
Dynamic Processor Resource Configuration in Virtualized Environments

Hai Jin, Li Deng, Song Wu, Xuanhua Shi
Services Computing Technology and System Lab

Cluster and Grid Computing Lab
School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, 430074, China
Email: hjin@hust.edu.cn

Abstract—Virtualization can provide significant benefits in
data centers, such as dynamic resource configuration, live
virtual machine migration. Services are deployed in virtual
machines (VMs) and resource utilization can be greatly im-
proved. In this paper, we present VScheduler, a system that
dynamically adjusts processor resource configuration of virtual
machines, including the amount of virtual resource and a new
mapping of virtual machines and physical nodes. VScheduler
implements a two-level resource configuration scheme – local
resource configuration (LRC) for an individual virtual machine
and global resource configuration (GRC) for a whole cluster
or data center. GRC especially takes variation tendency of
workloads into account when remapping virtual machines to
physical nodes. We implement our techniques in Xen and
conduct a detailed evaluation using RUBiS and dbench. The
experimental results show that VScheduler not only satisfies
resource demands of services, but also reduces the number of
virtual machines migration, which can provide a stable VM
distribution on physical nodes in data centers.

Keywords-Service; Virtualization; Virtual Machine; Live Mi-
gration; Resource Configuration; Data Center

I. INTRODUCTION

The workloads of services usually vary with time,
while traditional resource allocation is only done statically.
Thus, execution environments are often forced to be over-
provisioned based on anticipated peak demands, inevitably
resulting in substantial wasted resources besides additional
consumed power. The average resource utilization is typi-
cally below 15% - 20% [1].

In recent years, system virtualization technologies bring
a dramatic change to data centers by offering the benefits
of resource-efficiency, security, and power-saving [2][3].
Services can be deployed in virtual machines (VMs) [4][5].
These virtual machines are isolated from each other but can
multiplex the same underlying hardware resources. Because
virtualization decouples the dependencies between applica-
tion software platform and hardware, the ability of dynamic
resource management in data centers becomes strong.

Sandpiper [6] was proposed to automatically monitor
system resource usage, detect hotspots, and tackle resource
deficits on physical servers using live migration of virtual
machine. Entropy resource manager for homogeneous clus-
ters [3] was presented to perform dynamic VM consolidation
based on constraint programming to make the number of

active physical nodes minimum. A management framework
for a virtualized cluster system [7] implemented performance
tuning to achieve minimum costs in a virtual cluster. How-
ever, these systems did not take variation tendency of dy-
namic workloads into account especially when redistributing
VMs on nodes, which might lead to frequent VM migration.

In this paper, we present VScheduler to implement dy-
namic resource configuration for services in virtualized en-
vironments. VScheduler complements the capacity planning
and virtual machine migration technologies to mitigate pro-
cessor resource contentions both inside and outside of virtual
machines. The main contributions of the paper are listed as
follows: 1) we present a two-level resource configuration
scheme to effectively mitigate resource deficits of services in
virtualized environments – one level LRC for an individual
virtual machine and the other GRC for the remapping of
virtual machines to physical nodes; 2) the global resource
configuration method takes variation tendency of workloads
into account and finds a stable distribution of VMs on
physical nodes.

We have implemented VScheduler prototype system based
on Xen [8]. To test our system, we have built a testbed
for a virtual data center using Xen. A detailed experimental
evaluation is conducted on the testbed in various scenarios
using RUBiS benchmarks [9]. Experimental results show
that VScheduler not only satisfies resource demands of
services, but also reduces the number of virtual machines
migration, which provides a stable VM distribution on
physical nodes in data centers.

The remainder of paper is organized as follows. Vir-
tualized resource management is discussed in section II.
Section III describes the two-level processor resource con-
figuration scheme in detail. In section IV we present the
implementations of VScheduler prototype system. In section
V we describe our evaluation methodology and present the
experimental results. Finally, section VI summarizes our
contributions and outlines our future work.

