
Container-Aware I/O Stack: Bridging the Gap between
Container Storage Drivers and Solid State Devices

Song Wu
CGCL/SCTS/BDTS, HUST

Wuhan, China
wusong@hust.edu.cn

Zhuo Huang
CGCL/SCTS/BDTS, HUST

Wuhan, China
huangzhuo@hust.edu.cn

Pengfei Chen
CGCL/SCTS/BDTS, HUST

Wuhan, China
chenpf97@hust.edu.cn

Hao Fan
CGCL/SCTS/BDTS, HUST

Wuhan, China
haofan@hust.edu.cn

Shadi Ibrahim
Inria, Univ. Rennes, CNRS, IRISA

Rennes, France
shadi.ibrahim@inria.fr

Hai Jin
CGCL/SCTS/BDTS, HUST

Wuhan, China
hjin@hust.edu.cn

Abstract
Solid State Devices (SSDs) have been widely adopted in con-
tainerized cloud platforms as they provide parallel and high-
speed data accesses for critical data-intensive applications.
Unfortunately, the I/O stack of the physical host overlooks
the layered and independent nature of containers, thus I/O
operations require expensive file redirect (between the stor-
age driver, Overlay2/EXT4, and the virtual file system, VFS)
and are scheduled sequentially. Moreover, containers suffer
from significant I/O contention as resources at the native
file system are shared between them. This paper presents
a Container-aware I/O stack (CAST). CAST is made up of
Layer-aware VFS (LaVFS) and Container-aware Native File
System (CaFS). LaVFS locates files based on layer information
and enables simultaneous Copy-on-Write (CoW) operations
and thus avoids the overhead of searching and modifying
files. CaFS, on the other hand, provides contention-free ac-
cess by designing fine-grain resource allocation at the native
file system. Experimental results using a NVMe SSD with
micro-benchmarks and real-world applications show that
CAST achieves 216%-219% (38%-98%, respectively) improve-
ment over the original I/O stack.

CCS Concepts: • Software and its engineering → File
systems management.

Keywords: SSD, container, file system, Overlay2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VEE ’22, March 1, 2022, Virtual, Switzerland
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Song Wu, Zhuo Huang, Pengfei Chen, Hao Fan, Shadi Ibrahim,
and Hai Jin. 2023. Container-Aware I/O Stack: Bridging the Gap
between Container Storage Drivers and Solid State Devices. In
Proceedings of the 18th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE ’22), March 1, 2022,
Virtual, Switzerland. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Containers, as driven by the popularity of Docker [11] and
Kubernetes [5], are widely adopted in cloud platforms. Con-
tainers can easily build isolated runtime environments for
applications by cgroup [1] and namespace [30] on a shared
kernel. The data of a container (i.e. , dependencies, configu-
rations, and results) are stored in a layer-structured image.
Through the storage driver, which is built on the I/O stack
of the physical host, a unified file system view is provided to
each container, and I/O operations of different containers are
directed to those layers. Efficient data access to layers is crit-
ical for performance (i.e. , starting up containers, updating
container image, and storing ephemeral data) [17].
Due to their high access performance and decreasing

prices [15], Solid State Devices (SSDs) are gradually replacing
disks in cloud platforms. Thus, applications execution can
be accelerated by adopting them as local server storage [16].
Unfortunately, the performance benefit of SSDs is still not
fully exploited when applications run in containerized envi-
ronments. On the one hand, the additional tier introduced by
image management (i.e. , OverlayFS, AUFS, Device Mapper,
and BtrFS) results in an extra latency due to the file redi-
rect [10, 27, 32]. On the other hand, operations from different
containers show intense competition for shared resources
because the resource allocation of the native file system is
centralized and serialized.

Providing isolated I/O stacks for each container [12, 13, 18]
can improve the performance of containerized applications.
However, this requires more storage space and causes longer
image download time (layers are not shared among contain-
ers). In addition, this may not be practical as the storage

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

VEE ’22, March 1, 2022, Virtual, Switzerland Song Wu, Zhuo Huang, Pengfei Chen, Hao Fan, Shadi Ibrahim, and Hai Jin

spaces of containers cannot be dynamically adjusted at run-
time. In this paper, we propose a Container-aware I/O stack
(CAST). The basic idea of CAST is to make file location –
in the Virtual File System (VFS) – layer-aware, and to iso-
late container resources at the native file system, i.e. , Block
Groups (BGs) and the journal service. To do so, CAST is made
up of Layer-aware VFS (LaVFS) and Container-aware native
File System (CaFS). LaVFS opens files by switching view file
path to real file path based on the layer information. Thus,
OverlayFS does not need to search all the layers when open-
ing files. LaVFS also enables simultaneous Copy-on-Write
(CoW) operations by removing the VFS locks that are unnec-
essary for layered container files. CaFS, on the other hand,
provides fine-grain resource allocation by taking advantage
of the layer-structure of container files and considering that
container modifications that involve resource allocation hap-
pen only in its read-write layer (upper layer). CaFS replaces
the original journal with multiple micro journals. Each micro
journal has its own transactions and is mapped to a specific
upper layer to make sure different versions of the same data
are issued to the same transaction. Block Groups (BGs) are
grouped as Container Regions (CRs), and thus can be dynam-
ically adjusted. An upper layer is bound to a CR and block
allocation of an upper layer happens only in its own CR to
prevent contention caused by BG sharing.

In summary, we make the following contributions:

• We comprehensively analyze the performance behav-
iors of the container storage driver on SSDs. We find
that container operations suffer from expensive file
redirect in the additional tier (OverlayFS) and intense
resource competition in the native file systems. First,
the existing I/O stack overlooks the layered and inde-
pendent nature of containers. Thus, OverlayFS searches
in all layers before opening a file and competes for a
global lock during CoW. Second, the native file system
cannot isolate resources based on containers.

• We propose Container-aware I/O stack (CAST) com-
posed of LaVFS and CaFS. LaVFS reduces file redirect
overhead caused by opening files and modifying files
by employing layer-aware path switch and simulta-
neous CoWs, respectively. CaFS provides fine-grain
resource allocation at the native file system by group-
ing BGs into isolated container regions and replacing
the original journal with isolated micro journals.

• We implement CAST in Linux kernel 4.16.1. Experi-
mental results withmicro-benchmarks show that CAST
improves the throughput by up to 219% compared to
the original I/O stack. In addition, CAST achieves 38%-
98% improvement over the original I/O stack for real-
world applications.

The rest of this paper is organized as follows. Section §2
introduces the background and the motivation of this work.
Section §3 describes the design and implementation details of

CaFS. Experimental methodology and results are discussed
in Section §4. Section §5 discusses related work and Section
§6 concludes this study.

2 Background and Motivation
2.1 Storage Driver of Container
Accessing data efficiently within layers is critical for the
performance of concurrently running containers (i.e. , start-
ing up containers, updating container images, and storing
ephemeral data). Taking popular Docker and Kubernetes for
example, as shown in Figure 1, each image consists of multi-
ple read-only lower layers. When creating a new container
based on an image, Docker simply creates a new writable
upper layer on top of lower layers (we use upper and lower to
represent the upper layer and lower layer, respectively, in the
rest of this paper). All of these layers are stored in the native
file system. The storage driver mounts them onto a directory,
giving a unified file view (i.e. , merged layer) for each con-
tainer. Each container has its own upper, so when reading
or writing files in upper, upper is directly updated. Lowers
are shared by containers for storage-saving and high-speed
startup. Therefore, when updating files in lowers, storage
driver leverages CoW to redirect modifications in lowers to
the upper. Specifically, (1) write operations will first copy the
file or block to the upper of the container, and then modify
the copied file or block in the upper. (2) Delete operations
will create a whiteout file or block in the upper to hide the
corresponding file or block in the lower.

The storage driver is composed of two parts: the additional
tier to manage layers and the native file system to store
layers. The additional tier can be realized in three ways:
Union file system (i.e. , AUFS and OverlayFS), virtual block
device (i.e. , device mapper), and native file system which
supports snapshot (i.e. , BtrFS). OverlayFS and AUFS do not
store data directly on disk, they only redirect files to provide
isolated views for each container. Device mapper leverages
the thin provision and snapshot capabilities of the kernel-
based Device Mapper framework to manage image data in
EXT4. BtrFS is a CoW-based file system. Layers are stored
and managed by the snapshot function. File data and file
system metadata are stored in CoW optimized B-trees. As for
CoW granularity, UnionFS uses file-level CoW, while BtrFS

Figure 1. Operations of containers. ’f1-U’ is a file in the
upper, ’f2-L’ is a file in the lower.

