
Wireless Pers Commun (2013) 73:1513–1528
DOI 10.1007/s11277-013-1263-0

VRAS: A Lightweight Local Resource Allocation System
for Virtual Machine Monitor

Hai Jin · Wei Gao · Song Wu · Xuanhua Shi

Published online: 11 June 2013
© Springer Science+Business Media New York 2013

Abstract Traditional computing resource allocations in virtualization environment devote
to provide fairness of resource distribution when the overall workload of host is heavy. That
makes those allocations lack of efficiency under light workloads. To target this, we design
and implement a lightweight resource allocation system, virtual resource allocation system
(VRAS). Considering the fact that workloads can be balanced by migrating virtual machines
to other hosts, we propose a request driven mechanism to focus on resource allocation under
light workloads. We also present some allocation strategies used in VRAS to explain how it
works on processor and memory resources. Our experiment results demonstrate that VRAS
can result in throughput improvements of 28 % for RUBiS application, and the network
overhead reduction of 81 %, comparing with the traditional allocation methods.

Keywords Virtualization · Server consolidation · Resource allocation ·
Request driven mechanism · Workload

1 Introduction

One feature of the virtualization technology that makes it an important cloud enabling tech-
nology is the encapsulation of the computing environment [1]. The virtual machine monitor
(VMM) provides dedicated processor, storage and network devices to each virtual machine
(VM), and the operation system working inside the VM, called guest OS, controls these
virtualized resources independently. For raising resource utilization and saving overall cost,
server consolidation could be achieved by simultaneously running many VMs on one physi-
cal machine [2]. Because the server’s performance is subjected to the restriction of available
resources, each VM is usually over-provisioned to meet vast service requests. However, the

H. Jin (B) · W. Gao · S. Wu · X. Shi
Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer
Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
e-mail: hjin@mail.hust.edu.cn

S. Wu
e-mail: wusong@hust.edu.cn

123



1514 H. Jin et al.

demands of a service are not always reach the upper limits, but often varying with time last-
ing. As a result, a VM would keep under-utilized for a long time, and much of the occupied
resources are wasted while other VMs can not consume them. That situation also restricts the
number of consolidated servers. Allocating the VM’s virtualized resources to a reasonable
range can reduce considerable waste at most time, but lead VM to be over-loaded sometimes.
Unfortunately, on many virtualized data centers, servers running such as web applications
and databases are functionally connected while they exist in isolated VMs [3]. The over-
all performance of services will be undermined by even one congested VM [4]. Therefore
a mechanism that allocates proper resource to the VMs based on their respective instant
requirements in time is needed to be imported into the virtualization infrastructure. Such
mechanism shares certain part of resources as flexible resource among VMs. Usually those
redistributable resources are not frequently used by one VM.

On a data center having sufficient resources, the object of that kind of resource management
mechanisms is to ensure that no service will meet its performance bottleneck due to the lack
of CPU execution time, memory size, network bandwidth or something else [5], and try
raising the resource utility rate as well as possible at the same time.

Traditional researches put much works on how to quickly and fairly allocate resources
to the VMs on heavy loaded hosts. However, due to the VM migration technology [6,7],
VMs can be moved among a group of connected hosts to find proper one that meets their
resource requirement. If a physical machine lacks of resources, its overloaded VMs could be
migrated to another host with sufficient resources. So we argue that in a practical virtualization
environment, hosts could have enough resources to run VMs on them at most time, and
resource scheduler should take more considerations to allocate resource in host under light
or moderate workload.

We in this paper propose a virtual resource allocation system (VRAS) to manage all VM’s
resource on a physical host. The main goal of VRAS is to dynamically share the computing
resources across VMs without too much extra cost introduced to the system. So we suggest
that our solution should be quite simple and efficiently perform allocation with less overhead
under the condition that host has enough resources. In VRAS framework, each VM detects
its resources usage and sends request signals to the VRAS manager running on physical
host. The resource allocation manager will re-calculate the VM’s resource quota based on
allocation strategy, and then add or remove the VM’s resource.

The rest of this paper is organized as follows. Section 2 presents related work on virtual
resource allocation. Section 3 introduces framework of the VRAS. Section 4 presents the
details of VRAS implementation on processor allocation. Section 5 describes VRAS’s mem-
ory scheduling mechanism. Section 6 evaluates the system’s performance towards CPU and
memory resources through experiments on different benchmarks. At last, we conclude the
paper and discuss the future development of the system in Sect. 7.

