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Abstract—In virtualized data centers, virtual disk images (VDIs) serve as the containers in virtual environment, so their access

performance is critical for the overall system performance. Some distributed VDI chunk storage systems have been proposed in order

to alleviate the I/O bottleneck for VM management. As the system scales up to a large number of running VMs, however, the overall

network traffic would become unbalanced with hot spots on some VMs inevitably, leading to I/O performance degradation when

accessing the VMs. In this paper, we propose an adaptive and collaborative VDI storage system (ACStor) to resolve the above

performance issue. In comparison with the existing research, our solution is able to dynamically balance the traffic workloads in

accessing VDI chunks, based on the run-time network state. Specifically, compute nodes with lightly loaded traffic will be adaptively

assigned more chunk access requests from remote VMs and vice versa, which can effectively eliminate the above problem and thus

improves the I/O performance of VMs. We implement a prototype based on our ACStor design, and evaluate it by various benchmarks

on a real cluster with 32 nodes and a simulated platform with 256 nodes. Experiments show that under different network traffic patterns

of data centers, our solution achieves up to 2�8� performance gain on VM booting time and VM’s I/O throughput, in comparison with

the other state-of-the-art approaches.

Index Terms—Virtual disk image (VDI), collaborative, uneven traffic, adaptive
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1 INTRODUCTION

INFRASTRUCTURE-AS-A-SERVICE (IaaS) allows users to dep-
loy customized virtual machines (VMs) in a data center

based on their specific resource demands. Virtual disk images
(VDIs) (or the containers of VMs) play a critical role in the
management of VMs, especially in the deployment phase
and the VM running period. In general, a cloud data center
adopts a centralized storage system to store and manage
VDIs for simplicity [1], [2]. The I/O bottleneck of such a
storage system, however, may easily result in the phenome-
non of booting storm in the deployment phase of VMs [3].
That is, the overall performance will become very low when
a large number of VMs are booted up concurrently or their
VDIs are frequently read/written simultaneously when ini-
tializing their operating systems or hosted services. In addi-
tion, the VM running period after the system boot-up phase
may also suffer from the frequent VDI accesses because of
the data-intensive applications deployed in VMs [4].

In order to improve the access performance of VDIs,
some storage systems (such as [5], [6] and [7]) are designed

with collaborative cache, being able to distribute VDI
chunks across the local disks of multiple compute nodes.
Such systems, on the one hand, significantly reduce the
dependency of the centralized storages, as well as the I/O
bottleneck. On the other hand, they create a big opportunity
for the VMs to easily query and access the required chunks
stored on compute nodes, due to the high similarity across
the VDIs [5], [8], [9].

Such existing storage systems are suitable for the small-
scale or medium-size cloud environment, but they are not
suitable for large-scale environment because of inevitably
unbalanced network traffic state. In particular, the network
traffic volume is often distributed unevenly among compute
nodes in a large-scale data center [10], [11]. What is even
worse, the network traffic introduced by the remote chunk
access in the VDI storage system will likely aggravate such
uneven network status, especially when a large number of
VMs are running for a long time. Since the existing collabo-
rative storage methods are unaware of the dynamic traffic
state, the compute nodes with heavy traffic will become the
potential hot-spots, leading to serious I/O performance
degradation of VMs. We give an example in Section 2.3 to
illustrate such a problem.

In order to mitigate the negative effect of uneven traffic
distribution, it is necessary to make the chunk access adapt
to the dynamic traffic patterns.1 Few existing solutions,
however, can be adapted to dynamic traffic due to the
following challenges. (1) The requested chunks of VMs are
not always stored in the lightly traffic-loaded nodes because
of the diversity of cloud service requests and user demands.
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1. Traffic pattern refers to the incoming and outgoing traffic of VMs.
It is discussed in Section 2.2 in more detail.
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(2) The addressing mode2 is generally static in existing
collaborative VDI storage systems, so the chunk access pat-
terns cannot be dynamically changed to avoid hot-spots. (3)
The traditional traffic-aware scheduling like [10] and [12] is
designed only for the data centers with centralized storage,
which cannot fit the new collaborative environment.

Accordingly, we propose ACStor to solve this problem.
In comparison to the previous work, our solution is able to
dynamically handle the chunk access operations in the VDI
storage system, based on the run-time network traffic load
on compute nodes. Specifically, there are three significant
contributions in this work.