Container-Aware I/O Stack: Bridging the Gap between Container Storage Drivers and Solid State Devices VEE ’22, March 1, 2022, Virtual, Switzerland

lower upper host-share host-isolate

of containers/instances # of containers/instances # of containers/instances # of containers/instances

IO
PS

mil. mil. mil. mil.

0
1
2
3
4
5

1 4 8 12 16 20

open

0
10
20
30
40
50

1 4 8 12 16 20

readdir

0
0.6
1.2
1.8
2.4
3

1 4 8 12 16 20

unlink

0
0.3
0.6
0.9
1.2
1.5

1 4 8 12 16 20

create

of containers/instances # of containers/instances # of containers/instances # of containers/instances

IO
PS

mil. mil. mil. mil.

0
0.01
0.02
0.03
0.04
0.05
0.06

1 4 8 12 16 20

write

0

0.005

0.01

0.015

0.02

1 4 8 12 16 20

fsync

0

0.02

0.04

0.06

0.08

1 4 8 12 16 20

read

0

0.5

1

1.5

2

1 4 8 12 16 20

truncate

Figure 2. Results of the evaluated operations. The x-axis represents the number of containers or instances. The y-axis represents
the throughput of host storage. The details of experimental setup are to be presented in Section IV.

Table 1. Evaluated operations. These operations are per-
formed on files in different layers.

Type Operation Mode Type Operation Mode

META

Open READ

DATA

Read READ
Readdir READ Write WRITE
Create WRITE Fsync WRITE
Unlink DELETE Truncate DELETE

and device mapper use block-level CoW. Overlay2/EXT4 is
recommended officially [25] and deployed widely because of
its high performance and simple implementation [6]. Note
that a container can also attach a data volume to store data.
Data volume is a directory in a native file system. Compared
to accessing data in layers, a container can access data in
data volume at a higher speed because a data volume can be
accessed without the additional tier. However, the speed is
still affected by resource competition in native file systems.

2.2 Performance Bottlenecks Caused by Storage
Driver

High-speed SSDs can effectively mitigate the performance
gap between back-end storage and upper system, which
makes overhead of storage driver more obvious than before.
In what follows, through a set of experiments, we first show
the performance bottlenecks of storage drivers with the offi-
cially recommended plan, Overlay2/EXT4. We identify that
the major bottlenecks are due to file redirect in OverlayFS
and shared resources in the native file system.

2.2.1 Experimental Setup. Weevaluate the overall through-
put when performing basic file system operations on differ-
ent layers (i.e. , upper and lower) with the number of concur-
rently running containers/instances varies from 1 to 20. Note
that it is common to run 20 containers on a single server[26].
The physical node has 20 cores which in turn prevents any

possible CPU contention in our experiments. The basic file
system operations are generated by a modified FXMARK
benchmark suite [3] which can issue operations to different
layers of a container with a single thread. As shown in Ta-
ble 1, operations are performed on both data and metadata,
because the operations on data (i.e. , read) need to obtain the
file descriptor in advance, the overhead of open operation
will be considered as well. For the purpose of comparison, we
carry out two more groups of experiments in which multiple
single-threaded original FXMARK instances are running con-
currently on a physical host. The number of instances ranges
from 1 to 20. In the first group of experiments, operations
of different instances are issued to different directories on
a shared I/O stack (i.e. , host-share). In the second group of
experiments, operations of different instances are issued to
different directories on isolated I/O stack (i.e. , host-isolate).
We realize isolated I/O stack by building block devices that
have their own VFSs and native file systems. The operations
are performed on data with a size of 4KB. Note that the I/O
model is directio, because we mainly focus on optimizing the
I/O performance of the storage driver. We plan to explore
page cache management in future work.

2.2.2 Performance Bottleneck Analysis. Based on Fig-
ure 2, we have twomain observations. First, operations (open,
unlink, write, fsync, read, and truncate) show better over-
all throughput as the number of containers increases when
issued in host-share compared to when issued in layers of
containers (upper and lower). This means file redirect of
OverlayFS introduces extra overhead. Second, by compar-
ing the results of host-share with those of host-isolate, we
find that the throughput of operations (create, unlink, write,
fsync, and truncate) when issued in layers is also limited by
the shared native file system.

VEE ’22, March 1, 2022, Virtual, Switzerland Song Wu, Zhuo Huang, Pengfei Chen, Hao Fan, Shadi Ibrahim, and Hai Jin

Figure 3. CoW from two containers

Time-Consuming File Redirect of OverlayFS: Lower
shows lower throughput for unlink, write, fsync, and trun-
cate operations compared to that of upper. The performance
degradation is due to CoW. Modifications cannot be made in
lowers, because lowers are read-only. OverlayFS uses CoW to
redirect the modifications of lowers. As shown in Figure 3, 1○
when a container modifies a file in lower, OverlayFS copies
the file to a workdir. Then, 2○ OverlayFS renames the file to
upper to hide the corresponding file in lower. As a result, the
modification is redirected to the upper. Rename operation
of VFS in step 2○ needs a global lock to prevent deadlock
as we will discuss in Section 3.2.2, so file redirect which in-
volves CoW is executed serially. Note that workdir is used in
OverlayFS for consistency purposes. Files in workdir will be
removed when files are completely updated to the upper.

By comparing the throughput of upper and host-share, we
find that OverlayFS introduces extra overhead to open, write,
fsync, read, and truncate. When doing the mentioned opera-
tions in a container, VFS needs to search in all layers to open
the file due to building view dentries that store the mapping
relationship between file paths and exact files on disk. As
shown in Figure 4, searching dentries occupy most of the
time (90%) of open operations in upper when 20 containers
are running concurrently. We take opening file B in upper/a
as an example. As shown in Figure 5(a), to open file B in
traditional environments, VFS needs to search three dentries,
ordered: dentries of upper, upper/a, upper/a/B. While in a con-
tainer (Figure 5(b)), these three dentries (dentries of merged,
merged/a, merged/a/B) have no corresponding file or direc-
tory on disk and VFS cannot find these dentries. Accordingly,

0
0.2
0.4
0.6
0.8

1

upper host-share

open dentry search

No
rm

al
ize

d
La

te
nc

y

Figure 4. Normalized latency of open operations and dentry
search under "upper" and "host-share". Normalized latency
refers to the ratio of the latency to that of open operations.

VFS

path:
upper/a/B

EXT4

dentry of upper/a/B

upper/a

lower1/a

lower2/a

dentry of upper

String: a

dentry of upper/a

String: B

upper/a/B

lower1/a/B’

lower2/a/B’’

search*1 search*1 search*1

(a) Dentry search of VFS

VFS

OverlayFS

view path:
merge/a/B

EXT4

search*3

dentry of merge/a/B

upper/a

lower1/a

lower2/a

upper/a/B

lower1/a/B’

lower2/a/B’’

dentry of merge/a

dentry of lower1
dentry of lower2

dentry of merge

String: a

search*1

dentry of upper/a/BString: B

dentry of upper

dentry of lower1/a

dentry of lower2/a

dentry of upper/a

search*3

(b) Dentry search of OverlayFS

Figure 5. File redirect

OverlayFS cooperates with VFS to build these dentries. In or-
der to build a dentry of merged, OverlayFS first traverses all
layers and finds all directories (upper, lower1, and lower2) that
formmerged. Next OverlayFS turns to VFS to search dentries
of these three directories and combine them as the dentry
of merged. And then OverlayFS builds dentries of merged/a
(upper/a, lower1/a, and lower2/a) and merged/a/B (upper/a/B).
In summary, VFS needs to search seven dentries before open-
ingmerged/a/B. However, only three dentries (upper, upper/a,
and upper/a/B) are really needed to open file B. Note that
opening files in lower also experience this overhead. Create,
readdir, and unlink in upper show no performance degrada-
tion compared to those in host-share, because those metadata
operations do not open files.
Observation 1: VFS is unaware of the layers and cannot
cooperate efficiently with OverlayFS, which makes file redi-
rect of OverlayFS time-consuming. First, VFS needs to find
extra real dentries to help OverlayFS to build view dentries.
Second, CoW caused by modifying files in lower leads to
severe global lock contention in VFS.
Competition Caused by Shared Resources in Native
File System: By comparing the results of host-share and
host-isolate, we find that create, unlink, write, fsync, and
truncate, which are involved with modifying data, suffer
from throughput degradation due to resource competition.
Resource competition in host-share is mainly due to shared
block allocation and journal service[4]. Traditional native
file systems, i.e. , EXT4, XFS, split the storage space into
many BGs. Each BG has its own inode bitmap, inode table,
and data blocks. Operations from different uppers may be
performed in the same BG because the native file system
is unaware of containers, and block allocation is serialized
to reduce the seek time of hard disk driver. Consequently,
operations from different containers may compete for locks
to get the data structures of a BG.

