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a b s t r a c t

Nowadays, co-locating multithreaded applications on a multicore system has increasingly become a
common case in cloud data centers, where multiple threads generally compete for computing resources.
These competitive environments may suffer problems of system throughput and fairness caused by
barrier operations in multithreaded applications. This is because most implementations of the barrier
synchronization are based on the spin-then-block mechanism in which spinning–waiting threads
probably waste computing resources and relinquish cores to other co-running applications after they
are blocked. This paper attempts to find a new and intuitive way to improve the efficiency of barrier in
competitive environments, and answer the question: Can we leverage the timeslices of waiting threads
to accelerate barrier operations?

Targeting this question, we propose a novel barrier synchronization mechanism named Tidon (Time
Donating Barrier). The basic idea of Tidon is to donate the timeslices ofwaiting threads to their preempted,
laggard siblings in order to accelerate barrier operations, different from traditional static spinning
and blocking. We implement Tidon based on the GNU OpenMP runtime library (libgomp) and Linux
kernel with new, lightweight system calls. Our evaluation with various sets of co-running applications
demonstrates that the advantages of Tidon include (1) alleviating the performance degradation of barrier-
intensive applications (e.g. improving the performance by up to a factor of 17.9 and 2.3 compared to
the default barrier implementation of OpenMP in Completely Fair Scheduler and Balance Scheduling,
respectively) while not hurting or even improving the performance of non-barrier-intensive applications,
and (2) maintaining good fairness among co-running applications (e.g. improving the fairness by up to a
factor of 19.8 and 1.7 compared to the default barrier implementation of OpenMP in Completely Fair
Scheduler and Balance Scheduling, respectively).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, cloud data centers generally consist of multicore
machines. As the computing resources and memory capacity of
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multicore machines are abundant, the cloud providers tend to
co-locate multiple multithreaded applications on a multicore sys-
tem, in order to maximize resource efficiency. Lots of multi-
threaded applications are implemented in the Bulk-Synchronous
single-program, multiple-data (SPMD) programming model that
has a pattern of computation phases and communicationwith bar-
rier synchronization [1–4]. Therefore, the performance of multi-
threaded applications highly depends on barrier operations, which
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generally use the state-of-the-art spin-then-block mechanism
such as Linux futex and the barrier synchronization implemented
by GNU OpenMP [5,6].

Unfortunately, schedulers of most mainstream operating sys-
tems are unaware of synchronization operations within multi-
threaded applications in order tomaximize overall CPU utilization,
and thus the barrier latency could be significantly extended due to
preemptions of laggard threads (this paper calls threads that have
not reached the barrier as laggard threads) in competitive environ-
ments. During the long barrier latency, spinning–waiting threads
probably waste computing resources and relinquish cores to other
co-running applications after they are blocked. This may signifi-
cantly aggravate both the system throughput and fairness.

To improve the efficiency of synchronization in competitive
environments, co-scheduling [7,3] is a representative approach
which allows thread siblings (this paper calls threads from the
same application as siblings for each other) to be synchronously
scheduled and de-scheduled. Despite its effectiveness in minimiz-
ing barrier latency, co-scheduling can cause CPU fragmentation
in most realistic situations, leading to deployment impediment
[2,8,9]. Balance scheduling is a probabilistic co-scheduling, which
dynamically assigns thread siblings to different cores and can per-
form similarly or better than co-scheduling for the performance of
applicationswithout the drawbacks of co-scheduling [8]. However,
we show that when the system load is imbalanced, the progress of
threads on overloaded cores may be much behind the progress of
threads on underloaded cores, and thus the barrier latency may be
still long.

This paper, instead of working on underlying scheduling poli-
cies, proposes a new and intuitive way to reduce barrier latency
by making good use of waiting threads. We present a novel barrier
synchronization mechanism named Tidon (Time donating barrier)
on the top of time-sharing scheduling policy in mainstream oper-
ating systems. The basic idea of Tidon is to donate the timeslices of
waiting threads to their preempted, laggard siblings. In this way,
waiting threads can directly contribute to the completion of barri-
ers.

In summary, this paper makes the following contributions:
• We analyze barrier latency in competitive multicore environ-

ments, and its impact on system throughput and fairness with
different scheduling policies.

• We propose a barrier mechanism named Tidon, which donates
the timeslices of waiting threads to their preempted, laggard
siblings in order to accelerate barrier operations, so as to
reduce the execution time of multithreaded applications in
competitive multicore environments.

