Therefore, the time
complexity of Algorithm 1 is O(n2 log n).

6 EVALUATION

In this section, we conduct extensive experiments to evalu-
ate the performance of EC-EDP-O and EC-EDP-V in differ-
ent EC-EDP scenarios.

6.1 Settings

6.1.1 Dataset

In order to evaluate these competing approaches realisti-
cally, we conduct the experiments on the realistic EUA data
set3. This dataset contains 1,464 real-world edge servers and
131,312 users in Metropolitan Melbourne, Australia.

6.1.2 Competing Approaches

Five representative approaches are implemented in Java 8
to be compared against EC-EDP-O and EC-EDP-V:

• Greedy Degrees (GD): This EC-based approach se-
lects the edge server with the highest degree to
place coded blocks each time, until all the users are
covered, i.e., they can all retrieve adequate coded
blocks within hlimit hops.

• Random Block Placement (RBP): This EC-based ap-
proach randomly selects one edge server at a time to
place a coded block, one after another until all the
users are covered.

• LGEDC [33]: This replica-based approach heuris-
tically places replicas of data X to minimize the
storage cost while covering all the users within hlimit
hops.

• GRED [11]: This replica-based approach tries to
spread replicas of data X across all the edge servers.
Specifically, it first heuristically selects n

hlimit+1 can-
didate edge servers that can serve all the users with
minimum data retrieval latency within hlimit hops.
Then, from these candidate edge servers, it selects
those that are connected to the fewest other candi-
date edge servers within hlimit hops until all the
users are covered.

• TMC18 [34]: This replica-based approach partitions
edge servers into multiple groups with the La-
grangian method based on the number of user
requests for data X received by individual edge
servers. Then, it always places replicas of data X in
the group with the lowest overall number of replicas
of data X until all the users are covered.

In the implementation of EC-EDP-O, IBM’s CPLEX Op-
timizer is employed for finding the solution by traversing
all possible solutions to the ILP problem.

3. https://github.com/swinedge/eua-dataset
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6.1.3 Experiment Setup
Two scales of experimental settings are conducted. Set #1
is conducted within the Melbourne CBD area to evaluate
the performance of EC-EDP-O and EC-EDP-V in small-scale
EC-EDP scenarios. Set #2 is conducted within Metropolitan
Melbourne to evaluate EC-EDP-V in large-scale EC-EDP sce-
narios. To facilitate comprehensive evaluations, we simulate
different EC-EDP scenarios by varying the specific values of
three setting parameters, as summarized in Table 2.

• Number of edge servers (n = |V |): This parameter
is the size of the edge server network G, increasing
from 10 to 35 in Set #1 and from 50 to 250 in Set #2.

• Density of edge servers (d = |E|/|V |): This param-
eter decides the density of the edge server network
G. It increases from 1 to 2.5 in Set #1, from 2.0 to 5.0
in Set #2.

• Hop limit (hlimit): This parameter is specified to
enforce the transmission constraint, increasing from
1 to 5 in both Set #1 and Set #2.

6.1.4 Performance Metrics
Two metrics are employed for performance evaluation:

• Storage cost (cost). The storage cost denotes the
ability of an approach to achieve the optimization
objective of the EC-EDP problem. It is calculated by
Eq. (11), the lower the better.

• Computational overhead (time). This metric indi-
cates the efficiency of an approach, which is mea-
sured by the CPU computation time, the lower the
better.

TABLE 2: Parameter Settings

n d hlimit

Set #1.1 10, 15, ..., 35 1.0 1
Set #1.2 20 1.0, 1.3, ..., 2.5 1
Set #1.3 20 1.0 1, 2, ..., 5
Set #2.1 50, 100, ...,250 2.0 1
Set #2.2 150 2.0, 2.6, ..., 5.0 1
Set #2.3 150 2.0 1, 2, ..., 5

6.2 Experimental Results
In this section, we comprehensively present and analyze the
experimental results in Set #1 and Set #2.