Container-Aware I/O Stack: Bridging the Gap between Container Storage Drivers and Solid State Devices VEE ’22, March 1, 2022, Virtual, Switzerland

Centralized journal service causes contention. Native file
system runs a JBD2 (journal block device) to record the up-
dates before writing data to the destination. First, JBD2
groups updates into one running transaction, a double linked
list. Second, when updates in the running transaction reach
the threshold, the running transaction is transformed into a
committing transaction and begins to write the updates to
storage. Then, a new running transaction is created to receive
new updates. In order to ensure the consistency of updates,
there is only one running transaction and one committing
transaction at a time for JBD2 [24], and list locks and state
locks are required whenmultiple containers request to access
the running transaction as shown in Figure 6. Furthermore,
the model of system-wide journal service cannot be cus-
tomized in the granularity of container. In host-isolate, with
the number of containers increasing, the overall through-
put increases almost linearly for all operations because each
file system manages its own resources. However, assigning
an exclusive file system to each container is hard and this
complicates layer sharing between containers.
Observation 2: The native file system is unaware of the exis-
tence of containers. When containers need to use shared file
system resources (i.e. , BGs, journal service) simultaneously,
they suffer from lock contention.

3 CAST: Container-Aware I/O Stack
In a containerized environment, VFS and the native file sys-
tem overlook layers causing time-consuming file redirect (i.e.
, extra dentry search during file open and lock contention
due to CoW) and intense resource competition (i.e. , BGs and
journal service). In an effort to improve overall throughput,
we design CAST which is composed of LaVFS and CaFS.
LaVFS carries out layer-aware path switch and simultane-
ous CoWs to reduce the overhead caused by file redirect in
OverlayFS. The container-aware native file system, CaFS,
provides fine-grain resource (i.e. , BGs and journal service)
allocation to reduce resource competition. Hereafter, we first
summarize the system overview and then focus on the design
details.

3.1 Overview of CAST
CAST is designed with the following goals in mind:

jh0 jh1 jh2 jh3 jh4 jh5 jh6

jh0 jh1 jh2 jh3 jh4 jh5 jh6
running

transaction
ID: n

committing
transaction

ID: n-1

head

head

lock

C1

C1C2

C3

Journal

jh of C1 jh of C2 jh of C3

Figure 6. Running and committing transactions. C: con-
tainer, ID: the number of transaction, jh: journal_head to
store an update

• Reduce search overhead:While opening a file in a
container, OverlayFS must redirect the view file to its
real file which exists in upper or lower, thus consuming
extra dentry search compared to the native file sys-
tem. CAST aims to reduce search overhead by directly
locating the real file based on layer information.

• Avoid Copy-on-Write wait: Modifications in lowers
are redirected to upper by CoW operations which are
serial due to the global lock. CAST tries to eliminate
the impact of the global lock by enabling simultaneous
CoWs.

• Prevent block group sharing: Centralized resource
allocation of the native file system makes data from
different containers share BGs. To reduce resource
competition which are caused by BG sharing, CAST
groups BGs based on containers.

• Reduce journal contention: Shared journal service
makes updates from different containers need to com-
pete for one running transaction. In order to reduce
journal competition among containers, CAST provides
journal service to each container individually, based
on its needs.

• Identify layers and containers: Original VFS and
the native file system cannot distinguish layers and
containers. CAST maintains this information to enable
container-aware scheduling.

Figure 7 shows the overview of CAST. To achieve the
above goals, first, we design a layer-aware VFS, named LaVFS,
which reduces redirect overhead by employing layer-aware
path switch and simultaneous CoWs. The path switch can
switch view path to real path based on layer information
and find real dentry based on the real path like if the file
is opened in a traditional environment. In order to enable
simultaneous CoWs, LaVFS realizes a lock-free rename based
on the fact that rename operations from lowers to uppers do
not cause deadlocks like rename operations in a traditional
environment. Second, we realize a container-aware native
file system, named CaFS, to reduce resource competition
among containers. Specifically, CaFS groups BGs into Con-
tainer Regions (CRs) and carries out block allocation of each
container individually (within a specific CR) to prevent BG
sharing. A two-level mapping table is designed to maintain

I/O Operation

Message Flow

Figure 7. Overview of CAST

VEE ’22, March 1, 2022, Virtual, Switzerland Song Wu, Zhuo Huang, Pengfei Chen, Hao Fan, Shadi Ibrahim, and Hai Jin

the relationship among containers, CRs, and BGs at low cost.
CaFS also divides the file system-wide journal service into
micro journals, so updates can be collected and submitted
from containers independently.

LaVFS gets the information of layer structure from Over-
layFS. And CaFS allocates containers based on uppers, be-
cause actual write operations which involve block allocation
and journaling of each container happen only in its upper.

CASTworks as follows:When an operation arrives, LaVFS
identifies the source of the operation. For an operation from
a physical host, LaVFS directly sends it to CaFS. If the oper-
ation needs a new block, CaFS carries out block allocation
in its own region. If the operation involves modifications,
updates are submitted to its corresponding micro journal.
For an operation from a container, LaVFS cooperates with
OverlayFS to redirect the operation to the target file. Specifi-
cally, LaVFS carries out layer-aware path switch for an open
operation and lock-free rename for a file modification in
lower based on layer structure provided by OverlayFS to
reduce the overhead of file redirect. After file redirect, the
operation is sent to its corresponding CR on CaFS.

3.2 Layer-Aware VFS
OverlayFS causes performance degradation due to file redi-
rect. In what follows, we introduce Layer-aware VFS (LaVFS)
which can cooperate with OverlayFS efficiently to reduce
the overhead of file redirect.

3.2.1 Layer-Aware Path Switch. Analyses in Section 2.2.2
reveal that VFS cannot distinguish a view file and needs to
search extra real dentries to build view dentries before open-
ing the view file. We decouple file open and view dentry
build. First, LaVFS switches the view path of the file to be
opened to the real path so that the file can be opened like it is

VFS

OverlayFS

view path:
merge/a/B

EXT4

search*3

dentry of merge/a/B

upper/a

lower1/a

lower2/a

upper/a/B

lower1/a/B’

lower2/a/B’’

dentry of merge/a

dentry of lower1
dentry of lower2

dentry of merge

String: a

search*1

dentry of upper/a/BString: B

dentry of upper

dentry of lower1/a

dentry of lower2/a

dentry of upper/a

search*3

(a) Dentry search of OverlayFS

LaVFS

OverlayFS

view path:
merge/a/B

EXT4

switch
dentry of upper/a/B

upper/a

lower1/a

lower2/a

String: a

dentry of upper dentry of upper/a

dentry of lower1

dentry of lower2

String: B

upper/a/B

lower1/a/B’

lower2/a/B’’

search*1 search*1
path: upper/a/B

path: lower1/a/B

path: lower2/a/B

search*1

(b) Dentry search of LaVFS

Figure 8. Optimization of file redirect

dir

file1 file2

(a) Case 1

dir1 dir2

file1 file2

(b) Case 2

dir1 dir2

file4 file3

(c) Case 3

Figure 9. Rename in different cases

in a traditional environment. Second, OverlayFS builds and
fills view dentries asynchronously to hide the overheads.
LaVFS realizes layer-aware path switch. From the per-

spective of the host, we can switch the view path to the
real path by replacing the path of merged with the path of
the exact layer where the file is located. We explain how
LaVFS works with OverlayFS using an example shown in
Figure 8(b). When we want to open file B in upper, LaVFS
first gets the layer structure of the container (i.e. , dentries
of layers and sequence of layers) from OverlayFS as we will
discuss in Secion 3.4. Second, LaVFS switches the view path
to the real path by replacing the path of merged layer with
the path of a layer from the top to the bottom. As the latest
version of file B is in the higher layer, LaVFS can open file
B with the fewest tries. Suppose that an image has K lay-
ers, a file is in k𝑡ℎ layer, and the file path has L levels from
the perspective of a container. Original VFS needs to search
K*L+k dentries before opening the file, while LaVFS needs to
search k*L+k dentries, which has (K-k)*L fewer search times
than the original VFS. This means that LaVFS shows good
performance when a container has many layers and the file
is located in high layers. Moreover, in the worst case, the
number of dentries that need to be searched under LaVFS
and VFS are the same when file open operations happen in
the deepest layer.
Before path switch, all empty view dentries are built by