• We implement Tidon based on OpenMP and Linux kernel; the
modifications to OpenMP and Linux kernel are lightweight.
Evaluation with various sets of co-running applications shows
that compared to other alternative policies, Tidon can (1) alle-
viate the performance degradation of barrier-intensive applica-
tions while not hurting or even improving the performance of
non-barrier-intensive applications, and (2) maintain good fair-
ness among co-running applications.
The rest of the paper is organized as follows. The next section

presents further background on our definitive problem and a the-
oretical analysis. Sections 3 and 4 describe the design and imple-
mentation of Tidon, respectively. Section 5 provides performance
evaluation. Section 6 overviews the related work, and Section 7
concludes the paper.

2. Background and problem analysis

In this section, we first discuss the basics of the barrier synchro-
nization in more detail, and then introduce scheduling policies in
competitive environments. Finally, we look into the challenges of
the barrier synchronization in competitive environments.

2.1. Barrier basics

A barrier is a synchronization mechanism that ensures no
threads can advance beyond a particular point in a computation
until all threads have reached that point. Barriers are widely
used to synchronize threads in multithreaded applications that
exploit fork-join and SPMD parallelism. Barriers can also be used
to separate sections of parallel code by parallelizing compilers.

Algorithm 1 The Spin-then-Block Barrier Algorithm
Input: The current thread T
Output: T returns from the current barrier or is blocked
1: T indicates its arrival by executing a critical section;
2: pollcount = 0;
3: repeat
4: check the shared completion flag;
5: if all siblings have entered into the barrier then
6: return
7: else
8: pollcount++;
9: end if

10: until pollcount = Threshold Times
11: T is blocked;

Algorithm 1 shows the common barrier algorithm used bymost
implementations of barrier operations such as pthread and GNU
OpenMP et al. The algorithm employs a central counter, and each
thread increases the counter when it arrives at the barrier. Each
thread first spins on a single, shared completion flag in order to
respond to the low-latency barrier quickly and avoid unnecessary
context-switches. When the spinning times reach the predefined
threshold, the thread is blocked.

2.2. Scheduling policies in competitive environments

Abundant computing resources and memory capacity of mul-
ticore machines offer a powerful environment for simultaneously
executing multiple multithreaded applications. Most mainstream
operating systems, such as Linux, adopt independent time-sharing
scheduling policy. With this policy, threads of the same multi-
threaded application are asynchronously scheduled to cores in
competitive environments, in order to maximize overall CPU uti-
lization while maintaining fairness in providing the CPU time
to threads. Another scheduling policy under competitive envi-
ronments is to simultaneously schedule threads of each running
application to cores (co-scheduling [7]). It looks like that the
multicore system is dedicated to each application during the
scheduling quanta of the corresponding application. However, this
approach suffers from CPU fragmentation and execution delay,
leading to deployment impediment [2,8,9]. As an alternative so-
lution to CPU fragmentation problem, balance scheduling (proba-
bilistic co-scheduling) simply balances thread siblings on different
cores instead of forcing the thread siblings to be scheduled simul-
taneously [8]. As a result, balance scheduling performs similarly or
better than co-scheduling for the performance of applications in
competitive environments [8].

In the following subsection, we will theoretically analyze
barrier latency in competitive environments, and its impact on
system throughput and fairness with the above three scheduling
policies, respectively.

2.3. Problem analysis

For the convenience of our analysis, we first define some
variables as follows:
• P: the total number of cores in the system.
• m: the total number of threads in the system.
• J: A thread.
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(a) Dedicated
environments.

(b) Competitive environments.

Fig. 1. Barrier latency.

• w(J): the number of share (weight) that J is assigned in the
proportional fair share scheduler. We assume that each thread
in the system has the same weight value.

• Received(J, t1, t2): the CPU time obtained by J in the interval
[t1, t2).

• Lag(J, t): the deviation of the CPU time of J for a period of time
t .

• TE(J, t): the time taken by J to do useful work for a period of
time t .

• TWS(J, t): the time taken by J to do useless spinning for a period
of time t .

• TBL: the barrier latency in the dedicated mode.
• T 0

BL: the barrier latency in competitive environments.
• Run(J): indicating whether J is preempted at the start of a

barrier (1: not preempted; 0: preempted).
• Tsched(J): the amount of time that a preempted, laggard thread

J waits to be scheduled (not including the amount of time that
scheduler switches to the context of J) from the start of a barrier.