� We characterize the existing VDI storage systems,
and validate the uneven traffic distribution issue.
Such a problem is due to the fact that the existing sol-
utions consider only the chunk access in an ideal
environment, neglecting the unbalanced traffic state
among compute nodes. Such an unbalanced traffic is
very common in data centers, and easily leads to
serious I/O performance degradation of VMs.

� We design a set of optimization strategies for improv-
ing the VDI chunk access performance. (1) We devise
a two-level cache, including a private cache and a pub-
lic cache, which can handle the access of VDI chunks
more efficiently on compute nodes than traditional
approaches, because of the separate writes and reads.
(2) Under our solution, the chunk access is enabled to
adapt to the dynamic traffic patterns: the requests can
be dynamically assigned to the nodeswith light traffic
load via an improved consistent hashing algorithm.
(3) We propose a deduplication mechanism divided
into distributed and local, to mitigate the storage con-
sumption. The local deduplication based on chunk
contents furthermore reduce cache updates.

� We rigorously implement a prototype system and
carefully evaluate our solution. Experiments show
that it can achieve 2�8� performance improvement
compared to other existing VDI storage approaches
with collaborative cache under different network traf-
fic patterns in data centers.

The rest of the paper is organized as follows. In Section 2,
we present the background and research motivation. In
Section 3, we describe the key design of ACStor. In Section 4,
we elaborate the implementation of ACStor.We present evalu-
ation results in Section 5, and discuss some key issues and the
future work in Section 6. In Section 7, we discuss the related
work. Finally, we provide concluding remarks in Section 8.

2 BACKGROUND AND MOTIVATIONS

In this section, we first discuss the pros and cons of the
existing VDI storage strategies. Then, we discuss the traffic
patterns in the cloud environment with collaborative stor-
age, followed by our motivations.

2.1 Existing VDI Storage Models

In order to store and operate VDIs more efficiently for cloud
environment, it is necessary to customize a particular

storage system based on the features of VDI data such as
the similarity of data chunks, instead of directly using
general-purpose storage systems for simplicity [13].

There are many existing solutions for storing VDIs in
clouds. We classify them into three categories from the per-
spective of cache usage.

Non-Cache Based VDI Storage. This is the simplest model,
because it stores all VDIs in a dedicated back-end storage
device with a large capacity for simplicity. The dedicated
storage device could be a network file system (NFS) server or
a parallel file system (PFS), which can be shared by all VMs.
Such a centralized management, however, suffers from the
I/O performance bottleneck when the system scale is large,
in that each VDI access has to go through a few network
interface cards (NIC) of the storage device(s).

Local-Cache Based VDI Storage. The second strategy dis-
tributes VDIs across local disks of compute nodes before
booting up VMs, and also makes use of local cache to reduce
the chance of remote access to back-end storage, avoiding
unnecessary data transmission. By this means, VMs can
automatically fetch data on demand from the backing VDIs
to local caches. A critical problem is that the local caches
cannot store all of VDIs, as there are more and more discrep-
ancies among the cached VDIs across nodes over time,
which will definitely degrade the access performance.

Collaborative-Cache Based VDI Storage. In order to access
VDIs more efficiently, collaborative storage model is pro-
posed. This model splits a VDI into a series of fixed-size
chunks and distributes them across compute nodes. Due to
high similarity across VDIs, there will be many common
chunks across the caches, such that these chunks can be
shared across compute nodes in a peer-to-peer (P2P) manner,
such as BitTorrent [14] or a zone-sharedway [15]. The biggest
advantage of this model is that it has a high cache-hit ratio.

2.2 Traffic Patterns in Data Centers

Although a VDI storage system with collaborative cache
outperforms other traditional storage systems, its I/O
access performance is sensitive to network state in data cen-
ter, in that quite a few chunk accesses have to go through
the network to fetch the required data on remote nodes. The
remote data access performance will be degraded signifi-
cantly on the nodes with hot-spot traffic.

As more and more communication intensive applications
(MapReduce style) are deployed in cloud data center, the
bandwidth usage between virtual machines is rapidly grow-
ing. Therefore, the principle bottleneck often happens on
the inter-node (or inter-VM) communication bandwidth,
especially when a significant number of hot-spots exist in
the network [16], [17], [18].