OverlayFS based on the view path. And view dentries are
filled asynchronously to accelerate file open in the adjacent
path that may come soon. OverlayFS starts a search thread
and creates a search list to hold real dentry search requests.
When OverlayFS needs to fill a view dentry, first, OverlayFS
generates real dentry search requests belonging to the view
dentry as before and puts these requests to the search list.
Second, the search thread fetches dentry search requests
from the search list and informs LaVFS to find these real den-
tries. The results are put in the corresponding view dentry
structure. When all real dentries belonging to the same view
dentry are found, the view dentry can be used for accelerat-
ing file open.

3.2.2 Simultaneous Copy-on-Write Operations. CoW,
which is realized based on rename operations, causes perfor-
mance degradation due to the contention of file system-wide
lock. A rename operation needs to modify the source and
destination directories of the file, and the inode mutex (i.e. ,

Container-Aware I/O Stack: Bridging the Gap between Container Storage Drivers and Solid State Devices VEE ’22, March 1, 2022, Virtual, Switzerland

Figure 10.Micro journal architecture

i_mutex) of the two directories must be available. As shown
in Figure 9(a), if the source and destination are the same, only
one i_mutex needs to be obtained. However, if the source
and destination are different like in Figure 9(b), i_mutexs
of two different directories must be obtained in order (i.e. ,
dir1 to dir2). When case 2 and case 3, shown in Figure 9(b)
and Figure 9(c) happen at the same time, the locking order
of the two operations is opposite, which may cause dead-
lock. Therefore, Linux provides a file system-wide lock to a
rename operation to prevent deadlock. As a result, when con-
tainers are carrying out CoWs concurrently, lock contention
happens due to rename operations.
However, the global lock of rename is unnecessary for

CoW operations, because renames of CoW operations do not
cause deadlock. We use unlink in lower as an example. When
deleting a file in lower, a whiteout file will be created in a
workdir (i.e. , source) and then the whiteout file is renamed
to upper (i.e. , destination) to hide the corresponding file
in lower. There is no deadlock, because each container has
its own workdir and upper, and the locking order is always
from workdir to upper. Accordingly, we provide a lock-free
rename to enable simultaneous CoWs. The lock-free rename
is realized in LaVFS. It is the same as the original rename
except that it will not try to acquire the file system-wide lock
before obtaining the i_mutex of two directories. This design
does not modify the original locking mechanism, so it has
no effect on other operations that need rename operation.

3.3 Container-Aware Native File System
Shared resources (i.e. , BG and journal service) among con-
tainers in the native file system cause performance degra-
dation. Accordingly, we isolate shared resources based on
containers. First, we divide journal service into several micro
journals that can be dynamically bound to containers and in-
dependently handle transactions shown in Figure 10. Second,
we allocate blocks based on containers. Note that we realize
a container-aware file system based on EXT4. Other native
file systems, i.e. , EXT3, XFS, that organize blocks based on
BG can also leverage container-aware block allocation.

3.3.1 Container-AwareMicro Journals. Weneed to solve
two issues to realize concurrentmicro journals. First, running
multiple micro journals may cause consistency problems as
concurrent transactions may hold different versions of the
same data. As shown in Figure 11(a), when two contain-
ers are modifying the same file, the modifications may be

append2

Transaction A
commit

append1

Transaction B
commit

Inconsistent

Transaction
commit

ProccessA

ProccessB

ConsistentProccessA

ProccessB
Single Transaction

Multiple Transactions

file’ file’’

file’

file’’

file’ file’’file

(a) Data

metadata

Block Group

metadata’’ datacommiting
transaction A

metadata’ datacommiting
transaction B

Inconsistent

ProccessA

file1append

ProccessB

file2
append

data

Block
bitmap ... Inode

table

metadata’’ datametadata’ data Consistentcommiting
transaction

Single Transaction

Multiple Transactions

ProccessA

ProccessB

file1 file2

(b) Metadata

metadata1
Block Group

metadata1’ data1’commiting
transaction A

metadata2’’ data2’’commiting
transaction B

Consistent

file1’append

data1

Block
bitmap ... Inode

table

Multiple Transactions

Upper A

Upper B

file1 file1’’append

metadata2

file2’append

data2

Block
bitmap ... Inode

table

file2 file2’’append

metadata1’’ data1’’

metadata2’ data2’

Upper A Upper B

(c) New design

Figure 11. Consistency problems when multiple transac-
tions are committing concurrently

submitted to different transactions. As the transactions are
submitted in parallel, the sequence of the submission cannot
be guaranteed which may cause inconsistency if the system
crashes while handling the transactions. Second, updates of
file system metadata must be submitted together with their
corresponding updates of data as shown in Figure 11(b). As
block allocation of the file system is serial, files of different
containers may be located in the same BG and share file
system metadata. Consequently, inconsistency happens, be-
cause concurrent transactions may hold different versions
of the same metadata.

The unique feature of the layered storage driver (i.e. , up-
dates of a container happen only in its own upper) makes
concurrently submitting multiple transactions possible as
shown in Figure 11(c). First, if we group updates of contain-
ers based on uppers and bound uppers to micro journals, we
can guarantee that different versions of the same container
data are collected by the same micro journal. Second, if we
can allocate BGs based on uppers as we will describe in Sec-
tion 3.3.2, we can guarantee that updates of shared metadata
are submitted to the same micro journal. Note that updates
from the physical host are all issued to a micro journal.

VEE ’22, March 1, 2022, Virtual, Switzerland Song Wu, Zhuo Huang, Pengfei Chen, Hao Fan, Shadi Ibrahim, and Hai Jin

In order to enable micro journals, data structure in mem-
ory and region in disk of JBD2 are reconstructed. Journal_t
structure is the key data structure. First, it manages updates
using shared transaction lists (i.e. , running transaction list,
committing transaction list, and checkpoint transaction list),
locks, and on-disk regions. Second, functions operate data
structures through journal_t. We createm_journal_t which is
alike journal_t. It has its own transaction lists, locks, and on-
disk regions. We also modify the functions so that they can
operate micro journals like operating the original journal.
Mjournal_ts are organized with a hash table (mjournal_table)
in journal_t so that functions can access mjournal_t through
journal_t. The journal region on disk is divided intoN (equals
to the number of micro journals) sub-regions to store up-
dates of different micro journals. The start address and size
of sub-region are recorded in its corresponding mjournal_t.
Each micro journal can log updates like the original journal
service. When CaFS needs to recover data after a crash, the
journal thread gets the address of micro journals on disk and
recovers the micro journals one by one. Furthermore, we
also realize sysfs_api for each micro journal like the original
journal so that the configurations of each micro journal can
be adjusted independently through writing sys.
Micro journals are flexible. On the one hand, the num-

ber of micro journals can be adjusted. We start N (i.e. , the
number of CPUs) micro journals by default. The first micro
journal logs updates of physical host and other N-1 logs up-
dates from containers. The number of micro journals can be
adjusted through /sys when the system is free. CaFS flushes
data in journal region, redivides region on disk, and updates
mjournal_table to add micro journals. On the other hand, a
container can be dynamically bound to a micro journal. We
use a table to record the mapping relationships between con-
tainers and micro journals. In order to prevent consistency
problems, bounding a container to multiple micro journals
is forbidden. Containers with few I/O requests can be bound
to the same micro journal. Containers that do not have data
recovery requirements can choose not to bound a micro
journal. The table is updated when a container is built or
destroyed.