6.2.1 Experiment Set #1
Effectiveness. Fig. 5 illustrates the storage costs incurred by
the seven approaches and impacts of the three parameters
in Set #1. We can clearly see the significant advantages
of EC-based approaches over replica-based approaches in
minimizing storage costs. Among all the four EC-based
approaches, EC-EDP-O and EC-EDP-V are the clear winners
in all the cases. This illustrates the importance of leveraging
the ability of edge servers to cost-effectively utilize the
constrained and expensive storage resources in the ESSs.
EC-EDP-O achieves the lowest storage cost in all the cases.
Compared with EC-EDP-O, EC-EDP-V incurs about 3.94%

more storage cost on average in Set #1. Meanwhile, EC-EDP-
V incurs much less storage costs compared with GD, RBP,
LGEDC, TMC18, and GRED, by 23.99%, 36.19%, 56.28%,
53.47%, and 58.29%, respectively.

Fig. 5(a) shows the impact of the number of edge servers
n on the storage cost in Set #1.1. The storage costs incurred
by the approaches increase when n increases. The storage
costs incurred by LGEDC and RBP increase at higher rates
compared with the other five approaches. When n increases,
the scale of the EC-EDP problem increases. Accordingly,
replica-based approaches need to place more data replicas
to serve all the users. EC-based approaches also need to
place more coded blocks to serve all the users. However, the
total size of these extra coded blocks is much smaller than
the extra data replicas to be placed by LGEDC, TMC18, and
GRED. Among all the six approaches, EC-EDP-O always
achieves the lowest storage costs, 4.01% lower than EC-EDP-
V, 27.97% lower than GD, 33.35% lower than RBP, 59.43%
lower than LGEDC, 53.30% lower than TMC18, and 60.06%
lower than GRED on average.

Fig. 5(b) demonstrates the impact of the edge server
density d on storage costs in Set #1.2. When d increases, the
storage costs incurred by all the seven approaches decrease.
The root cause is that a larger d connects each edge server to
more adjacent edge servers within hlimit hops. Fewer coded
blocks or data replicas need to be stored in the ESS to cover
all the users. This immediately results in a decreases in the
total storage cost incurred and indicates the importance of
leveraging the collaboration of edge servers. In Set #1.2,
EC-EDP-V outperforms GD, RBP, LGEDC, TMC18, and
GRED by an average of 24.47%, 38.05%, 59.26%, 64.49%,
and 70.98%, respectively. We can see that EC-EDP-O always
achieves the lowest storage cost, 3.35% lower than EC-EDP-
V on average.

Fig. 5(c) shows the impact of the hop limit hlimit in Set
#1.3. When hlimit increases, coded blocks or data replicas
can travel via more hops to be delivered to the users. The
total storage costs incurred by the approaches decrease
accordingly. When hlimit varies from 1 to 5, EC-EDP-V
outperforms GD, RBP, LGEDC, TMC18, and GRED by an
average of 24.34%, 41.21%, 53.85%, 53.47%, and 58.29%,
respectively. EC-EDP-O, again, achieves the lowest storage
costs in all the cases, outperforming EC-EDP-V by 5.31% on
average.

Efficiency. In Fig. 6, we can clearly see that EC-EDP-O
incurs the highest computational overhead of all in the
entire set of experiments. This is expected and confirms the
NP-hardness of the EC-EDP problem proved in Section
4.2. As shown in Fig. 6(a), EC-EDP-O takes an average
of 2,112.40 milliseconds to find the optimal solution when
n = 35 in Set #1.1. In the meantime, it takes up to 3,444.80
milliseconds in Set #1.2 and 4,047.70 milliseconds in Set #1.3
to find a solution, as illustrated in Fig. 6(b) and Fig. 6(c). The
increase in density in Set #1.2 connects the edge servers in
the ESS with more edges. This rapidly increases the number
of solutions that can cover all the users, taking EC-EDP-
O considerably more time to find the optimal solution. In
Section #1.3, as shown in Fig. 6(c), the relaxation of hlimit
also increases the number of solutions that can cover all
the users, but less significantly compared with density.
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Fig. 5: Effectiveness evaluation in Set #1
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Fig. 6: Efficiency evaluation in Set #1

Interestingly, when hlimit increases from 4 to 5, the increase
in EC-EDP-O’s computational overhead is marginal. The
reason is that EC-EDP-O can already cover all the users by
storing coded blocks on a few of the ”key” edge servers
within four hops in most cases. A further increase in hlimit
from 4 to 5 does not significantly expand the solution space
for EC-EDP-O to explore, and thus does not increase its
computational overhead much.