The uneven traffic distribution among compute nodes is
very typical and common in clouds. The traffic here refers to
the number of incoming and outgoing network packets
received by VMs. Meng et al. [10] revealed two features of
the traffic pattern in a typical cloud. The first one is that the
VMs’ traffic volumes are unevenly distributed in the system,
as exemplified by Fig. 1a, which uses different levels of gray-
scale to reflect traffic rates. We can clearly see that different
pairs of VMs deliver various inter-VM traffic rates. The sec-
ond one is that the per-VM traffic is usually stable at large
time-scale. Shrivastava et al. [12] showed that the VMs

2. Addressing mode is the method that VMs can query and locate
the required data in the VDI storage system.
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comprising a multi-tier application may also introduce com-
plex traffic interactions among the physical nodes.

For a cloud system facilitated with collaborative VDI
cache, the traffic pattern (without considering the back-end
storage) is rather more complicated. The traffic in a collabo-
rative VDI storage system can be classified into two catego-
ries, the traffic generated by the remote chunk access and
the traffic independent of chunk access. Note that the chunk
access is not only triggered by local I/O operations of VMs,
but also triggered by a remote node, leading to an uneven
network traffic state in the system. Such a unbalanced traffic
state could be even aggravated over time, due to the fact
that the existing VDI collaborative storage systems are
unaware of the traffic state. For instance, hosts with fre-
quent inter-node (or inter-VM) communication have to deal
with chunk access from other hosts. Fig. 1b shows the traffic
variance (evaluated by coefficient of variance3 (CV)) with
different initial traffic states. We can clearly observe that
the traffic distribution is fairly unstable and much higher in
the VM booting/running phase (starting from second 31)
than the initial period (from second 20 to 30), because of the
simultaneous accesses to VDIs.

2.3 A Motivating Example

We use a motivating example to further illustrate the prob-
lem, as shown in Fig. 2a. Suppose VM1 needs to access the
chunk cached inHost4. At the same time, there is a traffic gen-
erated by the inter-VM communication between VM3 and
VM4. Then, theHost4’s traffic may become overloaded when
handling the two traffic links simultaneously, such that the
original chunk access fromVM1 will be significantly affected.

We evaluate the I/O performance of collaborative stor-
age under various traffic patterns on a 32-node testbed. The
experimental results show that the degree of I/O perfor-
mance degradation increases with the volume and the
uneven degree of traffic distribution (detailed in Section 5).
Such a phenomenon motivates us to design a collaborative
VDI storage which can adaptively handle the chunk access
operations based on the dynamic network traffic state.

3 ADAPTIVE AND COLLABORATIVE STORAGE

SYSTEM (ACSTOR)

In this section, we first introduce the basic idea, and then we
summarize three critical issues to revolve in our design.
Finally, we describe our solution in detail.

3.1 Basic Idea

As mentioned above, the existing collaborative VDI storage
systems cannot work efficiently in the situation of uneven
traffic distribution. The key reason is that the remote chunk
access cannot adapt to the varied traffic patterns at runtime.
Thereby, the basic idea of our solution is to assign more
chunk accesses from remote VMs to the compute nodes
with relatively light traffic and vice versa. Fig. 2 illustrates
the workflow of this approach. As shown in Fig. 2b, as the
traffic load of Host4 increases, VM1’s chunk access request
will be redirected to Host2, which has less traffic load com-
pared with others. Through this way, the global traffic load
can be balanced, so as to improve the network utilization as
well as the I/O performance of VMs in turn.

Such a design, however, may introduce three new chal-
lenging issues to resolve.

How to Store and Organize the VDIs in Data Center? The tra-
ditional collaborative storage systems divide whole VDIs
into a series of fixed-size chunks, and distribute them from
back-end centralized storage to compute nodes, such that all
of VMs can share them across the nodes. Since the nodeswith
the required chunks may not always have light traffic load,
we need to redirect some of the chunk accesses from the
heavily traffic-loaded hosts to the lightly loaded ones dynam-
ically. However, after changing the target hosts for some
requests, the corresponding accesses may be failed unexpect-
edly if the chunk requested cannot be found in the new desti-
nation host. For example, as shown in Fig. 2, after a chunk
access of VM1 is redirected from Host4 to Host2, it would be
failed if the required chunk was not cached on Host2. Hence,
the first issue is how to store and organize the VDIs, such that
each chunk can always be efficiently queried on any host.