3.3.2 Container-Aware Block Allocation. The key idea
behind container-aware block allocation is that operations
of different containers should be issued to different BGs.
Accordingly, first, CaFS maintains the mapping relationships
between BGs and containers at a low cost. Second, CaFS
allocates blocks of BGs to containers in parallel.
Recording the relationship between BGs and containers

with a hash table may introduce extra cost, because the table
needs a global lock and all containers need to compete for
it when they need to add or delete BGs. Accordingly, we
introduce a new structure Container Region (CR) which con-
sists of multiple BGs. Thus, BG allocation of each container
can be handled independently. As shown in Figure 12, we

Container Region

15

16

17

Region_id

Region BG Area

Container
Hashtable

…
Container

Region

…
6

7

8

…

Container
BG Area

Container_id

Region Hashtable

14

Container_id …

…

Figure 12. Two-level mapping table

design a two-level mapping table to maintain the mapping
relationships among containers, CRs, and BGs. The first level
is a region hash table which records mapping relationships
between containers and CRs. When a container is created,
the container is bound to a region. The second level is a con-
tainer hash table which records the mapping relationships
between BGs and containers. BG Area maintains basic infor-
mation of the region, such as the number of free BGs. All
the BGs in the container hash table are free at the beginning.
When a container needs blocks, CaFS selects a proper BG in
the CR and allocates blocks to the container on this BG. The
BG selection strategy and block allocation algorithm in CR
are the same as the original EXT4. After the allocation, CaFS
updates the BG entries in the hash table. Region hash table
is protected by a system-wide lock. CaFS needs to acquire
this lock when a container is created or destroyed. As these
operations are not frequent (79% of containers are alive for
more than 10 seconds [26]), the lock will cause negligible
lock contention. The container hash table is protected by a
local lock. When a container needs to get a new BG, it needs
to get the container hash table lock of the CR. Note that in
the original EXT4, a global orphan list is used to maintain
inodes that have no owner (orphan inodes). For CaFS, each
CR maintains its own orphan list to reduce lock contention.

The container-aware block allocation works as follows: As
shown in Algorithm 1, when a container, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 , is cre-
ated, CaFS searches region hash table,𝐶𝑅𝑠𝑒𝑡 , for region with
enough BG which is marked as 𝐶𝑅𝑖 . Otherwise, CaFS will
create a new region with 𝑛 BGs, 𝐶𝑅𝑛𝑒𝑤 (𝑛) for the container.
When a block allocation 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 comes, CaFS judges the
source of the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 . If the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is from a physical host,
CaFS carries out block allocation like the original EXT4 in
the BGs that are not grouped into CRs. If the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is from
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 , block allocation is within 𝐶𝑅𝑖 . CaFS searches
proper BG, 𝑃𝐵𝐺 , in container hash table. If there is a BG
belonging to 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 with enough blocks for the request,
or it is just a new BG, 𝐵𝐺𝑛𝑒𝑤 , CaFS allocates the blocks of
this BG to the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , and updates hash table entries to map
𝐵𝐺𝑛𝑒𝑤 to 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 . When there is no enough free BG for
𝐶𝑅𝑖 , i.e. , the number of used BGs recorded by Region BG
Area is 80% of the number of BGs for 𝐶𝑅𝑖 , CaFS expands
𝐶𝑅𝑖 . CaFS allocates 𝑛 new BGs to 𝐶𝑅𝑖 in every expansion.
When 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 is destroyed, all BGs of 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 will be

Container-Aware I/O Stack: Bridging the Gap between Container Storage Drivers and Solid State Devices VEE ’22, March 1, 2022, Virtual, Switzerland

Algorithm 1: Container-aware Block Allocation
Data:𝐶𝑅; 𝐵𝐺 ;𝐶𝑅 (𝑓 𝑟𝑒𝑒) : free BGs in CR; 𝑝 : BGs container

requests; 𝐵𝐺 (𝑓 𝑟𝑒𝑒) : free blocks of BG;𝑚: blocks container
requests; 𝐵𝐺𝑖 : BG set of 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 ; 𝑟𝑎𝑡𝑒 (𝐶𝑅𝑖) : utilization
rate of𝐶𝑅𝑖 ;𝐶𝑅𝑖 (𝑠𝑖𝑧𝑒) : Number of BGs in𝐶𝑅𝑖

Result: 𝑃𝐵𝐺 : The proper BG
1 if 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 then /* container creation */
2 for𝐶𝑅 ∈ 𝐶𝑅𝑠𝑒𝑡 do
3 if 𝐶𝑅 (𝑓 𝑟𝑒𝑒) > 𝑝 then
4 𝐶𝑅𝑖 = 𝐶𝑅;

5 if 𝑛𝑜 𝑝𝑟𝑜𝑝𝑒𝑟 𝐶𝑅 𝑖𝑛 𝐶𝑅𝑠𝑒𝑡 then
6 𝐶𝑅𝑖 = 𝐶𝑅𝑛𝑒𝑤 (𝑛) ;

7 if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ ℎ𝑜𝑠𝑡 then /* block allocation */
8 for 𝐵𝐺 ∉ 𝐶𝑅𝑠𝑒𝑡 do
9 if 𝐵𝐺 (𝑓 𝑟𝑒𝑒) >𝑚 then
10 𝑃𝐵𝐺 = 𝐵𝐺 ;

11 else
12 for 𝐵𝐺 ∈ 𝐶𝑅𝑖 do
13 if 𝐵𝐺 (𝑓 𝑟𝑒𝑒) >𝑚 𝑎𝑛𝑑 𝐵𝐺 ∈ 𝐵𝐺𝑖

⋃
𝐵𝐺𝑛𝑒𝑤 then

14 𝑃𝐵𝐺 = 𝐵𝐺 ;

15 if 𝑟𝑎𝑡𝑒 (𝐶𝑅𝑖) > 80% then /* region expansion */
16 𝐶𝑅𝑖 (𝑠𝑖𝑧𝑒) = 𝐶𝑅𝑖 (𝑠𝑖𝑧𝑒 + 𝑛) ;
17 if 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑖 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑 then /* container destruction */
18 for 𝐵𝐺 ∈ 𝐵𝐺𝑖 do
19 𝑓 𝑟𝑒𝑒 (𝐵𝐺) ;

Two-level
mapping table

OverlayFS
container_id

ProcessA ProcessA
container_id

CR1
Creating

Container 1

Block Allocator

CR2

❶ ❷
❸

I/O flow of Process A Transfer flow of container_id

❶

container_id

Figure 13. Identification of containers

released. Furthermore, if there is no container in 𝐶𝑅𝑖 , the
𝐶𝑅𝑖 is released.

3.4 Identification of Containers and Layers
CAST needs to identify layers to enable container-aware
management. First, CaFS needs to identify the source (i.e. ,
container or host) of an operation when it comes. Second,
LaVFS needs to get the layer structure information of con-
tainers to do layer-aware path switch and lock-free rename.
CAST identifies containers by introducing a new label,

i.e. , container_id, to OverlayFS, CaFS, and process. We take
block allocation as an example, shown in Figure 13. 1○We
add a container_id in the superblock_info of the OverlayFS
to label which container the OverlayFS belongs to. When
an OverlayFS is mounted, it is bound to a container and
the container_id is set. The Container_id is unique as it is
generated based on SHA256 of layers. The container_id is

set to 0 by default if the operation is from the physical host.
CAST also records the relationships between CR and con-
tainer_id in the two-level mapping table of Block Allocator.
2○ In CaFS, operations are managed by processes. So we
add container_id to task_struct to identify which container a
process belongs to. When a process issues an operation to
LaVFS, LaVFS copies the container_id of superblock_info to
the container_id of task_sturct to bind the process and con-
tainer. 3○When an operation is issued to CaFS, task_struct
finds its corresponding CR based on container_id.
CAST identifies layers with the help of the OverlayFS

which maintains the layer structure information of its con-
tainer. We implement functions that can provide dentries
of layers and sequence of layers to LaVFS. When an op-
eration arrives at LaVFS, LaVFS checks the task_struct of
container_id. If the operation is from a container, LaVFS fur-
ther checks which layer it belongs to based on the sequence
of layers. If the operations involve file open and are directed
to the merged, LaVFS gets the sequence of layers and car-
ries out layer-aware path switch to redirect the file. If the
operations involve file modifications and are directing to
lowers, LaVFS provides lock-free rename to OverlayFS to
enable simultaneous CoWs.