Compared with EC-EDP-O, EC-EDP-V is multiple-
order-of-magnitude faster. For example, in Set #1, it takes
only 1.087 milliseconds on average to find the solution,
only 0.05% of what EC-EDP-O takes. In those figures,
EC-EDP-O’s multiple-order-of-magnitude higher computa-
tional overhead in Set #1 renders those of other approaches
indistinguishable. The computational overheads of other
approaches are close to 0, but not 0. Specifically, GD,
RBP, LGEC, TMC18, and GRED’s computation time is less
than 5 milliseconds in Set #1. Therefore, Fig. 6 does not
illustrate EC-EDP-V’s efficiency clearly. In the next sec-
tion, without EC-EDP-O, we will illustrate and discuss the
performance differences between EC-EDP-V and GD, RBP,
LGEDC, TMC18, GRED in large-scale EC-EDP scenarios in
Set #2 clearly.

6.2.2 Experiment Set #2

Effectiveness. Fig. 7 demonstrates the advantages of EC-
EDP-V approach in minimizing storage costs in large-scale
EC-EDP scenarios. It always manages to achieve the lowest
storage cost in all the cases in Set #2. Specifically, the stor-
age cost achieved by EC-EDP-V is 55.63%, 65.7%, 79.01%,
81.06%, and 83.52% lower than GD, RBP, LGEDC, TMC18,
and GRED, respectively.

As demonstrated in Fig. 7(a), when n increases, the
storage costs incurred by the EC-EDP strategies formulated
by the approaches increase linearly. We can see EC-EDP-V’s
significant advantages over the other five approaches, i.e.,
69.10%, 74.80%, 83.33%, 78.05%, and 80.24% over GD, RBP,
LGEDC, TMC18, and GRED on average. The reason behind
this is similar to Set #1 and thus is not repeated here. It is
worth mentioning that when n reaches 250, the storage cost
achieved by EC-EDP-V is only 20.23%, 19.56%, 18.23% of
what is achieved by LGEDC, TMC18, and GRED. These are
considerable storage cost savings and clearly show EC-EDP-
V’s prominent advantage over LGEDC, TMC18, and GRED
in storing data cost-effectively in large-scale ESSs.

As illustrated in Fig. 7(b) and Fig. 7(c), the impacts of
the increases in d and hlimit on storage cost in Set #2 are
similar to what we observed in Set #1. Specifically, EC-EDP-
V can save an average of 48.89% storage cost against GD,
61.15% against RBP, 76.58% against LGEDC, 82.86% against
TMC18, and 85.61% against GRED. The underlying reasons
are also similar to those in Set #1 and thus are not discussed
in detail here.

Efficiency. Fig. 8 shows the computational time produced
by all the approaches in Set #2. EC-EDP-V always takes
more time than the other five approaches to find a solution,
170.71%, 205.59%, 241.88%, 233.26%, and 243.12% more
than GD, RBP, LGEDC, TMC18, and GRED, respectively.
Fig. 8 shows that computational overheads of all the the
approaches increase gradually with n, d, and hlimit. Overall,
EC-EDP-V scales with n, d, and hlimit, taking no more than
150 milliseconds. This significant advantages in minimizing
storage costs over GD, RBP, LGEDC, TMC18, and GRED
illustrated in Fig. 7 make its extra computational time toler-
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Fig. 7: Effectiveness evaluation in Set #2
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Fig. 8: Efficiency evaluation in Set#2

able. When n, d or hlimit increases, the number of possible
EC-EDP solutions that can fulfil all the constraints in the
ILP model presented in Section 5.1 increases. According to
Algorithm 1, it takes EC-EDP-V more iterations (Lines 10-21)
to process the votes for each edge server. Thus, EC-EDP-V
takes more time to complete.

6.2.3 Conclusion
The experimental results show that EC-EDP-O is a clear
winner in small-scale EC-EDP scenarios, while EC-EDP-
V is the best option for solving large-scale EC-EDP prob-
lems. They collectively offer a package for formulating cost-
effective EC-EDP strategies in various ESSs.