How to Redirect a Chunk Access to the Host we Want? In
general, the addressing mode of existing collaborative stor-
age systems cannot dynamically change target hosts upon
the change of chunk access requests, even though the target
hosts have the chunks requested. Accordingly, it is neces-
sary to devise a dynamic addressing mode to access the
chunk stored in any host on demand (e.g., with less real-
time traffic), for the purpose of traffic load balance. For
example, suppose the requested chunk exists in both Host2
andHost4, and one wants to access the chunk stored inHost4
at the beginning yet redirects the access to theHost2 later on.
The existing addressing modes (e.g., using the Chunk-At-
Host-Table (CAHT) in [5] or using a Bloom Filter in [6]),
however, will actually still always stick to Host2 as long as
Host2 has the available requested chunk.

How to Balance the Global Traffic by Manipulating the Chunk
Accesses? It is necessary to design a traffic load balancing
policy according to the dynamic traffic state. In other words,

Fig. 1. Unbalance traffic state in clouds.

Fig. 2. The basic idea of ACStor. As VM3 starts to communicate with
VM4, VM1’s communication node will be redirected from Host4 to Host2,
in order to avoid the traffic conflict.

3. Traffic CV stands for the uneven degree of the traffic among com-
pute nodes. The bigger value of traffic CV is, the more unevenly the
traffic distribution exhibits. It is discussed in Section 5.3 in more detail.
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the system is supposed to automatically determine when
and where to forward an I/O request. Besides, we should
also take into account the network topology in data center.
As illustrated by Fig. 2, suppose both Host2 and Host3 have
the chunk requested by VM1. Note that the access distance
between VM1 and Host2 is farther than that between VM1

and Host3, hence Host3 is a better choice from the perspec-
tive of access distance. In this situation, suppose Host2 has
the lower traffic load thanHost3, then there will be a tradeoff
between the traffic load and the access distance, when deter-
mining which host to access for VM1.

3.2 Design Overview

In this section, we present the design overview of our
ACStor, as shown in Fig. 3. We propose three key princi-
ples in order to deal with the three issues addressed in
Section 3.1, respectively.

For the first one, we use a two-level cache architecture to
store the VDIs in ACStor. The two-level cache consists of a
private cache and a public cache in the local disk of a compute
node, in order to handle thewrites and reads, respectively.

For the second issue, we design an adaptive addressing
mode based on the two-level cache architecture. It can
change the target host of I/O requests of VDIs according to
the traffic load of each compute node and the network
topology of data center. This addressing mode takes
full advantage of consistent hash [19] and content-based
addressing [20] to query and identify the VDIs accurately,
improving the hit ratio of public cache at the same time.

For the third issue, in order to make the remote VDI
access adapt to the extra traffic patterns, we provide a map-
ping strategy based on both the dynamic traffic of compute
nodes and the topology of data center. This work is per-
formed by the decision maker in a control node, which noti-
fies the ACStor drivers the dynamic policies according to
the run-time network status.

3.3 Two-Level Cache

The two-level cache is used to cache the VDIs read from
the back-end storage into the local compute nodes. In what
follows, we describe private cache and public cache,
respectively.

3.3.1 Private Cache

The first-level cache is a private cache which is deployed in
the local disk of compute node. Each private cache employs

copy-on-write (CoW) to serve a VM, i.e., all writes are con-
ducted in this cache after copying the context from the back-
end storage. That is, the write operations will not be passed
to the public caches or the template VDI in back-end storage.

This design has two advantages: first, it can accelerate the
writes and a part of reads in the local nodes; second, VMs can
read the data from the public cacheswithout concerning dirty
data, because private cache handles all thewrite operations of
a VM. Generally, we do not need to use cache replacement
strategies in a private cache. When data size exceeds disk
quota, wewill dump part of data to the back-end storage.

3.3.2 Public Cache

Public cache (a.k.a., collaborative cache) will work when read
missing occurs in the private cache. The public caches serve
the reads sent from any VMs. A public cache deployed in a
compute node occupies an independent partition of the local
disk, and all of the public caches constitute a distributed stor-
age pool. For sharing across compute nodes conveniently,
VDIs are cached in public caches in the form of data chunks.
As shown in Fig. 3, we illustrate the procedure of finding a
chunk in public cache for VMs as follows. When a request
misses the private cache, the hypervisor will pass it to the
local host’s ACStor driver. The driver forwards this request
to a remote ACStor driver (or query the local public cache).
Upon receiving the request, the remote ACStor driver will
read the chunk in its local public cache. Such a procedure is
calledmapping. Bymodifying hypervisor’smapping strategy,
we implement a dynamic request redirecting for traffic load
balancing. If a public cache miss occurs, the ACStor driver in
the target host will fetch the chunk from back-end storage.