II. VIRTUALIZED RESOURCE MANAGEMENT

System virtualization provides to the upper layer the
abstraction of the underlying hardware — a complete system

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.37

32

Host OS/VMM

Hardware

VM VM VM

Guest OS Guest OS Guest OS

Service

Service

Service

Figure 1: System virtualization model

platform which an operating system can run on. The soft-
ware layer providing resource virtualization is called virtual
machine monitor (VMM). The VMM runs on bare hardware
or on top of an operating system, while virtual machines
(VMs) run on the VMM. A system virtualization model is
depicted in Fig. 1.

Guest operating systems in virtual machines use virtu-
alized resource, while VMM is responsible for mapping
virtualized resource to physical resource. Usually, there is
a privileged domain named domain 0 [8] on VMM which
is responsible for managing other VMs and their virtual
devices. In a cluster or data center, each physical node runs
a VMM and one or more VMs. Services are deployed in
virtual machines.

Virtualization weakens the inter-dependence between op-
erating systems and hardware. It has been an effective way
to dynamic resource configuration. Usually, virtual resource
management can be done in three levels:
Application-Level Resource Management: This is a dis-

tributed resource management method. It is virtual machines
themselves who are responsible for the efficiency and fair-
ness of resource allocation across VMs. A "friendly" VM
(FVM) [10] is proposed to adjust its demands for system
resources. Virtual machine itself should know its resource
usage status best. However, because multiple VMs share the
same underlying hardware, they should consult with each
other about the share of resource in a friendly manner.
Host-Level Resource Management: This is a centralized

resource management approach. It is central authority – host
kernel or VMM who allocates resources to virtual machines
residing on the host. For processor resource, multiple sched-
ulers have been used in Xen [11], such as borrowed virtual
time (BVT) [12], simple earliest deadline first (SEDF) [13]
and credit scheduler [14]. For memory resource, MEmory
Balancer (MEB) [15] is proposed to dynamically monitor the
memory usage of each virtual machine, accurately predict its
memory needs and periodically reallocate host memory.
Cluster-Level Resource Management: This is a centralized

resource management method too. There is a control center
that is responsible for resource management in a cluster.
As virtualized clusters or data centers enable the sharing of
resources among all the hosted applications, control center

can dynamically adjust resource allocation of virtualized
nodes on demand. Virtual machines can be migrated freely
and smoothly from one node to another, which facilitates
system maintenance, load balancing, fault tolerance, and
power-saving. Live migration of virtual machines has been a
strong resource management tool in clusters or data centers.

Sandpiper [6] is proposed to balance the workloads of
physical nodes by using live VM migration. It employs a
First-Fit-Decreasing (FFD) heuristic to relocate VMs from
overloaded nodes to under-utilized ones. Based on control
theory, resource control systems are designed and imple-
mented [16][17] to adapt to dynamic workload changes
to achieve application-level quality of service or service-
level objectives of applications. A management framework
is presented [7] to automatically tune performance for a
virtualized cluster.

III. PROCESSOR RESOURCE CONFIGURATION SCHEME

Resource demands of services change with the fluctuation
of their workloads. Dynamic configuration is an effective
way to improve resource utilization while satifying service-
level objectives (SLOs).

After system virtualization is introduced, applications are
deployed in guest operating systems (OSes). Guest OSes
usually use virtualized resource and virtual machine moni-
tors (VMMs) are responsible for the mapping of virtualized
resource to physical one. Thus, resource contentions would
occur in two layers: one inside VMs and the other in the
layer of VMM.

Resource contentions inside VMs mainly happen among
multiple processes or threads of applications. When scarce
resource is time-shared by these processes or threads, cor-
responding management overhead on resource allocation,
scheduling and process context switching becomes high,
which directly induces performance degradation of services.
If much more resource is added, the contention can be
removed. So, dynamic configuration for VMs with varying
workloads is an effective method to mitigate resource con-
tentions inside VMs.

Resource contentions in the layer of VMM primarily
occur among multiple VMs residing on a same physical
node. Contentions would become intense especially when
total demands of all resident VMs are much larger than the
amount of real physical resource that can be provided by the
node. Decreasing workloads of physical nodes is the key way
to mitigate resource contentions in the layer VMM. Virtual
machines can be migrated lively from overloaded physical
nodes to light-loaded ones.