2 Related Work

Resource management [8,9] has been studied to allocate different types of resources towards
specific applications such as web server [10–12]. They often require the application to be
modified, thus are not suitable to apply to the virtual machines directly.

In virtualized environment, resources used to be statically allocated to every VM [13,14].
Many previous works such as allocation for overloaded VM [15], nonlinear adaptive control
[16], and others [17,18] have been proposed to study dynamically managing resources. They
basically pay attentions to accurately allocate virtualized resources under different conditions,

123



A Lightweight Local Resource Allocation System 1515

Resource Allocation 
Manager

Physical Machine

CPU Memory
Resource Pool

Strategy 
Set

VM Monitor

VM

Sensor
App.

VM

Sensor
App.Request  

Signal

VM 
Handler

Control 
Command

Resource 
Status

Request
Queue

Fig. 1 VRAS architecture

but do not consider how to perform the job with agility. Some of them are too complicated
that could lead to terrible overhead under certain circumstances.

In order to effectively control the VM resource, FVM [19] is proposed as a self-adaptive
mechanism, which makes VM actively adapt the host’s resource distribution. It emphasizes
the fairness in VM’s resource allocation, and works well when the whole system are load
saturated, but it needs VMs themselves limiting their resource requirements to adapt resource
conflicts, resulting in the loss of application’s QoS when too many VMs are consolidated.

Other approaches try to avoid resource absence on a host. Ghost VM [20] prepares many
standby VMs on every host. When the service demand is increased, it activates one more
VM on a light load host. Sandpiper [21] just migrates the overloaded VM to a new physical
machine to balance the overall workload.

The main feature of our work differs from previous research efforts lies on the fact that the
request driven mechanism reduces the communications between VM and allocator. Based
on that, we employ simple strategy to allocate resources effectively in the light workload
environment, avoiding the fairness consideration under heavy workloads.

3 VRAS Framework

VRAS is a general resource management framework for VMs running on the same host.
Instead of those using complicated approaches to deal with the specific circumstances, VRAS
allocates different types of resources based on a request driven mechanism. As Fig. 1 shows,
VRAS maintains a resource pool to record the status of total available resources and resources
assigned to VMs on a physical machine. Resource allocation manager (RAM) is the main
part of VRAS framework which performs the most of the allocation tasks. Sensor in each
VM collects resource usages and requirements and sends them to RAM.

There are three steps to dynamically allocate resources to VM:

1. Resource monitoring: Sensor in a VM gathers information about how each VM uses
the current assigned resources, predicts its resource requirement of next phase, and then
sends the request signals;

2. Decision making: when a VM’s resource requirement is changed, RAM calculates the new
quota to it based on available resource in Resource Pool and proper allocation strategy;

3. Resource allocating: RAM sends control commands to adjust the VM’s resource assign-
ment and updates the overall resource distribution information in Resource Pool.

Sensor running in a VM is employed to detect the resource status, such as CPU usage and
memory usage. The prediction of resource requirement in our mechanism is subject to the

123



1516 H. Jin et al.

type of the resource and its allocation strategy. The accuracy of prediction often relies on the
cost of computing resources. In this paper, we simply use the current CPU usage as the CPU
requirement and current used memory size as the memory requirement in the next phase. To
reduce the system resource spent on communication between Sensor and RAM, those status
data need not to be sent at every time. Sensor only reports the resource’s new requirement
when the usage of one resource gets changed to a curtain threshold value. VRAS is designed
to support configurable resource allocation strategies. For each strategy, the sensor collects
VM’s specific running status by invoking proper API of a guest OS, the frequency of collection
and the method of prediction are decided by the strategy as well. Sensor communicates RAM
with regular request signal. There are two types of request signals sent by Sensor for each
resource: Apply and Return. When one resource’s usage raises over the upper threshold,
Sensor will send Apply signal to RAM alone with the resource status of VM to acquire more
resource; and Return signal will be sent when the resource’s usage is less than the lower
threshold, then the free resource will be taken back to the resource pool of the host.