7 RELATED WORK

The edge computing paradigm enables data caching at
the network edge by facilitating edge storage systems (ESSs)
within users’ close geographic proximity. ESSs offer various
novel opportunities and also raise many new challenges. It
has attracted widespread attention in very recent years [11],
[14], [34].

Existing studies of ESSs are performed from the per-
spective of edge infrastructure provider, e.g., Amazon and
Verizon, aiming to achieve various optimization objectives
by storing or caching data and data replicas on the edge
servers in an ESS. To name a few, Xie et al. [11] propose
GRED, an efficient edge data placement algorithm that aims
to balance the data retrieval workloads across the entire ESS
and shorten the path for delivering data to users. Zhang et
al. [34] explore data placement in ESSs to minimize overall
data retrieval latency based on network topology, traffic
distribution, and data popularity. Ren et al. [14] propose a
cooperative edge data caching framework for ESSs that sets

up cooperative caching regions to minimize data caching
density and to promote data retrieval at the edge instead of
from the remote cloud.

To accommodate data traffic at the network edge cost-
effectively, network coding can be employed to split data
into small blocks to be encoded for high data reliability and
low storage occupation. Kim et al. [35] propose a coding
framework that employ error-correcting data encoding and
computation decoding to enable high data reliability in the
edge computing environment. Wu et al. [36] introduce net-
work coding into the mobile ad hoc network environment
to minimize the energy required to transmit data between
nodes. They model the physical broadcast links as a graph
and construct a minimum-energy multicast tree as the opti-
mal routing mechanism. Bulut et al. [37] study the erasure
code based data routing problem in mobile networks and
focus on parameter selection for reducing cost of message
delivery. Xu et al. [38] propose a game theory based ap-
proach to jointly optimize the content service satisfaction
degree and network throughput in edge caching systems
by deploying network coding for data routing. However,
these studies adopt the same assumption made for cloud
storage systems, i.e., the storage nodes are fully and di-
rectly reachable to each other over high-speed links. This
is, however, unrealistic in edge computing environment. In
the edge computing environment, the topology of the edge
server network must be properly considered.

In very recent years, researchers also start to investigate
the use of ESSs from the perspective of app vendor. For
example, Cao et al. [15] propose an auction-based approach
for edge cache space allocation, aiming to maximize app
vendor’s caching benefits while guaranteeing the quality of
services of different users. Xia et al. [23] propose CEDC-
O, an online edge data caching algorithm, which aims to
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minimize app vendors’ caching cost plus the data migration
cost based on Lyapunov optimization. They also investigate
the problem of cost-effective edge data distribution from the
cloud to ESSs for app vendors [6].

It is widely acknowledged in these studies that the stor-
age resources on edge servers are constrained and expen-
sive [6], [39]. The competition among app vendors makes
it hard and often impossible for them to hire or reserve
adequate resources for storing large data. Thus, storing an
app vendor’s multiple data replicas in an ESS to serve
users covered by different edge servers in the ESS will cost
the app vendor deeply. It is in fact too expensive and too
resource-demanding to be practical. Existing studies of ESSs
accommodate app vendors’ need for low service latency by
leveraging the ability of ESSs to minimize data retrieval
latency for users. There is a lack of effort in helping app
vendors with storing large data in ESSs cost-effectively. In
this paper, we innovatively employ erasure coding to tackle
this particular challenge. The key idea is to encode data into
a number of coded blocks to be placed on the edge servers
in an ESS so that all the users in the ESS can be served at
minimum storage cost. This problem is referred to as the
EC-EDP problem in this paper.

8 CONCLUSION AND FUTURE WORK

In this paper, we employ erasure coding to tackle the new
EC-EDP problem of storing large data cost-effectively in an
edge storage system, aiming to serve all the users in the sys-
tem for app vendors at minimum storage cost. We first in-
troduced, motivated, and formulated the EC-EDP problem.
Then, we proposed two approaches, one for solving small-
scale EC-EDP problems optimally and the other for finding
approximate solutions provable performance guarantee in
large-scale EC-EDP scenarios. The extensive experimental
results indicate that by leveraging erasure coding and the
ability of edge servers to cooperate, our approaches can
formulate cost-effective EC-EDP strategies efficiently.

This study establishes the foundation for further study of
the EC-EDP problem. In the future, we will study the trade-
off between data reliability and storage cost in EC-based
data storage at the edge.
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