The details about mitigating the two kinds of resource
contentions are described in the following part.
A. Local Resource Configuration Strategy (LRC) for a Vir-
tual Machine

VScheduler intends to adjust processor resource configu-
ration for virtual machines when their loads vary with time.

33

We employ Additive Increase/On-demand Related Decrease
(AIORD) strategy to configure processor resource for virtual
machines. The AIORD rules may be expressed as follows:

I : lt+1 ←− lt + α;α > 0

D : lt+1 ←− f(lt, ut)

where I refers to the increase of processor resource because
of ascending processor demands, D refers to the decrease
of processor resource based on current resource demands of
applications, lt the amount of processor resource configured
for VMs at time t, ut the amount of processor resource
actually used by VMs at time t, and α is constant.

Here, α is set as 1. We define f(lt, ut) as following:

f(lt, ut) =
lt + ut

2

Linearly increasing processor resource is to prevent virtu-
alized cluster from thrashing due to frequent virtual machine
migrations induced by fast growth of the amount of pro-
cessor resource, while decreasing processor resource based
on current resource usage status is to avoid the waste of
resource.

B. Global Resource Configuration Strategy (GRC) in a
Cluster

When resource demands of a VM go up, the local resource
configuration strategy would configure the VM with more
or less processor resource. But the performance of the VM
can not be assured to be improved. Local resource config-
uration just makes possible the VM using more processor
resource. It is virtualized resource that VMs use and VMM
is responsible for mapping virtualized resource to physical
one. Whether the VM can really use more resource depends
on the real usage status of physical resource on the node
that the VM resides on.

If the total amount of virtualized resource employed by
all resident VMs is much larger than the amount of physical
resource provided by the node, resource contention must
be existing. When a physical node has scarce resource for
all resident VMs, we call the node an overloaded one. On
the contrary, if a node has excessive resource for current
workloads, the node is called a lightloaded one. A moderate-
loaded node means that the node has the right amount of
resource just matching the demands of workloads.

A feasible method to mitigate the contention on VMM
is to decrease workloads of the node. Live migration of
virtual machines is a good choice. Virtual machines can be
migrated lively and smoothly from an overloaded node to a
lightloaded one. Global resource configuration is to balance
the workloads of nodes in a virtualized cluster.

Global resource configuration intends to redistribute VMs
on physical nodes. In fact, the remapping of virtual machines
to physical nodes is a NP-hard problem [18]. We only
find a good solution close to the optimal one. Here, we

Table I: Symbols and Definitions
Symbol Definition

N the total number of physical nodes
M the total number of virtual machines
H[N][M] the distribution of VMs on physical nodes
Cp[N] processing unit capacity associated with each node
Cm[N] memory capacity associated with each node
Rp[M](t) processing unit demand of each VM at time t
Rm[M](t) memory demand of each VM at time t
T vm[M](t) workloads’ variation tendency of each VM at time t
T pm[N](t) workloads’ variation tendency of each node at time t

employ a greedy heuristic to dynamically redistribute virtual
machines on a cluster of physical nodes because of its fast
performance.

First, some notations are defined in Table I.
H is defined as follows:

H[i][j] =

{
0 if node ni is NOT hosting the VM vj ,

1 if node ni is hosting the VM vj .

We also define the workloads’ variation tendency of VM
vj and node ni at time t as follows:

Tvm[vj](t) = Rp[vj](t) −Rp[vj](t − 1)

Tpm[ni](t) =
∑

vj ,H[i][j]=1

Tvm[vj](t)

There are two main issues that should be solved when we
design a global resource configuration strategy:
1) Which Virtual Machines Should be Migrated: an in-

tention to migrate VMs is to mitigate resource contentions
among VMs on physical nodes. Some VMs should be moved
from an overloaded node to others, thus the remaining VMs
have adequate resource to use. How to select VMs on
overloaded nodes to be moved out? There are two factors
that should be considered. One is effectiveness, which means
that after the migration of these VMs, an overloaded node
becomes a moderate-loaded one. The other is migration cost.
The cost should be small.