RAM performs the resource scheduling according to the preloaded strategies. It puts all
received request signals into a Request Queue, and then passes them to the Strategy Set one
by one to calculate new resource quota of the VM. At last, the VM Handler controls the VM
Monitor to complete the allocation process. A request includes information as VM’s domain
id, timestamp, resource type (processor or memory), request type (apply or return resource)
and other details of resource requirement. When a new request arrives, it will be added to
the tail of Request Queue and then wait to be answered. In case that a request in the queue
have not been scheduled while another request comes from the same VM applying the same
resource, which makes early scheduling unnecessary, RAM compares the arrived request with
the requests in the queue, and replace the request having same domain id and resource type in
the Request Queue with the newest one. Each time RAM picks the request from the head of
the Request Queue, updates the request’s state to processing and starts the resource allocation
task. RAM provides a Strategy Set to meet different situations in resource allocation tasks.
Based on the resource type and request type, the proper strategy will be chosen, and relative
parameters read from the request will be sent to it. The strategies in the set are designed
to be simple and efficient, and easy to be reconfigured, even can be replaced. We discuss
the allocation strategies in next two sections. Generally, the strategy analyzes the resource
requirement, checks the free resources in pool, and decides how many resources would be
given to or taken back from the target VM, then sends instructions to adjust VM’s resource
allocation and updates the Resource Pool. The VM’s resource configuration is managed by
the VM Monitor. RAM uses VM Handler to generate the control commands according to
the result output by strategy and communicate the VM Monitor to perform reconfiguration
of the VM’s resource.

The Resource Pool maintains the resource distribution status of the physical machine,
including resources allocated to every VM and total free resources that have not been assigned
to any VM. Those data are continuously acquired from the VM Monitor. When RAM recon-
figures a VM, the modification will be immediately updated to the Resource Pool and kept for
a short time to avoid the resource been reallocated by other requests before the current oper-
ation is finished (succeeded or failed). After that reserve period, the status will be refreshed
with new data from the VM Monitor.

VRAS is designed to reduce the communication cost in the framework, especially between
RAM and VM. By introducing request driven mechanism, Sensor only sends request signals
when the resource usage of the VM is out of the acceptable range. RAM need not repeatedly
acquire information from the VMs.

123



A Lightweight Local Resource Allocation System 1517

4 Processor Resource Allocation

The virtualized processor (VCPU) in VM can be considered as a process running on a physical
CPU. Virtualization technologies such as Xen [13] provide CPU schedulers [22] to manage
sharing physical CPU resources among the process-like VCPUs. Those schedulers allocate
processor resource by assigning different CPU time slices to execute each VCPU in a period,
and perform effective and fair distribution of the CPU time slices. Based on one most popular
scheduler used in Xen, the Credit Scheduler [23], two types of strategies can be introduced
to dynamically allocate processor resource to meet the application’s real-time requirement:

Fine-grain allocation adjusts each VM’s CPU quota to control how many CPU time slices
can be assigned to the VCPUs in a period based on the running status of VMs. Some VMs
often try to occupy too much CPU time when they are processing a large task or being handled,
such as being deployed or being migrated. Those unstable states would make overall resource
insufficiency and impact other VM’s performance as a result. The fine-grain allocation is
designed to restrict the CPU slices that a rough VM can acquire based on the available
resources of the physical machine, so that the processor resources of other VMs can be
guaranteed.

Coarse-grain allocation controls each VM’s available VCPUs by reconfiguring the VCPU
number of the VM to meet its resource requirement. Obviously, though a VM’s VCPUs can be
set as many as its guest OS can support, that number generally should not exceed the amount
of the host’s physical CPUs. Furthermore, the solution that assigns maximum number of
VCPUs to all VMs will makes unnecessary scheduling cost wasted on void VCPUs. So, the
principle of the coarse-grain allocation is to provide enough VCPU to every VM based on
the CPU usage and take back any VM’s void VCPUs, except it is the last one of the VM.

To perform those two types of processor resource allocations, a simple strategy is proposed
in VRAS, shown in Algorithm 1.

Before the allocation, Sensor in the VM collects running states of VCPUs in real time
usage and sends request to RAM if the average VCPU usage breaks the upper or lower
threshold. For instance, if the current VCPU usage is more than 75 %, Sensor will send Apply
CPU signal to RAM; otherwise if the current VCPU usage is less than 30 %, Sensor will
detect if there is any VCPU in a blocked (waiting for resources to execute tasks) or offline
(no task assigned) state, then send Return CPU signal if there are free VCPUs in the VM.

The beginning of the strategy is the preparation part (Line 1–4), including locating the
target VM given by the domain ID in the request, reading the VCPU weight that set to the
VM for its normal running, current VCPU number assigned to the VM and total available
CPU number of the host physical machine. Here the weight of the VM’s VCPU represents
the share of CPU time slice that the VM can utilize comparing to other VMs on the same host.