• TCS : the overhead of a context-switches operation.
• TH(J): if Run(J) = 0, indicating the time distance between

when J is scheduled to run next and when it reaches a barrier;
otherwise, indicating the time distance between the start of a
barrier and when J reaches a barrier.

• Tcpt(J): the time distance between the start of a barrier and that
J reaches and completes a barrier in competitive environments.

An ideal fair scheduling strategy can guarantee that the CPU
time consumed by a thread is strictly proportional to its weight.
The deviation of the actual CPU time consumed by a thread in the
interval [0, t) is used to evaluate the fairness of the scheduling
strategy. It is defined as follows:

Lag(J, t) = t ⇥ P ⇥ w(J) � Received(J, 0, t). (1)

This paper focuses on the barrier synchronization. Therefore,
we assume thatwastefulworks performed by a thread only include
spinning operations. The relation of Received(J, 0, t), TE(J), TWS(J)
can be given by this equation:

Received(J, 0, t) = TE(J) + TWS(J). (2)

According to Eqs. (1) (2), we can arrive at:

TE(J) = t ⇥ P ⇥ w(J) � Lag(J, t) � TWS(J). (3)

Normally, an independent time-sharing thread scheduler, such
as CFS in Linux, allows thread siblings to be scheduled to run
on any cores. The scheduler can delay the execution of a laggard
thread with preemption, thereby extending the barrier latency.
We assume that a multithreaded application exhibits a good load
balance, and thus thread siblings reach and complete a barrier
simultaneously in the dedicated mode. As shown in Fig. 1, we can
arrive at:

Tcpt(J) =
⇢
Tsched(J) + TCS + TH(J) + TBL, if Run(J) = 0
TH(J) + TBL, if Run(J) = 1 (4)

T 0
BL = max

J
{Tcpt(J)}. (5)

Fig. 2. CPU fragmentation in co-scheduling.

Fig. 3. A scenario of thread-to-core assignment with balance scheduling when P is
not a factor of m.

From Eqs. (4) (5), we can observe that barrier latency can
be extended significantly when preemptions of laggard threads
happen. During the long barrier latency, a waiting thread J
performs a significant amount of useless spinning before being
blocked (increasing TWS(J)) which lowers system throughput,
and cannot be scheduled to make progress after being blocked.
Moreover, schedulers like CFS in Linux do not supply enough
CPU time for threads with long sleeping time when they become
runnable (increasing Lag(J, t)), in order to prevent a long-sleeping
threads from starving others. Therefore, according to Eq. (3),
applications with barrier operations may suffer from unfair
performance degradation in competitive environments.

Co-scheduling is an attractive approach to minimizing barrier
latency (eliminating Tsched(J) and TCS in Eq. (4)). In fact, most re-
alistic execution environments suffer from imbalanced load such
as when P is not a factor of m. In these cases, the restricted re-
quirement of synchronous progress can cause CPU fragmentation
[2,8–10]. Fig. 2 shows an example for the CPU fragmentation prob-
lem. J0 and J1 cannot be scheduled until slot 1, although both be-
come runnable at slot 0 because there is only one core idle at slot 0
(increasing Lag(J0, t) and Lag(J1, t)).

Balance scheduling assigns thread siblings onto different cores.
Therefore, it can reduce barrier latency (reducing Tcpt(J) in Eq. (4))
compared to independent time-sharing scheduling, when P is a
factor of m. But in most realistic situations, P is not a factor of m.
Fig. 3 shows a scenario: a 4-threaded (J0) and 2-threaded (J1) ap-
plication co-run on a 4-core machine. Because each thread from J0
occupies a different core respectively, all threads (J1,1 and J1,2) from
J1 are always assigned to overloaded cores (Cores 1 and 2). The ap-
plication J1 may be significantly slowed down due to high schedul-
ing latency (reducing Received(J1,1, 0, t) and Received(J1,2, 0, t)).
Moreover, most operating systems use lazy algorithms to balance
global loads in order to maintain warm hardware state, and thus
CPU loads could be temporarily imbalanced between the invoca-
tions of the load balancer, even in the off-by-one imbalance [4] (dy-
namically guaranteeing that the number of threads on each core is
within one for each other), which is closest to balanced load. There-
fore, Tcpt(J0,2) and Tcpt(J0,3) tend to be a large value due to that J0,2
and J0,3 are running on overloaded cores while J0,1 and J0,4 are run-
ning on underloaded cores.