Total migration time of VMs is usually an important
metric for migration cost [3]. We define the migration
cost function gmc as follow. The estimated cost gmc(vj) of
migrated VM vj is the amount of memory allocated to vj.

gmc(vj) = Rm(vj)

Furthermore, for light-loaded nodes, server consolidation
should be done for the sake of power-saving. All VMs on
one node are migrated to others and the node becomes
inactive. Power is saved because of less active physical
nodes. In the case, how to select VMs to be migrated is
also based on minimal migration cost.
2) Which Node Should a Virtual Machines be Migrated

to: light-loaded nodes are the best candidates. When we
choose a destination node for a migrated VM vj to be moved
to at time t1, workloads’ variation tendency is an important

34

Algorithm 1 GRC algorithm
1: for each over-loaded node ni do
2: compute a VM set that just makes ni un-overloaded

and has the smallest estimated migration cost;
3: end for
4: for each VM vj to be migrated do
5: workloadsTdSum ← MAXSUM;
6: for each light-loaded node ni do
7: if (T pm[ni] + T vm[vj]) < workloadsTdSum then
8: workloadsTdSum = T pm[ni] + T vm[vj];
8: destNode = ni;
9: end if

10: end for
11: add (vj, destNode) into List migrationTaskList;
12: end for

factor that we care about. GRC prefers the node ni that
the sum of T pm[ni](t1) and T vm[vj](t1) is the closest to 0.
Thus, after VM vj is migrated to node ni, the probability that
resource contention occurs on the node in the future would
be small based on the analysis of history information. The
reason is that, workloads’ variation tendency of VM vj is
contrary to that of node ni.

If there is no available light-loaded node to host the
migrated VM, VM swap is our second choice to decrease
workloads on overloaded nodes. By VM swap, more free
resource on the destination node is available for hosting
the migrated VM. A scratch node must be ready for VM
swap to temporarily host VMs. However, if VM swap fails
to mitigate resource contentions on overloaded nodes, an
inactive physical node can be activated to host migrated
VMs.

IV. SYSTEM DESIGN AND IMPLEMENTATION

VScheduler aims at processor resource configuration for
services’ QoS and high resource utilization in a large virtu-
alized cluster.

A. System Architecture
VScheduler is designed to be a three-layer, centralized

architecture, including a set of VMAgents inside VMs, a
group of PMAgents residing on physical computing nodes
and a control center – manager on a management node. The
system architecture of VScheduler is shown in Fig. 2.

VScheduler manager consists of two main modules: a
resource configuration scheduler and a command executor.
The scheduler makes decisions to find out a good resource
reconfiguration solution for virtualized nodes. The goal
of dynamic configuration is to mitigate resource deficits
when resource demands of services change. The scheduler
includes two parts: local resource configuration (LRC) and
global resource configuration (GRC). Command executor
implements the new resource configuration generated by
the scheduler. Configuration overhead should be as small
as possible.

VScheduler is implemented based on Xen 3.1.0. By
invoking interfaces provided by XenStore [19], PMAgent in

Dom0

PM
A

gent

OS

V
M

A
gent

Service

VM

OS

VM

OS

VMM

VMM

Dom0

V
M

A
gent

Service
Service

Service

OSOSOS

VMVMManagement Node
OS

V
M

A
gent

PM
A

gent

V
M

A
gent

nmn1

11 1k

1Computing Node

nComputing Node

manager

Executor
GRCLRC

Scheduler

Figure 2: The system architecture

domain0 collects resource usage information about proces-
sor, memory and network for each resident virtual machine.
VMAgent periodically gathers process-related or thread-
related information from /proc file system.

B. Parallel Migration Mode of Multiple Virtual Machines
As the overhead of dynamic configuration for an indi-

vidual VM is neglectable, the resource configuration over-
head of VScheduler is mainly incurred by global resource
configuration – live migration of virtual machines. Total
migration time of VMs is usually an important metric
for migration cost [3]. To reduce the cost, we parallelize
migration processes of some unrelated virtual machines to
get shorter total migration time (TMT).