4 Evaluation
In this section, we evaluate the performance of CAST against
the original I/O stack in shared environments. First, we evalu-
ate the performance improvement of each design component
with the micro-benchmarks. Second, we evaluate the overall
throughput of CAST with real-world workloads.

4.1 Evaluation Environment
We implement CAST on Linux 4.16.1 kernel in 3600+ lines of
code, in which 2400+ lines of code for CaFS (modifications
based on EXT4) and 1200+ lines of code for LaVFS (modifi-
cations based on VFS). We carry out our experiment on a
machine with Intel Xeon E5-2698 V4 CPUwhich has 20 cores
running at 3.1 GHZ and 64 GB memory. We use a SamSung
PM991 NVMe SSD 512GB as a fast back-end storage. The op-
erating system is Ubuntu Server 16.04.1 LTS. Journal service
is mounted in ordered journal models. In the experiment,
each container has two layers (upper and lower).

4.2 Analysis of Each Design Component
We evaluate the performance gain of CAST via basic file
system operations. Each design component is evaluated sep-
arately. As a component cannot work on all types of opera-
tions, we choose two operations to evaluate each component.

4.2.1 Layer-Aware Path Switch. Layer-aware path switch
can accelerate operations that need to open files. We evaluate
it by running open and read in uppers separately. As shown
in Figure 14, for open operations, CAST achieves 3.1 and 4.8
times higher throughput in comparison to the original I/O

VEE ’22, March 1, 2022, Virtual, Switzerland Song Wu, Zhuo Huang, Pengfei Chen, Hao Fan, Shadi Ibrahim, and Hai Jin

of containers

mil.

0

0.5

1

1.5

1 4 8 12 16 20

open
Baseline

CAST

(a) open
of containers

mil.

0

0.02

0.04

0.06

1 4 8 12 16 20

read
Baseline

CAST

(b) read

Figure 14. Throughput of open and read in uppers while
varying number of containers. "Baseline" represents the re-
sults of the original I/O stack. CAST only conducts layer-
aware path switch.

stack for 1 container and 20 containers, respectively. The
performance improvement is because that layer-aware path
switch can hide the overhead caused by extra dentry search
when building view dentries. For read operations, optimizing
file open shows 10% and 20% throughput gains for 1 con-
tainer and 20 containers, respectively, because containers
need to open a file before reading data from it. However, the
performance gain is not so obvious like open, because read-
ing data from SSD takes more time compared to opening files.
We observe that the throughput of open and read increases
linearly as the number of containers increases. However,
when the number of containers is above 12, the throughput
increase gets smaller. The reason is that before doing path
switch, empty view dentries must be built in OverlayFS.

4.2.2 Simultaneous Copy-on-Write Operations. Simul-
taneous CoWs can accelerate concurrent modifications in
lowers. We evaluate it by running write and unlink in lowers
separately. Figure 15 shows the results. For write operations,
CAST shows 156% performance improvement for 20 con-
tainers. For unlink operations, CAST shows 5.5 times per-
formance improvement for 20 containers. The performance
improvement is because that CAST uses a lock-free rename
based on the observation that rename operation in CoW will
not cause deadlock. Unlink operations show higher perfor-
mance gain compared to write operations. The reason is that
unlink operations do not copy the original file from lowers
to uppers like write operations. They only create whiteout
files in uppers and the overhead caused by rename lock is
more obvious for unlink operations. As a result, unlink op-
erations benefit more from lock-free rename compared to
write operations. Moreover, unlike write operation where
the throughput increases linearly as the number of contain-
ers increases, we find that the throughput increase of unlink
operations gets smaller when the number of containers is
above 10 under CAST. This is due to writing whiteout files
and journal.

4.2.3 Container-Aware Block Allocation. Container-
aware block allocation can reduce BG competition among

of containers

mil.

0

0.01

0.02

0.03

0.04

1 4 8 12 16 20

write
Baseline

CAST

(a) write
of containers

mil.

0

0.2

0.4

0.6

1 4 8 12 16 20

unlink
Baseline

CAST

(b) unlink

Figure 15. Throughput of write and unlink in lowers. CAST
only conducts simultaneous CoWs.

containers. We evaluate it by running unlink and fsync in
uppers separately. Figure 16 shows the results. Unlink oper-
ations need to modify the metadata of BG, and fsync oper-
ations need to modify both data and metadata. For fsync
operations, CAST shows 65% improvement compared to
the original I/O stack for 20 containers. For unlink oper-
ations, CAST brings 37% of performance improvement for 20
containers. Furthermore, fsync operations show an obvious
higher performance gain compared to unlink operations. The
reason is that fsync operations need to modify both meta-
data and data, which causes more intense BG competition
compared to unlink operations. Furthermore, the through-
put of unlink operations scales linearly with the number of
containers. But, the throughput increase gets smaller when
the number of containers is above 10 under CAST. This is
because of journal service and accessing inode list in VFS. We
mainly focus on reducing the file redirect overhead caused
by VFS, and we will isolate inode list based on containers in
our future work.

4.2.4 Container-Aware Micro Journals. Micro journals
can reduce journal resource competition among containers
by collecting updates based on containers. We use truncate
and create to evaluate it shown in Figure 17. For create oper-
ations, CAST shows 99% improvement compared to the orig-
inal I/O stack. For truncate, CAST shows 86% performance
improvement for 20 containers compared to the original
I/O stack. The throughput of truncate and create operations
scales linearly with the number of containers. However, the

of containers

mil.

0

0.005

0.01

0.015

1 4 8 12 16 20

fsync
Baseline

CAST

(a) fsync
of containers

mil.

0

0.3

0.6

0.9

1 4 8 12 16 20

unlink
Baseline

CAST

(b) unlink

Figure 16. Throughput of fsync and unlink in uppers. CAST
only conducts container-aware block allocation.

Container-Aware I/O Stack: Bridging the Gap between Container Storage Drivers and Solid State Devices VEE ’22, March 1, 2022, Virtual, Switzerland

of containers

mil.

0

0.5

1

1.5

1 4 8 12 16 20

truncate
Baseline

CAST

(a) truncate
of containers

mil.

0

0.2

0.4

0.6

0.8

1 4 8 12 16 20

create
Baseline

CAST

(b) create

Figure 17. Throughput of truncate and create in uppers.
CAST only conducts container-aware micro journals.

0

0.2

0.4

0.6

0.8

1

Search Rename BG Lock Journal Lock

Baseline CAST

Figure 18. Normalized latency of dentry search, rename, BG
lock, and journal lock. Normalized latency refers to the ratio
of the latency to that of the original I/O stack. "Search" is
the latency caused by dentry search before opening a real
file. "Rename" refers to latency of a rename operation. "BG
Lock" refers to latency of s_blockgroup_lock. "Journal Lock"
refers to latency of j_list_lock.

of containers

mil.

0

0.005

0.01

0.015

0.02

1 4 8 12 16 20

truncate
caba
LaVFS
LaVFS+pcow
LaVFS+CaFS

IO
PS

(a) truncate
of containers

mil.

0
0.01
0.02
0.03
0.04
0.05

1 4 8 12 16 20

write
caba
LaVFS
LaVFS+pcow
LaVFS+CaFSIO

PS

(b) write

Figure 19. Throughput of truncate and write in lowers.
"Caba" represents container-aware block allocation. "Pcow"
represents simultaneous CoWs.

throughput increase of truncate operations gets smaller af-
ter 16 containers, because of the performance bottleneck of
SSD; and the throughput increase for create operations gets
smaller after 12 containers due to accessing inode list in VFS.

4.2.5 Stack-up Validation. We evaluate the latency of
dentry search, rename operation, BG lock, and journal lock
with truncate operation for 20 containers shown in Figure
18. The latency of dentry search, rename operation, BG lock,
and journal lock under CAST is reduced by 77%, 99%, 69%,
and 96%, respectively, compared to the original I/O stack.
This means each component of CAST functions well.