In order to save disk space and ensure that the chunks
are available in target hosts meanwhile, we do not distribute
these chunks or their replicas in the storage pool in advance.
Instead, as ACStor service starts, an empty public cache is
created in each compute node. Every missing request from
private caches needs to access the template VDIs, fetch the
corresponding data blocks, and put them in the public
caches on demand (i.e., copy-on-read). Users can decide the
size of public cache according to the disk utilization. Vari-
ous cache replacement algorithms can be applied to the
public cache, such as first in first out (FIFO), least recently
used (LRU), and least frequently used (LFU). The requests that
cannot hit the public cache will be forwarded to the back-
end storage device for searching the template VDIs.

3.4 Adaptive Addressing Mode

In the above section, we provide an overview of the I/O
flow in ACStor. In what follows, we describe the addressing
mode and discuss why it can adapt to the dynamic traffic in
data centers.

3.4.1 Mapping Procedure

First of all, we elaborate the mapping procedure, which is
the key to locate the target public cache.

As shown in Fig. 3, when a VM sends an I/O request, it
will search the private cache first. Since the private cache is a
file named the ID of VDI used by a VM, we can use the ID of
VDI and file sector offset information to seek the requested
data. If private cache miss occurs, the hypervisor will pass
this request to the ACStor driver that will determine which

Fig. 3. The architecture of ACStor with two levels of caches (i.e., public
cache and private cache).
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host (i.e., public cache) to access. To locate the target host, we
use consistent hashing algorithm [19] here, which maps each
request to a host on a hash circle (similar to Chord [21]).

As shown in Fig. 4, all compute nodes are distributed on a
hash circle. When a request with VDI ID and offset informa-
tion comes, we convert this information to a 64 bit hash value
called the object ID (OID). AnOID consists of two parts: a pre-
fix to identify the target public cache and a suffix to identify a
chunk in the corresponding public cache. So an OID can
uniquely identify a VDI chunk in ACStor. Actually, in order
to implement the re-mapping to be introduced later, we use
only the prefix ofOID to locate the target public cache, instead
of addressing the specific chunk. For example, the request in
Fig. 4 locates the compute nodeHost1 by using the prefix.

3.4.2 Re-Mapping Procedure

Before explaining how to address a chunk in public cache,
we need to show the re-mapping procedure, which is used
to redirect requests from a host to another.

The consistent hashing and OID are used to determine
the target host for a chunk access. In this way, however, the
I/O requests with the same OID will be always forwarded
to the same host. In order to access different hosts with the
same chunks dynamically, we improve the consistent hash-
ing algorithm. Specially, the consistent hashing maps each
host on the circle to multiple pseudo-randomly distributed
points (we call them virtual node or v-node) on the same cir-
cle. If a request is mapped to a v-node, it will be essentially
handled by the host this v-node belongs to.

The biggest advantage of using v-node is that we can
control the distribution of requests directed to different
hosts, by dynamically changing the number of v-nodes for
each host at runtime. This is due to the fact that the hosts
with more v-nodes will be selected to handle requests more
frequently. Such a procedure is called re-mapping in this
paper. Some existing storage systems such as Amazon’s
Dynamo [22] also adopt virtual node for consistent hashing.
However, they are only used when a node leave or join the
system, or used to estimate the storage load based on the
capacities of disks. Note that the re-mapping will definitely
disorganize the distribution of requests, so it is necessary to
dynamically tune the number of v-nodes at runtime, while
it is unchangeable in traditional systems.

There are two points worth mentioning. (1) The re-
mapping operation only focuses on the distribution of
requests handled by the public caches, instead of the

specific request type. In fact, such a design is already able to
adjust the global traffic load very well, and it can be compat-
ible with different mapping policies. (Detailed in Section
3.6). (2) As the mapping strategy is changed, the requests
previously forwarded to a host may be redirected to another
host, leading to potential public cache misses. That is, the I/
O performance would be degraded, even though the overall
system availability is unaffected. In what follows, we will
discuss how to deal with this problem, by designing an
adaptive chunk addressing method in ACStor.