Table II shows total migration time of two virtual ma-
chines in different scenarios. The two VMs are configured
with four VCPUs and 1GB RAM. They both run memory
database applications.
Serial mode means that only after one VM finishes the

complete migration process, the other starts to migrate.
Parallel mode denotes that migration processes of two

VMs overlap each other, that is, one VM starts to migrate
just before the other finishes the migration process. There
are four situations in parallel mode.
DSDD: Two VMs migrate from Different Source nodes

to Different Destination nodes (DSDD);
DSSD: Two VMs migrate from Different Source nodes to

a Same Destination node (DSSD);
SSDD: Two VMs migrate from a Same Source node to

Different Destination nodes (SSDD);
SSSD: Two VMs migrate from a Same Source node to a

Same Destination node (SSSD).
In Table II, TMT-VM1 means total migration time of

VM1 and TMT-VM2 total migration time of VM2. TMT-
VM1&VM2 denotes total migration time of VM1 and VM2.
From Table II we can conclude that parallelizing the migra-
tion process of two VMs with different source nodes and

35

Table II: Total Migration Time of VMs in Diverse Modes
VM migration mode TMT-VM1 (s) TMT-VM2 (s) TMT-VM1&VM2 (s)

serial-mode 15.878 16.908 32.786

parallel-mode DSDD 15.636 16.425 16.425
DSSD 28.967 26.913 28.967
SSDD 27.163 29.365 29.365
SSSD 31.932 32.208 32.208

different target nodes would greatly shorten total migration
time of mulitple VMs.

V. PERFORMANCE EVALUATION

In this section, VScheduler has been tested on a wide
variety of workloads. The experimental results demonstrate
that LRC and GRC strategies in VScheduler both can
effectively mitigate resource deficits in a virtualized cluster
or data center. They complement each other and none of
them can be dispensed with.

A. Experiment Setup
We conduct our experiments on a cluster consisting of

16 server-class nodes. Each node is configured with 2-
way quad-core Xeon E5405 2GHz CPUs and 8GB DDR
RAM. These nodes have Intel 80003ES2LAN gigabit net-
work interface card (NIC) and are connected via switched
gigabit Ethernet. Storage is accessed via iSCSI protocol
from a NetApp F840 network attached storage server. We
use Redhat Enterprise Linux 5.0 as the guest OS and the
privileged domain OS (domain 0). The host kernel is the
modified version of Xen 3.1.0.

In the following experiments, Apache servers, LAMP
servers and tbench run in virtual machines. RUBiS [9], an
open-source auction site benchmark, is run on LAMP server.
dbench [20] is an open source benchmark producing the
filesystem load. As one part of dbench, tbench produces the
TCP and process load. Apache 2.2.3-11, PHP 5.1.6, MySQL
5.1.39, RUBiS 1.4.2 [21], and dbenth 4.0 are respectively
used in the experiments. httperf 0.9.0 [22] is used to generate
continuous access requests for servers.

B. Effectiveness of LRC Strategy
To evaluate the effectiveness of our LRC strategy, we

conduct a set of experiments using RUBiS and tbench. Each
benchmark respectively runs in three settings: baseline, best
case, and LRC.

The baseline and the best case both use static resource
configuration. The difference is that, the VM is configured
with four virtual CPUs (VCPUs) in the baseline case and
eight VCPUs (the number of real physical CPUs) in the
best case. For LRC, dynamic resource configuration is used
and the VM is configured with four VCPUs initially.

Each experiment is repeated five times and every test
result comes from the arithmatic average of five values.

From Fig. 3 we observe that LRC has performance very
close to the best case. Although LRC has a little performance

0

200

400

600

800

1000

1200

 200 400 600 800 1000 1200 1400

R
es

po
ns

e
ra

te
 (

re
q/

s)

Connection request rate (req/s)

RUBiS

baseline
best
LRC

(a) RUBiS

0

200

400

600

800

1000

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
B

/s
)

The number of client processes

tbench

baseline
best
LRC

(b) tbench

Figure 3: Performance comparison

loss as opposed to the best case, it provides a more flexible
way to configure processor resource than traditional static
configuration methods.