In summary, although co-scheduling is effective in reducing
barrier latency, it introduces CPU fragmentation problem which
increases Lag(J, t) of each thread J in systems. Tcpt(J) of each thread
J may tend to a large valuewith both the independent time-sharing
scheduling and balance scheduling, so as to extend barrier latency.
During long barrier latency, spinning–waiting threads waste
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computing resources (increasing TWS(J)), and probably cannot
retain fair computing resources to their applications after being
blocked (increasing Lag(J, t)). According to Eq. (3), applications
with barrier operations may suffer from unfair performance
degradation and lower the overall system throughput. Can we
make good use of waiting threads to reduce Tcpt(J) of each laggard
sibling J so as to accelerate barrier operations, while not increasing
Lag(J, t)? This paper presents Tidon.

3. Time Donating Barrier

In this section, we introduce the design of Tidon in detail, and
provide an analysis in terms of system throughput and fairness
with Tidon.

3.1. Basic ideas

Our motivation is to reduce barrier latency in competitive
environments, aiming at lowering the chance that waiting threads
waste computing resources and relinquish computing resources
to other applications without changing the underlying scheduling
policy in mainstream operating systems. Therefore, Tidon still
adopts independent time-sharing policy to maintain fairness in
providing the CPU time to threads while maximizing overall CPU
utilization.

Algorithm 2 overviews Tidon. We adopt the concept of Barrier
Participation Status (BAPS) to reflect whether a thread can make
progress. The default BAPS value of each thread is FALSE, which
indicates that the corresponding thread is doing useful work. With
Tidon, the current thread T entering into the barrier first notifies
the OS to update its BAPS value. Then T polls a memory location
for checking whether all siblings have entered into the barrier, in
order to respond to the completion of the barrier quickly and avoid
unnecessary context-switches (lines 4–6). If some siblings have not
reached the barrier, Tidon applies time donating policy (line 8),
which will be described in the next subsection.

Algorithm 2 The Overview of Tidon
Input: The current thread T
Output: T returns from the current barrier
1: T indicates its arrival by executing a critical section;
2: update its BAPS;
3: repeat
4: check the shared completion flag;
5: if all siblings have entered into the barrier then
6: return
7: else
8: Apply time donating policy;
9: end if

10: until T returns

The interactions between the user-level synchronization and
OS (lines 2 and 8) are through two new, lightweight system calls
implemented by us.

3.2. Time donating policy

Algorithm 3 describes the time donating policy within Tidon.
The core idea is to donate timeslices ofwaiting threads to their pre-
empted, laggard siblings with the goal to accelerate the progress of
laggard siblings. The procedure is: If the BAPS value of the current
thread T is FALSE, it means all threads have entered into the bar-
rier (refer to the description of the system call update_barr_status
in the next section), and thus the current thread T returns to the
user-level code (lines 1–3). Else, it means T cannot make forward
progress. And then Tidon traverses the siblings of T and schedule

a preempted, laggard sibling Ts to the core C , using the remaining
timeslice offered by T (lines 4–9). The OS judges whether a thread
is laggard through its BAPS value. In this way, preempted, laggard
threads can make forward progress timely with the donated CPU
time from waiting threads.

Algorithm 3 Time Donating Policy
Input: T : the current thread; C: the core that the thread T is

running on;
Output: Apply Time Donating Policy
1: if The BAPS value of the thread T is FALSE then
2: return
3: end if
4: for each sibling thread Ts of T do
5: if Ts is preempted and its BAPS value is FALSE then
6: inform the scheduler to schedule Ts to the core C, and

allocate the remaining timeslice of T to Ts
7: return
8: end if
9: end for

10: run the thread next to T according to the scheduling decision
of OS scheduler

3.3. Analysis

This subsection provides an analysis in terms of system
throughput and fairness with Tidon.

As analyzed in Section 2.3, reducing Lag(J, t) and Tcpt(J) of each
thread J can alleviate unfair performance degradation of applica-
tions with barrier operations and loss of system throughput. With
Tidon, waiting threads continue to obtain CPU time according to
the underlying fair policy, and donate the CPU time to their sib-
lings. Therefore, Lag(J, t) is almost eliminated.