For the Apply CPU request, the strategy conducts coarse-grain allocation (Line 6–8) by
adding one more VCPU to the target VM. Xen supports hot-plug VCPU to its VM, so the
VM can immediately utilize more processor resource from added VCPU. In that process,
the VCPU number of the VM is always constrained within the host’s maximum number of
physical CPU. If a full VCPU configured VM still sends request to apply more CPU resource,
it means the overall CPU resource of the host is going to be insufficient, then RAM will report
warning to the system manager (Line 9–11). When the target VM gains more than half number
of total processors, the fine-grain allocation (Line 12–14) will be activated. The VM’s VCPU
scheduling weight will be adjusted down to a certain percentage (here we set 50 %) of its
normal value, to prevent over-occupancy of processor resource coming from that VM.

The processor resource assigned to the VM can be retrieved in the same way. As the
response to the Return CPU request, the strategy reduces the target VM’s VCPU number by

123



1518 H. Jin et al.

one in allocation each time, unless the VM has only one VCPU configured (Line 16–19).
The VCPU scheduling weight will be restored to the normal value when the VM’s VCPUs
are released down to half of the host machine’s processor number (Line 20–22).

On a light loaded host, the control of each VM’s VCPU number determines the processor
resource’s distribution. When CPU resource contest occurs on a heavy loaded host, the adjust-
ment of each VM’s weight takes effect. The combination of those two strategies promises
the accuracy and fairness of processor resource allocation in both light and heavy workload
conditions.

5 Memory Resource Allocation

Popular virtual machines use a ballooning technique [24] to support changing a VM’s avail-
able memory spaces during its running time. The ballooning technique can steal free mem-

123



A Lightweight Local Resource Allocation System 1519

ory from a VM and the ballooned-out memory can be reassigned to another VM, without
redeploying or restarting of the target VM required. That makes dynamic memory resource
allocation possible, and leaves the allocation strategy two questions: (1) when adjust the
VM’s available memory size and (2) how many memory pages should be given to or taken
away from the VM. The first question implies that the allocation should be performed as
soon as possible when the VM’s memory requirement changes. In our VRAS framework,
Sensor can detect the variation of memory usage at first time and immediately decide which
response is expected to deal with that variation. However, the second question will not be
solved as easily as the former one. Due to the isolation of VM’s memory, a memory page can
be used by only one VM in a moment. Like CPU time slices, memory pages are the smallest
resource unit allocated. Once a page is written by a VM, it cannot be accessed by another
VM unless it is released. Unfortunately, there is not a fine-grain approach that can frequently
and precisely schedule memory pages like credit scheduler to CPU time slices. Therefore the
purpose of typical ballooning based memory resource allocation approaches is to provide
not only VM’s current needed memory, but also extra memory space for meeting possible
increasing of memory requirement in the following period before the next round of allocation.

VRAS allocates memory resource on the basic concept of the VM’s real memory usage,
which is defined as:

U = Mc − Mb

Mmax − Mb
(1)

where Mc is the size of current used memory, Mmax is the maximum size of memory con-
figured to the VM when it is deployed, Mb is the size of balloon memory returned to the
host’s memory pool. Because the balloon memory is recognized as used in the target VM,
the memory usage U is the ratio indicates actually occupied share of all allocated memory in
the VM. Also, Umin and Umax are introduced as threshold of normal memory usage. U will
be considered healthy if the value is between Umin and Umax , otherwise Sensor will send
return or apply signal to RAM.

By resizing the balloon memory, the memory allocation strategy tries to make the real
memory usage to the expected ratio. Assuming the VM’s used memory size (Mc − Mb) will
not change, thus for achieving the memory usage to be U1, the balloon memory needs to be
adjusted to:

Mb1 = Mmax − U0

U1
(Mmax − Mb0) (2)

where U0 and Mb0 represent the memory usage and balloon memory before the allocation,
respectively. Since (Mmax − Mb) means total allocated memory to the VM, the allocation
process can be simplified to adjust the VM’s available memory size to:

Ma1 = U0

U1
Ma0 (3)

where Ma0 is the memory size allocated before current round.
The whole memory resource allocation strategy is explained by Algorithm 2.
The strategy firstly reads the current allocated memory and its usage from the located

target VM (Line 1–3). The size of total free memory that can be allocated is also read from
the resource pool (Line 4). Then according to the Eq. (3), a new memory size is calculated
for the allocation (Line 5), here we set the objective memory usage to 0.6 (60 %). This new
memory size can be set to the VM for both Apply memory and Return memory allocation.