C. Virtual Machine Migration
This part of experiments demonstrate the effectiveness of

virtual machine migration in the GRC strategy.
To evaluate the effects of VM migration, the experiment

uses three physical nodes and eight VMs. The initial config-
urations of these VMs are listed in Table III. All VMs run
Apache serving dynamic PHP web pages. The PHP scripts
are designed to be CPU intensive. httperf is used to inject
workloads of these VMs.

Fig. 4 shows a series of processor load on each VM
along with the triggered migrations. Each block represents
a VM. At about thirty seconds, a large load is placed on

36

Table III: The Initial Configuration of Eight VMs
VM Number of VCPUs RAM (MB) Start PM

1 2 512 1
2 4 512 1
3 2 512 1
4 3 512 2
5 3 512 2
6 4 512 3
7 2 512 3
8 2 512 3

0

200

400

600

800

 0 10 20 30 40 50 60 70 80 90

C
P

U
 L

oa
d

(%
)

P
M

1

Time (s)

VM3

VM2

VM8
VM3

VM8

VM6

0

200

400

600

800

 0 10 20 30 40 50 60 70 80 90

C
P

U
 L

oa
d

(%
)

P
M

2

Time (s)

VM3

VM2

VM8
VM3

VM8

VM6

0

200

400

600

800

 0 10 20 30 40 50 60 70 80 90

C
P

U
 L

oa
d

(%
)

P
M

3

Time (s)

VM3

VM2

VM8
VM3

VM8

VM6

Figure 4: A series of migrations to mitigate resource con-
tention

VM2, causing the CPU utilization on PM1 to exceed the
busy threshold. Our GRC strategy examines candidate for
migration. VM3 has the lowest migration cost and is selected
as a candidate. Because PM2 has sufficient free resource
to host VM3, it is migrated there, thereby eliminating the
hotspot. Similarily, at about 50 seconds, VM6 has increasing
workloads to make processor resource on PM3 in busy state,
causing VM8 to migrate from PM3 to PM2. Thus, processor
resource on PM3 is not busy again.

D. LRC and GRC
In this part, we demonstrate that LRC and GRC strategies

in VScheduler both can effectively mitigate resource deficits
in a virtualized cluster or data center. They complement each
other and none of them can be dispensed with.

The set of experiments use one physical node and three
VMs. Each VM is configured with three VCPUs and 1GB
RAM. All VMs run RUBiS benchmark. Same connection
requests are sent to the three VMs simultaneously. We
test the average response rates of VMs using httperf with

0

200

400

600

800

 200 300 400 500 600 700 800

R
es

po
ns

e
ra

te
 (

re
q/

s)

Connection request rate (req/s)

LRC & GRC

LRC
GRC
LRC&GRC

Figure 5: The effects of LRC and GRC

different connection request rates. The test is repeated in
three settings: only LRC, only GRC, and LRC&GRC. LRC
means that only dynamic resource configuration inside VMs
can be done, while GRC denotes that only VM migration
is used to mitigate resource deficits. LRC&GRC means that
VMs can be dynamically configured by changing the amount
of virtual resource and their resident nodes.

Fig. 5 shows the effects of three settings. When connec-
tion request rate reaches about 500 req/s, average response
rates of VMs in setting LRC begin to drop down. Because
the three VMs share eight physical processors, there must
be resource contentions among resident VMs even if VMs
are configured with more virtual resource. In setting GRC,
since live VM migration mitigates resource deficits on the
physical node, average response rates go up with the increase
of connection request rates. But when connection request
rate arrives at about 750 req/s, the performance of VMs
starts to decrease. The reason is that resoure deficits occur
inside VMs and VM migration could not do anything for
this.

E. Data Center Prototype
We conduct an experiment to demonstrate how VSched-

uler performs under realistic data center conditions. We
deploy a prototype data center on a cluster of ten servers that
run a total of twenty-eight VMs. An additional node runs
VScheduler manager as the management node and the other
several nodes send requests to these servers using httperf as
clients.

The virtual machines run a mix of data center applications
including Apache servers, LAMP servers, tbench. We run
RUBiS on LAMP servers. Of the twenty-eight deployed
VMs, five run the RUBiS application, six run tbench, seven
run Apache serving CPU-intensive PHP scripts, two run
main memory database applications, and the remaining eight
serve a mix of PHP scripts and large HTML files.