We also choose write and truncate as their performance
can be improved by all the four components and carry out

Table 2. Workload specification

Workload File Size Read/Write Size Read/Write ratio
Fileserver 128KB 1MB/16KB 1:2
Varmail 16kb 1MB/16KB 1:1
Webproxy 16KB 1MB/16KB 5:1
MongoDB 16kb 1MB/16KB 1:1

stack-up validation by integrating our design components
into the original I/O stack one by one shown in Figure 19.
When all design components work together, throughput
of truncate and write is improved by 216% and 219%, re-
spectively. The overall throughput increases linearly as the
number of containers increases. For truncate operations, the
original I/O stack achieves 20%, 92%, 68%, and 36% through-
put improvement when container-aware block allocation,
micro journals, simultaneous CoWs, and layer-aware path
switch are integrated into the original I/O stack one by one
for 20 containers. For write operations, the throughput im-
provements of the four components are 17%, 54%, 25%, and
23% for 20 containers. We can observe that container-aware
journal and simultaneous CoWs bring the major part of the
performance gains.

4.3 Overall Storage Driver Performance
To evaluate the performance of CAST in more realistic sce-
narios, where reads, writes, and metadata operations run
simultaneously in multiple containers, we run Fileserver,
Varmail, Webproxy, and MongoDB using Filebench [28]. The
parameters are shown in Table 2. Referring to the default
settings of filebench, we run each instance for 60s. For each
instance, 1000 files are created in each layer of a container
in advance.
We run different workloads in containers. Figure 20(a)

shows the results when 4 containers are running 4 different
workloads. The throughput of Varmail, Fileserver, Webproxy,
and MongoDB is improved by 79%, 54%, 18%, and 36%, re-
spectively. Varmail operates on small data compared to other
workloads, which means Varmail involves more metadata

0

0.5

1

1.5

2

Baseline CAST

(a) 4 concurrent containers

0

0.5

1

1.5

2

2.5

Baseline CAST

(b) 20 concurrent containers

Figure 20. Throughput when multiple Filebench containers
are running concurrently. The normalized IOPS refers to the
ratio of the IOPS to that of in the original I/O stack.

VEE ’22, March 1, 2022, Virtual, Switzerland Song Wu, Zhuo Huang, Pengfei Chen, Hao Fan, Shadi Ibrahim, and Hai Jin

modifications. As a result, Varmail benefits more from iso-
lating BGs and journal service. For Webproxy which is dom-
inated by read and MongoDB where read operation is very
large, resource competition is not high. As a result, the per-
formance gain of these workloads is lower than Varmail and
Filesever. Moreover, the overall throughput is improved by
29% under CAST.

Figure 20(b) shows the results when 20 containers are run-
ning 4 different workloads (5 containers for each workload).
The throughput of Fileserver, Varmail, Webproxy, and Mon-
goDB is improved by 98%, 58%, 38%, and 49%, respectively.
And the overall throughput is improved by 45% for CAST.
CAST shows higher overall throughput improvement for 20
containers compared to that of 4 containers. The reason is
that resource competition is higher for 20 containers and
CAST can effectively mitigate resource competition.

5 Related Works
Scalable native file systems:Many researchers [3, 4, 12, 13]
have studied and improved the scalability of the native file
system by isolating its services. For example, MultiLanes [12]
provides independent VFS and native file system for each
core and transmits operations to their own VFS and native
file system. SpanFS [13] replaces the centralized file system
service with a collection of independent micro file system
services, called domains. Each domain performs its file sys-
tem service independently. However, isolating the shared I/O
stack in a containerized environment causes longer image
download time, because layers of different containers cannot
be shared. Min et al. [4] use their open source benchmark
suite FXMARK [3] to analyze the scalability of five widely-
used file systems. They find that there are many hidden scala-
bility bottlenecks such as locks, ref count, cache-line conflict
in file systems. Vijayan et al. [21] conduct an in-depth evalu-
ation on journaling file systems and find that journal service
is one of the major reasons for the scalability problem. In or-
der to realize paralleled journal service, Son et al. [24] adopt
lock-free data structures and operations using atomic instruc-
tions to implement concurrent updates on data structures.
The new structure is implemented in j_checkpoint_mutex and
j_list_lock of JBD2. Park et al. [20] propose ijournal which can
handle updates of fsync operations independently. SCALEFS
[2] logs operations in a per-core log so that it can delay
propagating updates to the disk representation until a fsync
is triggered. Kim et al. [14] propose to log updates based
on cores to solve scalability problems. However, native file
systems cannot assign services based on containers due to
the unawareness of layers. Furthermore, new overheads are
introduced by the additional tier when managing layers.
Optimizations on Docker storage: CoW cause redun-

dant data and throughput degradation due to extra data write.
Accordingly, TotalCOW [31] adds a new cache layer to cache
mapping relationships between the block device and the file

system to save memory usage due to CoW operations in
BtrFS [22]. Guo et al. [9] discover that there are a lot of
redundant data in storage drivers due to the unshareable na-
ture of cached data and coarse-grained CoW. They propose
HP-Mapper which provides a two-level mapping strategy to
support fine-grained CoW. Apart from optimizing CoW, Xu
et al. [32] analyze the performance of containerized appli-
cations with different storage parameter configurations on
the local and remote storage. Vasily et al. [27] do a similar
work which focuses on comparing different kinds of storage
drivers. These works [9, 27, 31, 32] mainly focus on analyz-
ing the overhead of storage driver for single container. We
in contrast study the performance bottleneck when multiple
containers are running concurrently. There are also some
works [7, 10, 17] that enable remote images. These images
read data on-demand from the registry, which means the
performance bottleneck is mainly due to network transfer.
I/O schedulers for reducing resource competition:

Many researchers have tried to improve overall performance
of back-end storage by reducing I/O competition in I/O sched-
ulers. For example, McDaniel et al. [19] address I/O con-
tention challenge in containers and provide a two-tiered
approach with schedulers at both cluster level and node
level to prevent overall performance degradation. As for
SSD, Shen et al. [23] propose to reduce I/O competition by
leveraging anticipation. Hao et al. [8] improve I/O through-
put by proposing NCQ-aware I/O scheduling method for
SSD. Tavakkol et al. [29] propose to fully explore the par-
allelism of SSD to improve the throughput of SSD. These
works are orthogonal to our research as they cannot solve
resource competition in native file systems.

6 Conclusions and Future Work
In this paper, we analyze the performance bottlenecks caused
by storage driver, and find that the I/O stack of the phys-
ical host overlooks the layers of containers causing time-
consuming file redirect in OverlayFS and intense resource
competition in the native file system. Accordingly, we pro-
pose CAST, which consists of LaVFS and CaFS. LaVFS re-
duces file redirect overhead by leveraging layer information
to switch view path to real path and by enabling simultane-
ous CoWs. Meanwhile, CaFS alleviates resource competition
by providing fine-grain resource allocation at the native file
system. As future work, we plan to explore the impact of page
cache in memory and inode list in VFS on the performance
of container storage driver in SSDs.

Acknowledgements
This work was supported by National Science Foundation of
China under grants No.62032008 and No.61872155. We also
thank Alibaba Group for their support through AIR Project.
Hao Fan is the corresponding author.

Container-Aware I/O Stack: Bridging the Gap between Container Storage Drivers and Solid State Devices VEE ’22, March 1, 2022, Virtual, Switzerland

References
[1] Sungyong Ahn, Kwanghyun La, and Jihong Kim. 2016. Improving

I/O Resource Sharing of Linux Cgroup for NVMe SSDs on Multi-core
Systems. In Proceedings of the USENIXWorkshop onHot Topics in Storage
and File Systems (HotStorage’16). 1–5.

[2] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek,
and Nickolai Zeldovich. 2017. Scaling a File System to Many Cores
Using an Operation Log. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP’17). 69–86. https://doi.org/10.1145/
3132747.3132779

[3] Min Changwoo. 2021. FxMark. https://github.com/sslab-gatech/
fxmark.