The new memory size could be amended when it is used to add more memory to the VM.
The strategy needs to make sure that the allocating memory does not exceed the maximum

123



1520 H. Jin et al.

size configured to the VM (Line 7–9), and the added part does not exceed the available
memory in the resource pool neither (Line 10–15). The message declares “out of memory
resource pool” will be sent when all the free memory in the pool is allocated to VMs. When
the allocating memory size is revised, the allocation is finished after the new size is set to the
target VM, and the memory pool makes the corresponding change (Line 16–17).

As for the allocation that returns VM’s void memory to the resource pool, each VM
is assigned a property expresses the minimum memory size for its essential running. The
strategy checks the allocated memory size and makes it not less than that reserved size (Line
19–21). Then the VM and the resource pool are handled at the end of allocation (Line 22–24).

The primary consideration of memory allocation strategy in VRAS is to provide VMs on
the host enough memory to guarantee the QoS of applications running on them. Once the

123



A Lightweight Local Resource Allocation System 1521

Table 1 VRAS configuration Parameter Description Value

pu_min Lower threshold of VCPU usage 30 %

pu_max Uppper threshold of VCPU usage 70 %

mu_min Lower threshold of memory usage 40 %

mu_max Upper threshold of memory usage 80 %

ms_min Size of VM’s reserved memory 128 MB

ms_max Size of VM’s configured memory 2 GB

memory is allocated to a VM, it will not be taken back to resource pool until the VM send
Return memory request. Thus no Apply memory request will bring memory supplies to the
VM when the memory resource pool is empty. In that case, raising memory usage’s lower
threshold and allocation objective will help moving more void memory from light loaded
VMs to heavy loaded VMs, which improves the fairness of memory allocation.

6 Evaluation

In this section, we present experiments conducted to evaluate the performance of VRAS.
The benchmarks used in experiments include a computing-intensive program, a memory-
consuming application and a Web application. The experimental results demonstrate that
VRAS effectively allocates both processor and memory resources with tiny communication
cost.

6.1 Experiment Setup

All the experiments are conducted on a two-socket server; each socket has 4 Intel Xeon
1.6 GHz CPUs. The server is equipped with 4 GB DDR RAM, 160 GB storage, and
1,000 Mbps Ethernet network connected. Linux 2.6.18 with Xen 3.1.0 installed as the host
operation system. Every VM deployed for experiments uses RedHat Enterprise Linux 5 as
guest OS. VRAS used in the experiments is configured as Table 1:

To compare with the typical resource allocation mechanism, we conduct experiments
on VNIX [25], which continuously collects every VM’s running status and uses additive-
increase/multiplicative-decrease (AIMD) strategy [9] to allocate processor and memory
resources. We also statically configure the VM with full resources as the best case, in which
the VM always runs with most resources that can be assigned and the resource reallocation
will not happen.

6.2 Computing-Intensive Application

To evaluate the effectiveness of processor resource allocation in VRAS, we conduct a set of
experiments using Super PI [26]. Super PI is a single thread computing-intensive program.
We execute 1–8 individual Super PI jobs simultaneously in a VM, each job calculates pi to 1
million digits after the decimal point. We also run jobs in the VM statically assigned with 8
VCPUs and 2 GB memory for the best case. Each time before the Super PI jobs start running,
the VM would clear previous jobs and wait for a short time, so that the allocation systems
can withdraw VCPUs and leave just 1 VCPU for the next test.

123



1522 H. Jin et al.

Fig. 2 Super PI performance

From Fig. 2 we can observe that, comparing to the best case, both dynamic allocation
systems will take time to add VCPU to the VM as the number of jobs increasing, which
makes loss of efficiency. Considering the experiments bring most tough requirements to the
processor resource, those declines would be less in usual cases.

As the number of jobs increases, VRAS performs better than VNIX. The request driven
mechanism of VRAS calls for allocation immediately when resource requirement changes.
While in VNIX the interval between two rounds of VM status collection may lead to delay
of allocation. The results show that VRAS improves the efficiency of the 8-jobs task by 21 %
comparing to VNIX.

6.3 Memory-Consuming Application

This part evaluates the effectiveness of memory resource allocation in VRAS. We transfer a
group of files from the host to the local VM through SCP connection in the experiments. The
files are sized from 128 to 1,024 MB. Despite the disk I/O and network I/O, the performance
of big file transfer is sensitive to the memory size. Each file is respectively transferred with
VRAS, VNIX and full resource configured VM as best case. At the beginning of every
experiment, the VM’s resource will be set back to the initial status (a single VCPU and
128 MB memory) when using dynamic allocation systems.