The virtual machine distribution on physical nodes is
described in Fig. 6. Fig. 6(a) shows the 28 VMs are deployed
on physical nodes in a random mode initially. According to
changing application loads, the global scheduling algorithm

37

1

741 1 56 1
node07node06

2 2 6
node08

3 2
node09 node10

4 3 8

5
node05

544
node04

33
node03

62 2
node02

1 5 7
node01

1 5 7
node01 node02

6 3 3 4
node03 node04

2 5
node05

4
node06
6 1 1 1 5 1 2

node07
2 2 6
node08

3 2 7 4 5
node09

84 3
node10

RUBiS tbench Apache Serving
CPU−intensive PHP Scripts

Main Memory
Database Applications and large HTML files

A mix of PHP Scripts

(a) The initial deployment of virtual machines in random mode

(b) The steady state of VM distribution after using VScheduler

Figure 6: The VM distribution on physical nodes in initial
status and steady status

redistributes these virtual machines. Some CPU-intensive
applications monopolize a physical node due to their high
processor loads, while other applications share a node.
After using VScheduler, smaller numbers of virtual machine
migration occurs. The whole data center tends to a stable
status as shown in Fig. 6(b).

F. System Overhead and Scalability

Overhead in VScheduler is mainly used for resource
configuration in a cluster. Its value is dependent on the
number of physical nodes and virtual machines in the cluster.

Resource configuration overhead is primarily spent on
migrating VMs. Total migration time of VMs is usually
considered as a key metric, while the duration of VM
migration is related to its memory size. Fig. 7 shows the
relationship of migration time and VM memory size. To
shorten the total migration time of all migrated VMs, we
introduce the parallel mode of VM migration. Parallel mode
effectively reduces the total migration time by overlapping
migration processes of some migrated VMs.

The scalability of VScheduler is based on computational
complexity of resource configuration scheme, especially
global resource configuration algorithm. Although a remap-
ping of VMs to physical nodes is a NP-hard problem, our
heuristics can find a proper solution with acceptable time
overhead. Fig. 8 describes the relationship of the scale of
problem and algorithm performance. For very large data
centers with thousands of VMs, the computation could be
split up across multiple nodes, or applications can be broken
up into farms, each controlled independently by its own local
control center.

 0

 10

 20

 30

 40

 50

256 1024 2048 3072

T
ot

al
 M

ig
ra

tio
n

T
im

e
(s

)

Memory Size of Migrated VMs (MB)

Total Migration Time & Memory Size of VMs

tbench
mem
RUBiS

Figure 7: Total migration time of virtual machines varying
with memory size

0

10

20

30

40

0 200 600 1000 1400
T

im
e

(s
)

Number of VMs

Algorithm Performance

Figure 8: GRC performance and the number of VMs

VI. CONCLUSION AND FUTURE WORK

In this paper, we present VScheduler, a system that
dynamically adjusts resource configuration of virtual ma-
chines, including the amount of virtual resource and a new
mapping of virtual machines and physical nodes. A two-level
resource configuration scheme is proposed – local resource
configuration (LRC) for an individual virtual machine and
global resource configuration (GRC) for a whole cluster
or data center. GRC especially takes variation tendency of
workloads into account when remapping virtual machines to
physical nodes. We implement our techniques in Xen and
conduct a detailed evaluation using RUBiS and dbench. The
experimental results show that VScheduler not only satisfies
resource demands of services, but also reduces the number
of virtual machines migration, which provides a stable VM
distribution on physical nodes in data centers.

Currently, our system just dynamically configures proces-
sor resource in virtualized environments. We would like to
extend our work to consider other computing resource, such
as memory, disk I/O, and network resources.

VII. ACKNOWLEDGMENT

This work is supported by the National 973 Basic Re-
search Program of China under grant No. 2007CB310900,
China Next Generation Internet Project under grant

38

CNGI2008-109, and the Key Project in the National Sci-
ence & Technology Pillar Program of China under grant
No.2008BAH29B00.