3.4.3 Chunk Addressing

If we use the OID to uniquely address/identify a chunk in
ACStor, there must be a cache miss when the target host of
the request is changed in the re-mapping procedure. Some
studies like [8] indicate that there are a lot of common
chunks with the same content after dividing VDIs into small
chunks. That is, even though each chunk has an unique
OID, many of them have the same contents actually, which
inspires us to use the content-based addressing in our adap-
tive addressing model. Hence, we can avoid most of cache
misses in the re-mapping procedure by using an index
named as object-to-content (OTC) table. In the following, we
will illustrate the process of chunk addressing in detail.

Initialization. As a new VDI is registered to ACStor, it will
be preprocessed to initialize an OTC table. Specifically, the
VDI will be divided into multiple fixed-size chunks, each of
which is identified by its OID on the back-end storage and
also identified by a hash code generated by the MD5 hash-
ing algorithm. Accordingly, each chunk in ACStor has two
identifiers, a 64 bit OID and a 128 bit hash code. The 128 bit
hash code represents the chunk content, and we call it con-
tent ID (CID). As shown in Fig. 4, an entry of OTC table
stands for a chunk which consists of an OID and a CID. The
OTC table on every compute node is synchronized with
those of other nodes through ACStor drivers, such that
every host can query any chunk information around the
whole system. Such a synchronization is performed only
when a new VDI is registered to the system, so there will be
no synchronization cost during the VM boot-up phase or
VM running period. But when a new VDI is registered, the
synchronization will happen again to make sure that each
host has the same OTC table contents.

Query. A complete chunk addressing process is shown in
Fig. 4. First, our solution locates the target host according to
the prefix of OID. Second, the OTC table in this host will be
searched in order to find the corresponding entry based on
the suffix of OID, such that we can get the CID of the
requested chunk. Last, we access the chunk based on the CID
in public cache. If there is no requested chunk (i.e., cache
miss), the cache update process will be conducted, that is,
we will fetch the chunk from the back-end storage, put it in
the public cache and index it by its CID for the future query.

Note that, different from previous Chord-like DHTs, such
as Dynamo [22] and Cassandra [23] with static addressing
mode, our method can dynamically adjust the mapping
node (for example, by changing the v-node quantity of
nodes) at runtime. And, It is optimized for virtualized envi-
ronment especially with heavy inter-VM traffic. Moreover,
our method is a chunk addressing mode based on VDI con-
tent and can deal with the potential public cachemiss.

Fig. 4. The I/O flow of the adaptive addressing mode in ACStor.
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3.5 Public Cache Deduplication

Our proposed deduplication mechanism consists of distrib-
uted deduplication and local deduplication. The former
deletes duplicated chunks in nodes according to OID, while
the latter works in local host based on CID.

Re-mapping procedure probably produces chunks dupli-
cation, which means that different hosts may have the same
chunks with the same OID. Distributed deduplication com-
ponent calculates the amount of chunks with the same OID.
If this amount is greater than a threshold value (set by
users), chunks with that OID need to be de-duplicated. We
adopt LRU algorithm to delete duplicated chunks.

As chunks with different OIDs may have the same
contents, we propose local deduplication, namely content-
based addressing in Section 3.4.3. It de-duplicates chunks
based on CID in each node. By taking advantage of content-
based addressing, the VDI chunks can be addressed based
on their contents instead of only using the offset informa-
tion in VDIs. It can avoid some cache update operations,
also reducing the cache misses in re-mapping procedure.

3.6 Mapping Strategy

In order to balance the global traffic, we need to implement
an efficient mapping and re-mapping strategy. In ACStor,
this issue can be converted to the problem of associating
v-nodes to hosts.

We propose a formula (Equation (1)) to determine the
number of v-nodes for host i, where n is the total number of
compute nodes, and � is a factor (or coefficient) to avoid too
large or too small numbers of v-nodes. We set it to 1.67 in
our experiments because it can lead to a satisfying result. In
fact, the system booting performance is not sensitive to � as
long as its value is around 1.67, to be shown in Section 5.4.1.
Traffici here refers to the host i’s traffic load, which is not
generated by remote chunk accesses. Intuitively, the hosts
with less traffic are supposed to be assigned more chunk
accesses, and vice versa. Thus, we make the number of
v-nodes associated to each host inversely proportional to its
traffic, as shown in the equation

vnode countðhostiÞ ¼ b��Pj¼n
j¼1 trafficj

traffici
c: (1)

After recalculating v-nodes associated to each host, we
have a further v-node mapping adjustment in compute
nodes, which is to reduce potential cache miss caused by re-
mapping. We record the changes of v-node count associated
to each host after recalculation. Adjustment algorithm does
not change the v-node count in each host calculated by
Equation (1), but only changes some v-node mapping. It
depends on the similarity between compute nodes, that is,
host which needs to reduce v-nodes will transfer its v-nodes
to the host that needs to increase v-nodes and has the high-
est similarity with the former. Here, host similarity refers to
the proportion of the same chunk between two hosts.