As shown in Fig. 3, VRAS does not lose too much performance comparing to the best case,
which suggests that it allocates required memory to the VM efficiently. However, due to the
AIMD strategy, VNIX shows degradation on memory allocation when resource requirement
increases. The advantage of VRAS reaches 69 % of performance improvement to VNIX
when transferring 1,024 MB file.

6.4 Web Application

In this part we evaluate the general performance of VRAS using RUBiS [27], an auction
site benchmark. Three VMs are deployed for running a database system, a web application

123



A Lightweight Local Resource Allocation System 1523

Fig. 3 File transfer performance

Fig. 4 RUBiS performance

server and a client, respectively. The experiments are conducted on VRAS, VNIX and best
case like before, only in the best case configured 1.6 GB memory to the web server VM and
database VM, 512 MB memory to the client VM. We use the client to send requests to access
the RUBiS web site in different speeds, and count how fast they respond. The results are
shown in Fig. 4.

The results demonstrate that VRAS generally performs better than VNIX, the former
behaves 28 % better than the latter at the speed of 800 req/s. In conditions of light workloads
(request speed is less than 600 req/s), the efficiency of VRAS is very close to the best case.

QoS of application is not the only concern of a resource allocator, another important
purpose of resource dynamic scheduling is to squeeze void computing resources from the

123



1524 H. Jin et al.

Fig. 5 RUBiS web server’s CPU usage

Fig. 6 RUBiS database’s memory usage

VM and raise the VM’s resource usage. Figure 5 shows the average CPU usages of VM in
the RUBiS experiments, which are calculated by the following equation:

U = 1

T

T∑

t=1

(
1

nt

nt∑

i=1

uti

)
(4)

where T is the time spent for the experiment, nt is the VCPU number of VM at time t, uti

is the usage of the i th VCPU at time t . We observe that both VRAS and VNIX keep CPU
usages between 60 and 70 % when the workloads are light. Alone with the raising workloads,

123



A Lightweight Local Resource Allocation System 1525

VRAS allocates full processor resources to the VM as well as VNIX, and makes the CPU
usages very close to the usages in best case. The improvement also happens to the memory
resource. As shown in Fig. 6, the average memory usages are at the position around 65 % in
VRAS and VNIX, while climbing from 1 to 36 % in best case (2 GB memory configuration).
That is, more than 1 GB of the memory is saved from wasting in the VM which does not
need so much resource. We also notice that the average memory usages of VNIX are higher
than that of VRAS in most cases. Considering the difference of performance impacts to the
application in VM caused by those two allocators, it implies that VNIX schedules resource
not as quickly as VRAS does.

6.5 Overhead Analysis

Overhead of VRAS mainly comes from two places: RAM in host and Sensor in VM. The cost
of Sensor is relatively stable, while that of RAM depends on the number of managed VMs and
the variation of each VM’s resource requirements. The time complexity of algorithms used in
VRAS resource allocation strategies is O(n), here n denotes the number of received requests.
That value could be increased if other complex strategies, such as prediction algorithms on
resource consumption, are employed.

One contribution of VRAS is the low overhead on network bandwidth. During the exper-
iments, we observe that the average throughput of VRAS reaches no more than 0.3 kbps. It
is much less than 1.6 kbps of VNIX, reduces 81 % of the network bandwidth consumption.
Theoretically, even in the toughest situation, the request driven mechanism used in VRAS
promises that the network overhead will not be more than other traditional dynamical resource
allocations.

7 Conclusion

In this paper, we present VRAS, a resource allocation system that dynamically distributes
virtualized computing resources among VMs on a local host. VRAS is designed to efficiently
allocate resources under light or moderate workloads on host. It leverages Sensor running in
the VM to monitor the resource usages and send request signals when the resource require-
ments change. Two strategies are implemented in VRAS to allocation processor and memory
resources. The processors are handled at both fine-grain and coarse-grain level, and the mem-
ory resources are scheduled based on the real memory usage. We conduct experiments on
different applications, results show that our VRAS performs very well on both computing-
intensive and memory consuming applications, 21 and 69 % better than the typical resource
allocation on processor and memory resources, respectively. The results on a web applica-
tion also prove the effectiveness of VRAS. As a lightweight resource allocation system, the
network overhead of VRAS in all experiments does not exceed 0.3 kbps.