In order to analyze the impact of Tidon on Tcpt(J), we define
T 0
sched(J), T

0
H(J) and T 0

cpt(J) with Tidon corresponding to Tsched(J),
TH(J) and Tcpt(J) defined in Section 2, respectively. Then, we can
arrive at:

T 0
cpt(J) =

⇢
T 0
sched(J) + TCS + T 0

H(J) + TBL, if Run(J) = 0
T 0
H(J) + TBL, if Run(J) = 1. (6)

For each laggard thread J that gets extra CPU time donated
from waiting threads to make forward progress, it is clear that
T 0
sched(J) and T 0

H(J) will be less than Tsched(J) and TH(J), respectively.
Therefore, T 0

cpt(J) is less than Tcpt(J). The more threads reach
and complete the barrier turning into waiting threads, the more
CPU time can be donated to accelerate the progress of remaining
laggard threads, so as to improve the efficiency of barrier in
competitive environments.

4. The implementation of Tidon

We have implemented Tidon based on GNU OpenMP runtime
library (libgomp) with the support from the OS. We choose
libgomp and Linux because of their broad acceptance and the
availability of their opensource code.

Tidon relies on two new system calls: update_barr_status and
time_donating_to. These two system calls require only slight
changes to the Linux kernel (about 100 lines of code in Linux kernel
3.6.1). The system call update_barr_status is used to update the
BAPS values. If all siblings of the current thread have entered into
the barrier, the BAPS value of each thread from the application
(which the current thread belongs to) is reset to FALSE. Otherwise,
the BAPS value of the current thread is set as TRUE. As Linux does
not correlate threads from the same application, we introduce
our implementation that guarantees threads from the same
application to find each other quickly before the system call
time_donating_to.
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4.1. How to find siblings from the same application

Generally, threads are created by calling do_fork in Linux.
The OS judges whether the new task is a thread through the
parameter clone_flags. Tidon adds twomember variables:main_thr
and thread_list to the data structure task_struct associated with
each task in the Linux kernel. If a newly created task p is a thread,
it will be added into themember variable thread_list of the current
thread T , and the variablemain_thr of pwill point to T . Otherwise,
Tidon treats p as the main thread. The variable thread_list of the
main thread stores all of its cloned threads. Therefore, each thread
can access the list of siblings in O(1) complexity.

4.2. How to implement time donation based on CFS

The system call time_donating_to is used to donate the re-
maining timeslice of the caller to a designated thread. Its imple-
mentation is based on the default scheduler in Linux, that is, the
Completely Fair Scheduler (CFS) [11]. CFS is designed to try its
best tomaximize overall CPUutilizationwhilemaintaining balance
(fairness) in providing the CPU time to threads. To determine the
balance, CFS uses a single time-based red–black tree for each core
to track all the runnable threads indexed by their virtual runtime
which indicates the amount of time the regarding thread has run
on the core. The smaller a thread’s virtual runtime is, the higher
its need for the core. Threads with lower virtual runtime are stored
toward the left side of the tree, and threads with the higher virtual
runtime are stored toward the right side of the tree. The scheduler
generally picks the left-most node of the tree to schedule next to
maintain fairness in every scheduling event. The preempted thread
updates its virtual runtime and is then inserted back into the tree if
it is still runnable.

CFS dynamically calculates a timeslice for each runnable thread
in every scheduling event. Therefore, it is more difficult to
determine the remaining length of the timeslice for a thread in
CFS than static-timeslice-based schedulers [12,13]. Inspired by the
implementation of yielding mechanism in the previous work [9],
we exchange the virtual runtime values of a thread A and thread B
in order to allocate the remaining timeslice of A to B. However, this
mechanismcan reduce the CPU timeobtainedbyB compared to the
original scheduling path in CFS. Therefore, we further optimize the
mechanism by exchanging the virtual runtime values (after being
updated) of A and B again when B uses up the timeslice. At the
same time, we should also change the position of the thread A in
its red–black tree.

With the support of two new system calls mentioned above,
Tidon modifies codes concerned with the implementation of
barriers in the GNU OpenMP.

5. Performance evaluation

With the implementation of Tidon, we carry out our experi-
ments on a machine consisting of two eight-core 2.6 GHz Intel
Xeon E5-2670 chips with hyper-threading disabled. We use Red-
hat Enterprise Linux 6.2 with the kernel version 3.6.1 and OpenMP
3.0. In this section, we first introduce characteristics of the selected
benchmarks and our experimental methodology, then present the
experimental results.

5.1. Benchmarks

Table 1 describes the benchmarks we select. The problem size
of benchmarks from NPB 3.3 is configured as Class A, and the input
set of benchmarks from PARSEC 2.1 is simmedium data set. Fig. 4
shows the barrier behavior of the OpenMP implementations for
parallel benchmarks in our testbed. Based on the average inter-
barrier interval, we divide parallel benchmarks into three classes:

Fig. 4. The height of the bars indicates the average time between two barriers,
while the labels beyond bars show the number of executed barriers.