[4] Min Changwoo, Kashyap Sanidhya, Maass Steffen, Kang Woonhak,
and Kim Taesoo. 2016. Understanding Manycore Scalability of File
Systems. In Proceedings of the USENIX Annual Technical Conference
(ATC’16). 71–85.

[5] Google Cloud. 2021. Kubernetes. https://kubernetes.io/.
[6] Docker Docs. 2021. Overlay2. https://docs.docker.com/storage/

storagedriver/overlayfs-driver/.
[7] Hao Fan, Shengwei Bian, Song Wu, Song Jiang, Shadi Ibrahim, and Hai

Jin. 2021. Gear: Enable Efficient Container Storage and Deployment
with a New Image Format. In Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS’21). 115–125.
https://doi.org/10.1109/ICDCS51616.2021.00020

[8] Hao Fan, Song Wu, Shadi Ibrahim, Ximing Chen, Hai Jin, Jiang Xiao,
and Haibing Guan. 2019. NCQ-Aware I/O Scheduling for Conventional
Solid State Drives. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS’19). 523–532. https:
//doi.org/10.1109/IPDPS.2019.00062

[9] Fan Guo, Yongkun Li, Min Lv, Yinlong Xu, and John C. S. Lui. 2019. HP-
Mapper: A High Performance Storage Driver for Docker Containers.
In Proceedings of the ACM Symposium on Cloud Computing (SOCC’19).
325–336. https://doi.org/10.1145/3357223.3362718

[10] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2016. Slacker: Fast Distribution with
Lazy Docker Containers. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST’16). 181–195.

[11] Docker Inc. 2021. Docker. https://www.docker.com/.
[12] Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng

Huai. 2014. MultiLanes: Providing Virtualized Storage for OS-Level
Virtualization on Many Cores. In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST’14). 317–329.

[13] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai
Ma, and Jinpeng Huai. 2015. SpanFS: A Scalable File System on Fast
Storage Devices. In Proceedings of the USENIX Annual Technical Con-
ference (ATC’15). 249–261.

[14] Jongseok Kim, Cassiano Campes, Joo-Young Hwang, Jinkyu Jeong,
and Euiseong Seo. 2021. Z-Journal: Scalable Per-Core Journaling. In
Proceedings of the USENIX Annual Technical Conference (ATC’21). 893–
906.

[15] Chu Li, Dan Feng, Yu Hua, and Fang Wang. 2016. Improving RAID
Performance Using an Endurable SSD Cache. In Proceedings of the
International Conference on Parallel Processing (ICPP’16). 396–405.
https://doi.org/10.1109/ICPP.2016.52

[16] Feifei Li. 2019. Cloud-Native Database Systems at Alibaba: Opportuni-
ties and Challenges. Proceedings of the VLDB Endowment 12, 12 (2019),
2263–2272. https://doi.org/10.14778/3352063.3352141

[17] Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu, and Windsor
Hsu. 2020. DADI: Block-Level Image Service for Agile and Elastic Ap-
plication Deployment. In Proceedings of the USENIX Annual Technical
Conference (ATC’20). 727–740.

[18] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. 2021. Max: A
Multicore-Accelerated File System for Flash Storage. In Proceedings of
the USENIX Annual Technical Conference (ATC’21). 877–891.

[19] Sean McDaniel, Stephen Herbein, and Michela Taufer. 2015. A Two-
Tiered Approach to I/O Quality of Service in Docker Containers. In
Proceedings of the IEEE International Conference on Cluster Computing
(CLUSTER’15). 490–491. https://doi.org/10.1109/CLUSTER.2015.77

[20] Daejun Park and Dongkun Shin. 2017. iJournaling: Fine-Grained Jour-
naling for Improving the Latency of Fsync System Call. In Proceedings
of the USENIX Annual Technical Conference (ATC’17). 787–798.

[21] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2005. Analysis and Evolution of Journaling File Systems.
In Proceedings of the USENIX Annual Technical Conference (ATC’05).
196–215.

[22] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux
B-tree Filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013), 1–32.
https://doi.org/10.1145/2501620.2501623

[23] Kai Shen and Stan Park. 2013. FlashFQ: A Fair Queueing I/O Scheduler
for Flash-Based SSDs. In Proceedings of the USENIX Annual Technical
Conference (ATC’13). 67–78.

[24] Yongseok Son, Sunggon Kim, Heon Y. Yeom, and Hyuck Han. 2018.
High-Performance Transaction Processing in Journaling File Systems.
In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST’18). 227–240.

[25] Yu Sun, Jiaxin Lei, Seunghee Shin, and Hui Lu. 2020. Baoverlay: A
Block-Accessible Overlay File System for Fast and Efficient Container
Storage. In Proceedings of the ACM Symposium on Cloud Computing
(SOCC’20). 90–104. https://doi.org/10.1145/3419111.3421291

[26] Sysdig. 2021. 2021 Container Security and Usage Report.
https://sysdig.com/wp-content/uploads/2021-container-security-
and-usage-report.pdf.

[27] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis, Amit Warke, Dean
Hildebrand, Mohamed Mohamed, Nagapramod Mandagere, Wenji
Li, Raju Rangaswami, and Ming Zhao. 2017. In Search of the Ideal
Storage Configuration for Docker Containers. In Proceedings of the
IEEE International Workshops on Foundations and Applications of Self*
Systems (FAS*W’17). 199–206.

[28] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A
Flexible Framework for File System Benchmarking. USENIX login 41,
1 (2016), 6–12.

[29] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie
Kim, Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa,
Juan Gómez-Luna, and Onur Mutlu. 2018. FLIN: Enabling Fairness
and Enhancing Performance in Modern NVMe Solid State Drives.
In Proceedings of the ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA’18). 397–410. https://doi.org/10.1109/
ISCA.2018.00041

[30] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan,
David P. Quigley, Erez Zadok, and Mohammad Nayyer Zubair. 2006.
Versatility and Unix Semantics in Namespace Unification. ACM Trans-
actions on Storage (TOS) 2, 1 (2006), 74–105. https://doi.org/10.1145/
1138041.1138045

[31] Xingbo Wu, Wenguang Wang, and Song Jiang. 2015. Totalcow: Un-
leash the Power of Copy-on-Write for Thin-Provisioned Containers.
In Proceedings of the Asia-Pacific Workshop on Systems (APSys’15). 1–7.
https://doi.org/10.1145/2797022.2797024

[32] Qiumin Xu, Manu Awasthi, Krishna T. Malladi, Janki Bhimani, Jingpei
Yang, and Murali Annavaram. 2017. Performance Analysis of Con-
tainerized Applications on Local and Remote Storage. In Proceedings of
the International Conference on Massive Storage Systems and Technology
(MSST’17). 1–12.

https://doi.org/10.1145/3132747.3132779
https://doi.org/10.1145/3132747.3132779
https://github.com/sslab-gatech/fxmark
https://github.com/sslab-gatech/fxmark
https://kubernetes.io/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://doi.org/10.1109/ICDCS51616.2021.00020
https://doi.org/10.1109/IPDPS.2019.00062
https://doi.org/10.1109/IPDPS.2019.00062
https://doi.org/10.1145/3357223.3362718
https://www.docker.com/
https://doi.org/10.1109/ICPP.2016.52
https://doi.org/10.14778/3352063.3352141
https://doi.org/10.1109/CLUSTER.2015.77
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/3419111.3421291
https://sysdig.com/wp-content/uploads/2021-container-security-and-usage-report.pdf
https://sysdig.com/wp-content/uploads/2021-container-security-and-usage-report.pdf
https://doi.org/10.1109/ISCA.2018.00041
https://doi.org/10.1109/ISCA.2018.00041
https://doi.org/10.1145/1138041.1138045
https://doi.org/10.1145/1138041.1138045
https://doi.org/10.1145/2797022.2797024

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Storage Driver of Container
	2.2 Performance Bottlenecks Caused by Storage Driver

	3 CAST: Container-Aware I/O Stack
	3.1 Overview of CAST
	3.2 Layer-Aware VFS
	3.3 Container-Aware Native File System
	3.4 Identification of Containers and Layers

	4 Evaluation
	4.1 Evaluation Environment
	4.2 Analysis of Each Design Component
	4.3 Overall Storage Driver Performance

	5 Related Works
	6 Conclusions and Future Work
	References