VRAS have proven good accuracy and agility on resource allocation, especially for light
workloads. Next we plan to study the fairness of the request driven mechanism used in
VRAS, which is important in heavy workload environment. To address that problem, more
information about the inside world of VM would be analyzed and sent out by Sensor. Another
interesting challenge is the I/O resource allocation. Our approach may take advantage of its
low cost on network.

Acknowledgments The research is supported by National Science Foundation of China under Grant No.
61073024 and 61232008. It is also supported by National 863 Hi-Tech Research and Development Pro-

123



1526 H. Jin et al.

gram under Grant No. 2013AA01A213, Outstanding Youth Foundation of Hubei Province under Grant No.
2011CDA086S, and Guangzhou Science and Technology Program under Grant 2012Y2-00040.

References

1. Smith, J. E., & Nair, R. (2005). The architecture of virtual machines. IEEE Computer, 38(5), 32–38.
2. Rosenblum, M., & Garfinkel, T. (2005). Virtual machine monitors: Current technology and future trends.

IEEE Computer, 38(5), 39–47.
3. Wang, X., Sang, Y., Liu, Y., & Luo, Y. (2011). Considerations on security and trust measurement for

virtualized environment. Journal of Convergence (JoC), 2(2), 19–24.
4. Luo, H., & Shyu, M. L. (2011). Quality of service provision in mobile multimedia—A survey. Human-

centric Computing and Information Sciences (HCIS), 1, 5. doi:10.1186/2192-1962-1-5.
5. Xie, X., Jiang, H., Jin, H., Cao, W., Yuan, P., & Yang, L. T. (2012). Metis: A profiling toolkit based on the

virtualization of hardware performance counters. Human-centric Computing and Information Sciences
(HCIS), 2, 8. doi:10.1186/2192-1962-2-8.

6. Nelson, M., Lim, B. H., & Hutchins, G. (2005). Fast transparent migration for virtual achines. Proceedings
of the 2005 USENIX annual technical conference (USENIX 2005) (pp. 391–394). Anaheim, USA.

7. Clark, C., Fraser, K., Hand, S., Hanseny, J. G., July, E., & Limpach, C., et al. (2005). Live migration of
virtual machines. Proceedings of the 2nd ACM/USENIX symposium on networked systems design and
implementation (NSDI 2005), 2 (pp. 273–286). Boston, USA.

8. Abdelzaher, T., & Lu, C. (2000). Modeling and performance control of internet servers. Proceedings of
the 39th IEEE conference on decision and control (ICDC 2000), 3 (pp. 2234–2239). Sydney, Australia.

9. Anderson, M., Kihl, M., & Robertsson, A. (2003). Modeling and design of admission control mechanisms
for web servers using non-linear control theory. Proceedings of the conference on performance and control
of next-generation communication networks (ITCom 2003), 5244 (pp. 53–64). Orlando, USA.

10. Lu, C., Abdelzaher, T. F., Stankovic, J., & Son, S. (2001). A feedback control approach for guarantee-
ing relative delays in web servers. Proceedings of the 7th IEEE real-time technology and applications
symposium, 51–62, Taipei.

11. Diao, Y., Gandhi, N., Hellerstein, J. L., Parekh, S., & Tilbury, D. M. (2002). Mimo control of an apache
web server: Modeling and controller design. Proceedings of the 2002 American control conference (ACC
2002), 6 (pp. 4922–4927). Minneapolis, USA.

12. Goel, N., & Shyamasundar, R. K. (2012). An executional framework for BPMN using Orc. Journal of
Convergence (JoC), 3(1), 29–36.

13. Braham, P., Draconic, B., Fraser, K., Hand, S., Harris, T., & Ho, A., et al. (2003). Xen and the art of
virtualization. Proceedings of the 19th ACM symposium on operating systems principles (SOSP 2003,
37(5) (pp. 164–177). New York, USA.

14. Whitaker, A., Shaw, M., & Gribble, S. D. (2002). Scale and performance in the denali isolation kernel.
Proceedings of the 5th symposium on operating systems design and implementation (OSDI 2002), 36
(pp. 195–209). Boston, USA.

15. Liu, X., Zhu, X., Singhal, S., & Arlitt, M. (2005). Adaptive entitlement control of resource partitions
on shared servers. Proceedings of the 9th IFIP/IEEE international symposium on integrated network
management (IM 2005) (pp. 163–176). Nice, France.

16. Wang, Z., Zhu, X., & Singhal, S. (2005). Utilization and slo-based control for dynamic sizing of resource
partitions. Proceedings of the 16th IFIP/IEEE international workshop on distributed system: Operations
and management (DSOM 2005), 3775 (pp. 133–144). Barcelona, Spain.