Table 1
Benchmarks.
Classes Benchmarks Benchmark suites

Fine-grained

BT

NPB 3.3 (OpenMP version)
CG
MG
SP

Medium-grained
FT
IS

Bodytrack PARSEC 2.1
Coarse-grained Freqmine

EP NPB 3.3 (OpenMP version)

Table 2
Co-runners.
Co-runners Load configurations

CG
1, 2, 4, 8, 16 threadsIS

EP

fine-grained, medium-grained and coarse-grained. We can see
that both the fine-grained and medium-grained applications are
barrier-intensive.

5.2. Experimental methodology

The OpenMP runtime system provides a tunable barrier
implementation controlled by OMP_WAIT_POLICY environment
variable. With the default setting, threads suffering a barrier poll
for a period of time before sleeping. When OMP_WAIT_POLICY is
set as passive, threads sleep immediately. We compare Tidonwith
the following configurations:
• CFS-De: OMP_WAIT_POLICY = default with CFS scheduler in

Linux.
• CFS-Pa: OMP_WAIT_POLICY = passive with CFS scheduler in

Linux.
• BS-De: OMP_WAIT_POLICY = default with balance scheduling.
• BS-Pa: OMP_WAIT_POLICY = passivewith balance scheduling.

We conduct several experiments to compare Tidon with the
above configurations, in order to answer the question: What is the
performance comparison in terms of throughput and fairness?

Recent research has shown that the determining behavioral
factor when parallel applications share a system is the granular-
ity of synchronization operations, and the relatively fine-grained
applications are likely to suffer from more performance degrada-
tion [14].

Therefore, we first co-run each parallel benchmark (mainwork-
load) with the most coarse-grained application EP (co-runner) in
order to observe the performance degradation for each class of
parallel applications in the most worse case. In order to coverage
different types of co-running, we also conduct experiments with
other co-runners, which are shown in Table 2. Among these co-
runners, CG, IS, and EP represent fine-grained, medium-grained
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(a) BT. (b) CG. (c) MG.

(d) SP. (e) FT. (f) IS.

(g) Bodytrack. (h) Freqmine. (i) EP.

Fig. 5. Throughput of co-running each parallel workload and EP with a breakdown of their speedups (a: CFS-De, b: CFS-Pa, c: BS-De, d: BS-Pa, e: Tidon).

and coarse-grainedworkload, respectively. In each co-running, the
number of threads that the main workload configured with is set
as 16, equal to the number of cores. We run each workload repeat-
edly in order to fully overlap their executions, and compute their
speedups relative to solorun of eachworkloadwith the default bar-
rier implementation of OpenMP.

To investigate system throughput and unfairness with different
approaches, we use the weighted speedup [15] to measure system
throughput, which is the sum of the speedups of corresponding
benchmarks. The unfairness metric is defined as the ratio
between the largest and smallest speedup among the co-running
benchmarks [9,16].

5.3. Performance comparison in terms of throughput and fairness

Fig. 5 shows the throughput of co-running parallel work-
loads and EP with different number of threads, which uses the
weighted speedup as its metric. The weighted speedup indicates
the throughput of co-running benchmarks relative to that of the
situation when the co-running benchmarks are run consecutively.
We can also observe the unfairness between each main workload
and EP in Fig. 5 (the difference between their speedups). As men-
tioned in Section 2.3, when the number of cores is not a factor of
the total number of threads, it intrinsically incurs load imbalance.
Therefore, the system load is imbalanced when EP is configured
with 1, 2, 4, and 8 threads. Wewill discuss results of both balanced
and imbalanced system loads in turn.

5.3.1. Imbalanced cases
When the system load is imbalanced, the first thing to note

is that CFS-De can generally achieve good throughput compared

to CFS-Pa, BS-De and BS-Pa, but barrier-intensive applications
(BT, CG, MG, SP, FT, IS and bodytrack) suffer from extremely
unfair performance degradation. For example, when CG and EP
(configured with two threads) co-run, compared to other methods
(except Tidon), the throughput of CFS-De is improved by over
17.3% but the performance of CG is reduced significantly by over
86.2%. The performance unfairness between CG and EP is 39.5.
The reason is that spinning–waiting threads delay the execution
of useful siblings which extend the barrier latency significantly
and has a negative impact on the performance of barrier-intensive
applications. Compared to CFS-De, waiting threads with CFS-Pa
yield computing resources immediately, and thus alleviate the
performance degradation of barrier-intensive applications to some
extent.