REFERENCES

[1] M. Welsh and D. Culler, “Adaptive overload control
for busy internet servers,” in Proceedings of the 4th
Conference on USENIX Symposium on Internet Tech-
nologies and Systems, 2003.

[2] R. Nathuji and K. Schwan, “Virtual power: Coor-
dinated power management in virtualized enterprise
systems,” in Proceedings of the 21st ACM Symposium
on Operating Systems Principles (SOSP’07), 2007, pp.
265–278.

[3] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller,
and J. Lawall, “Entropy: a consolidation manager for
clusters,” in Proceedings of the ACM/Usenix Interna-
tional Conference on Virtual Execution Environments
(VEE’09), 2009, pp. 41–50.

[4] C. Sun, L. He, Q. Wang, and R. Willenborg, “Sim-
plifying service depolyment with virtual appliances,”
in Proceedings of IEEE International Conference on
Service Computing (SCC’08), 2008.

[5] G. Li and Y. Liang, “Constructing service oriented
dynamic virtual enterprise in chinese apparel industry,”
in Proceedings of IEEE International Conference on
Service Computing (SCC’10), 2010.

[6] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Black-box and gray-box strategies for virtual machine
migration,” in Proceedings of the 4th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI’07), 2007, pp. 229–242.

[7] C. Weng, M. Li, Z. Wang, and X. Lu, “Automatic per-
formance tuning for the virtualized cluster system,” in
Proceedings of the 29th IEEE International Conference
on Distributed Computing Systems (ICDCS’09), 2009,
pp. 183–190.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” in Proceedings of the
19th ACM symposium on Operating Systems Principles
(SOSP’03), 2003, pp. 164–177.

[9] C. Amza, A. Chanda, A. L.Cox, S. Elnikety, R. Gil,
K. Rajamani, W. Zwaenepoel, E. Cecchet, and J. Mar-
guerite, “Specification and implementation of dynamic
web site benchmarks,” in Proceedings of the 5th IEEE
Annual Workshop on Workload Characterization, 2002,
pp. 3–13.

[10] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and

R. West, “Friendly virtual machines: Leveraging a
feedback-control model for application adaptation,” in
Proceedings of the 1st International Conference on
Virtual Execution Environment (VEE’05), 2005, pp. 2–
12.

[11] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison
of the three cpu schedulers in xen,” ACM SIGMETRICS
Performance Evaluation Review, vol. 35, pp. 42–51,
Sep. 2007.

[12] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time
(bvt) scheduling: Supporting latency-sensitive threads
in a general-purpose scheduler,” in Proceedings of the
17th ACM symposium on Operating Systems Principles
(SOSP’99), 1999, pp. 261–276.

[13] I. Leslie, D. Mcauley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden, “The design
and implementation of an operating system to support
distributed multimedia applications,” IEEE Journal of
Selected Areas in Communications, vol. 14, pp. 1280–
1297, Sep. 1996.

[14] Credit scheduler. [Online]. Available:
http://wiki.xensource.com/xenwiki/CreditScheduler

[15] W. Zhao and Z. Wang, “Dynamic memory balanc-
ing for virtual machines,” in Proceedings of the
ACM/Usenix International Conference on Virtual Exe-
cution Environments (VEE’09), 2009, pp. 21–30.

[16] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem, “Adaptive
control of virtualized resources in utility comput-
ing environments,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer
Systems (EuroSys’07), 2007, pp. 289–302.

[17] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant, “Automated
control of multiple virtualized resources,” in Proceed-
ings of the 4th ACM SIGOPS/EuroSys European Con-
ference on Computer Systems (EuroSys’09), 2009.

[18] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, 1st ed. W. H. Freeman, 1979.

[19] D. Chisnall, The Definitive Guide to the Xen Hypervi-
sor, 1st ed. Prentice Hall PTR, 2007.

[20] Open source benchmark producing the filesystem load.
[Online]. Available: http://samba.org/ftp/tridge/dbench

[21] Rice university bidding system. [Online]. Available:
http://rubis.ow2.org/

[22] httperf homepage. [Online]. Available:
http://www.hpl.hp.com/research/linux/httperf/

39