17. Zhu, X., Wang, Z., & Singhal, S. (2006). Utility driven workload management using nested control design.
Proceedings of the 2002 American control conference (ACC 2006) (pp. 6033–6038). Minneapolis, USA.

18. Padala, P., Shin, K., Zhu, X., Uysal, M., Wang, Z., Singhal, S., et al. (2007). Adaptive control of virtualized
resources in utility computing environments. Proceedings of the 2nd ACM SIGOPS/EuroSys European
conference on computer systems 2007(EuroSys 2007, 41(3) (pp. 289–302). Lisbon, Portugal.

19. Zhang, Y., Bestavros, A., Guirguis, M., Matta, I., & West, R. (2005). Friendly virtual machines: Leveraging
a feedback-control model for application adaptation. Proceedings of the 1st ACM/USENIX international
conference on virtual execution environments (VEE 2005) (pp. 2–12). Chicago, USA.

20. Qian, H., Miller, E., Zhang, W., Rabinovich, M., & Wills, C. E. (2007). Agility in virtualized utility
computing. Proceedings of the 3rd international workshop on virtualization technology in distributed
computing (VTDC 2007) (pp. 1–8). Reno, USA.

123

http://dx.doi.org/10.1186/2192-1962-1-5
http://dx.doi.org/10.1186/2192-1962-2-8


A Lightweight Local Resource Allocation System 1527

21. Wood, T., Shenoy, P., Venkataramani, A., & Yousif, M. (2007). Black-box and gray-box strategies for
virtual machine migration. Proceedings of the 4th USENIX symposium on networked systems design and
implementation (NSDI 2007) (pp. 229–242). Cambridge, USA.

22. Cherkasova, L., Gupta, D., & Vahdat, A. (2007). Comparison of the three CPU schedulers in Xen. ACM
SIGMETRICS Performance Evaluation Review, 35(2), 42–51.

23. Credit Scheduler. http://wiki.xensource.com/xenwiki/CreditScheduler
24. Waldspurger, C. A. (2002). Memory resource management in VMware ESX Server. Proceedings of the

5th symposium on operating systems design and implementation (OSDI 2002), 36 (pp. 181–194). Boston,
USA.

25. Shi, X., Tan, H., Wu, S., & Jin, H. (2008). VNIX: Managing virtual machines on clusters. Proceedings of
Japan-China joint workshop on frontier of computer science and technology (FCST 2008) (pp. 155–162).
Nagasahi, Japan.

26. Super PI. http://www.superpi.net
27. RUBiS. http://rubis.ow2.org

Author Biographies

Hai Jin was born in 1966. He received his Ph.D. degree in com-
puter engineering from HUST in 1994. Currently, he is a Cheung
Kung Scholars Chair Professor of computer science and engineering at
HUST. His research interests include cloud and grid computing, P2P
computing, and computing system virtualization. He is now Dean of
the School of Computer Science and Technology at HUST and a senior
member of IEEE and ACM.

Wei Gao was born in 1978. He is a Ph.D. candidate in the School of
Computer Science and Technology at Huazhong University of Science
and Technology (HUST). His research interests include computing sys-
tem virtualization, distributed parallel computing and cloud computing.

123

http://wiki.xensource.com/xenwiki/CreditScheduler
http://www.superpi.net
http://rubis.ow2.org


1528 H. Jin et al.

Song Wu was born in 1975. He received the Ph.D. degree in computer
science from Huazhong University of Science and Technology (HUST)
in 2003. Currently, he is a professor at SCTS/CGCL of HUST. His
research interests include cloud computing, grid computing and system
virtualization. He is the director of Parallel and Distributed Computing
Institute at HUST.

Xuanhua Shi was born in 1978. He received the Ph.D. Degree in com-
puter architecture from Huazhong University of Science and Technol-
ogy (HUST) in 2005. Currently he is an associate professor at HUST.
His research interests include cluster and grid computing, trusted com-
puting, computing system virtualization, and cloud computing. He is a
member of ACM and China Computer Federation.

123


	VRAS: A Lightweight Local Resource Allocation System for Virtual Machine Monitor
	Abstract
	1 Introduction
	2 Related Work
	3 VRAS Framework
	4 Processor Resource Allocation
	5 Memory Resource Allocation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Computing-Intensive Application
	6.3 Memory-Consuming Application
	6.4 Web Application
	6.5 Overhead Analysis

	7 Conclusion
	Acknowledgments
	References