The second thing to note is that although both BS-De and BS-
Pa significantly resolves the performance degradation of barrier-
intensive applications compared to CFS-De, CFS-De outperforms
them in terms of throughput nearly in all cases. As analyzed in
Section 2.3, all threads from EP are assigned to overloaded cores
with balance scheduling, while all threads from both the main
workload and EP have the same probability of being assigned to the
underloaded cores with CFS. Therefore, EP is significantly slowed
down due to high scheduling latency on the overloaded cores,
which outweighs the relative performance improvement of the
main workload, so as to lower the system throughput.

The most important thing to note is that Tidon outperforms
other approaches in terms of throughput in all cases except co-
running two EP, by alleviating the performance degradation of
barrier-intensive applicationswhile not hurting or even improving
the performance of EP. For example, when BT and EP (configured
with two threads) co-run, the performance of BT is improved by
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59%–110%, and the performance of EP is improved by 40%–163%, so
as to improve the throughput by 64%–102%, compared to another
four approaches. This is because Tidon enhances the benefits
of CFS in system throughput by accelerating the completion of
barrier synchronization with time donation, so as to save valuable
computing resources and attain a fair amount of CPU time for both
the barrier-intensive and non-barrier-intensive applications. For
the co-running of two EP, the overhead of extra context-switches
probably outweighs the benefits from time donation, since there
are fewbarrier operations in EP. Nevertheless, the performance gap
is only within 9% compared to another four approaches.

5.3.2. Balanced cases
In balanced cases, balance scheduling nearly outperforms other

approaches including Tidon in terms of the system throughput. The
reason is that as the progress of each thread is almost the same
with the probabilistic co-scheduling feature of balance scheduling
when the system load is balanced, barrier operations can be
completed quickly. Tidon can match the throughput of balance
scheduling in most cases (achieving 78.5%–96% and 81.7%–99.3%
throughput of BS-De and BS-Pa, respectively), or even outperforms
it in some cases: BT, MG and bodytrack (6.2%–16.7% and 7.5%–18%
throughput improvement over BS-De and BS-Pa, respectively).
Moreover, we can observe that both the balance scheduling and
Tidon can provide a good fairness guarantee between each main
workload and EP in balanced cases.

5.4. Experiments with different classes of co-runners

Fig. 6 compares the average throughput and unfairness of co-
running each parallel benchmark with different classes of co-
runners of Tidon against another four approaches. The results can
be summarized as the following three types:

• Type 1 Tidon outperforms other approaches in terms of both
the average system throughput and fairness by 10%–97% and
1%–510%, respectively: EP (1 and 2 threads), IS (1, 4, 8 and 16
threads) and CG (1, 2 and 4 threads)

• Type 2 Tidon outperforms other approaches in terms of the
average system throughput by 1%–74%, and only slightly
reduces the average fairness compared to BS-De and (or) BS-Pa
by 2.3%–6.3%: EP (4, 8 and 16 threads) and IS (2 threads)

• Type 3 Tidon outperforms other approaches in terms of the
average system fairness by 4%–459%, and only slightly reduces
the system throughput compared to CFS-De or BS-De by 2%–3%:
CG (8 and 16 threads).

We can observe that CFS tends to achieve poor system fairness.
Balance scheduling tends to achieve poor system throughputwhen
the system load is imbalanced. Tidon enhances the benefits of CFS
in system throughput by accelerating the progress of applications
with barrier operations. Therefore, most cases of co-running vari-
ous benchmarks with Tidon belong to type 1. In type 2 or 3, the im-
provement of system throughput (or fairness) outweighs the slight
reduction in system fairness (or throughput). In summary, Tidon
can make a better trade-off between system throughput and fair-
ness.

6. Related work

Our work is related to the research in the synchronization and
scheduling. We briefly discuss the most related work in turn.

6.1. Synchronization technique

There are a number of works aiming at optimizing barrier al-
gorithms by reducing lock contention [17,18] (line 1 as shown

in Algorithm 1). Unlike this, the present paper aims at acceler-
ating the progress of threads toward the barrier in competitive
environments. In addition, the barrier performance can be also im-
proved by replacing the lock-based part with wait-free synchro-
nization [19], which is orthogonal to our work. Martínez proposes
a speculative barrier that makes speculative threads execute past
active barrier operations instead of waiting [20]. We think it is an
effective approach for barrier synchronization in competitive en-
vironments, but threads must roll back to the synchronizing point
when access conflicts are detected. Thework between the synchro-
nizing point and rollback point performed by a speculative thread
wastes computing resources, which is similar to the problem of the
barrier based on spin-then-block. In addition, the speculative bar-
rier needs new hardware support.

6.2. Scheduling for parallel applications

The shift from single-core to multicore has shifted the fo-
cus of research from executing one non-parallel application on
a machine to (1) simultaneously executing non-parallel applica-
tions [16,21], (2) running one parallel application [22,23], (3) mul-
tiprogrammed workloads that include parallel applications [24,4,
25–27]. The third case has been prevailing execution environments
in today’s cloud data centers. Meanwhile, performance of paral-
lel applications is limited by a variety of bottlenecks, e.g. critical
sections, barriers and slow pipeline stages [28]. Previous research
has shown that the determining behavioral factor is the granularity
of synchronization operations in competitive environments, and
fine-grained applications are more likely to see performance dete-
rioration [14].

In order to improve the efficiency of the synchronization in
competitive environments, early study presents gang scheduling
(co-scheduling) [7]. It is a promising idea to ameliorate the syn-
chronization for the parallel applicationwhen the overallworkload
is load-balanced andmakes full use of themachine. However, these
conditions are rarely met and most realistic workloads conse-
quently suffer fromboth internal and external fragmentation, leav-
ing resources and processors idle [2,8,9]. As an alternative solution
to CPU fragmentation problem, demand-based co-scheduling is a
common variant of co-scheduling [2,29,10], which only initiates
co-scheduling for synchronizing threads. However, the progress of
siblings toward a barriermayhave beenmuchdifferent at the point
of initiating co-scheduling, especially when the system load is im-
balanced. Our evaluation of Tidon provides encouraging evidence
that it may alleviate some of the need for co-scheduling.

In addition, the work-stealing programming model with dy-
namic load balancing has been demonstrated to be a powerful and
effective approach to achieving good performance of parallel ap-
plications in competitive environments [30]. In fact, work stealing
is a double-edged sword because the unsuccessful steals of thieves
probably waste computing resources [9]. Although Ding et al. pro-
poses a solution named Balanced Work Stealing (BWS) to this
problem [9], the overhead along with thread creation and d-e-que
management of work-stealing can be still very high in some ap-
plications. Adaptive thread creation mechanism is proposed to
alleviate these issues [31,32]. It is very effective to improve the
efficiency of work-stealing in the dedicated mode. But in compet-
itive environments, the execution of thieves may delay the execu-
tion of busyworkers thatwould generate new threads, causing that
no workers make useful progress. Our time donating policy can be
considered to accelerate the generation of new threads by donating
timeslices of thieves to busy workers, in order to enhance themul-
tiprogrammed performance of work-stealing with adaptive thread
creation.



476 S. Wu et al. / Future Generation Computer Systems 54 (2016) 469–477

(a) EP.

(b) IS.

(c) CG.

Fig. 6. Average throughput and unfairness in different system loads.

7. Conclusion

In this paper, we analyze barrier latency with different
scheduling policies in competitive multicore environments, and
its impact on system throughput and fairness. Then we present
Tidon, which is a new and intuitive way to accelerate barrier
operations by making good use of waiting threads. Our results

indicate that Tidon can alleviate the performance degradation of
barrier-intensive applicationswhile not hurting or even improving
the performance of non-barrier-intensive applications. Moreover,
Tidon can maintain good fairness among co-running applications.

In the future, we plan to enhance the effectiveness of Tidon in
reducing barrier latency. In the current version of Tidon, waiting
threads simply accelerate the progress of preempted, laggard
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siblings without considering which ones are more urgent to be
accelerated. The slower a thread’s progress toward a barrier, the
more urgent it is to be accelerated. A possible approach is to
develop a prediction algorithmwhich predicts the progress of each
thread, and preferentially to accelerate themost urgent thread.We
also plan to explore the potential benefits of the time donating
policy within Tidon in alleviating other bottlenecks of parallel
applications in competitive environments. For example, the time
donating policy within Tidon can be used to improve the efficiency
of the general synchronization operations which may involve
only a part of threads from an application, speculative barrier
and work-stealing with adaptive thread creation in competitive
environments as mentioned in Section 6. Moreover, Tidon can be
easily ported to barrier implementations of other parallel runtime
libraries such as pthread and Cilk + + by slight changes to codes
concerned with the implementation of barriers.
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