Besides, we take into account the topological information
of data center, which is also important for the performance
improvement. All these factors our strategy takes into are
for balancing the workload and improving the performance.
The pseudo-code is presented in Algorithm 1. In the begin-
ning, it calculates the v-node quantity for each host using

Equation (1) (lines 1-5 of Algorithm 1) and than make a
v-node mapping adjustment. Then, it identifies the target
host based on the requested chunk by using the consistent
hashing. If the distance between the target host and the
source host of the request is smaller than the threshold we
set, we forward this request to the target host. Otherwise,
we recalculate the target host without taking this host into
account just during this request. (lines 6-13 of Algorithm 1).

Algorithm 1. A Mapping Strategy to Locate the Target
Host

Input: 1) the list of compute nodes: nodeList; 2) the OID of the
request: oid; 3) the source node of the request: src; 4) a
threshold: threshold

Output: the destination of the request: dest
1: vnodeList = [] /* the list of the v-node count for each node */
2: for each node in nodeList do
3: calculate the v-node count by Equation (1)
4: add the v-node count into vnodeList
5: end for
6: v-node mapping adjustment
7: begin:
8: calculate the dest of request according to the oid by using

consistent hashing
9: if the distance between src and dest < threshold then
10: return dest
11: else
12: remove the dest from nodeList /* remove the host from

hash circle only during this request */
13: goto begin
14: end if

The threshold in Algorithm 1 can be set according to the
following strategy. If half of network switches at some level
exhibit fairly heavy traffic usage (e.g., the traffic rate is over
80 percent of the bandwidth), then the threshold is set to the
minimum hop counts required by the requests when they
go through the switches in this level. The pseudo-code is
presented in Algorithm 2.

Algorithm 2. Calculating the Threshold

Input: the 2-dimensional array of switches: switchList½�½�,
where switchList[0] is the list of edge switches,
switchList[1] is the list of aggregate switches, and
switchList[2] is the list of root switches

Output: threshold
1: threshold = 7
2: for each childList in switchList do
3: count = 0 /* the number of the overloaded switches */
4: for each switch in childList do
5: if switch.traffic > switch.bandwidth*0.8 then
6: count ++
7: end if
8: end for
9: if count > childList.length � 0.5 then
10: threshold = childList[0].level � 2 + 1 /* the level of

edge, aggregate, and root switch is 0, 1, 2, respectively */
11: return threshold
12: end if
13: end for
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Note that the way to determine the threshold could be
different in other topologies such as BCube. Specifically, in
a three-level tree topology data center, if the root switch has
a heavy traffic rate (line 5 of Algorithm 2), we can set it to 5
according to our strategy (line 10 of Algorithm 2). If more
than half of aggregate switches have heavy traffic rates, the
threshold is set to 3. In this way, we not only let chunk
access adapt to the dynamic traffic of hosts, but also reduce
the overhead of remote access.

Since the traffic in data center changes over time and
transient workload spikes occurs from time to time, we
should conduct the re-mapping operations at the right time.
In order to avoid the system thrashing (i.e., the frequent
cache replacement caused by re-mapping), we conduct the
re-mapping operations only when a part of hosts are over-
loaded in two successive collection. There are two reasons
why we adopt this strategy. First, if none of the hosts is
overload, VMs’ I/O performance will not be affected at all
even though the traffic load is uneven. Second, if ACStor
triggers remapping immediately in the face of transient
workload spikes, it may suffer from potential cache misses
caused by unnecessary re-mapping. Therefore, we conduct
the re-mapping operations only when there is an over-
loaded host, which can reduce the system thrashing gener-
ated by short-term traffic burst.

3.7 Other Issues

As a VDI storage system, there are two more important
issues (VDI update and fault tolerance issue in ACstor)
which need to be considered in addition to the I/O perfor-
mance, in comparison to the existing systems.

3.7.1 VDI Update

To avoid dirty data in public caches, the template VDIs in
back-end storage are not allowed to be updated directly.
All of the users’ private data and modifications are stored
in private cache temporarily. When VMs are shutdown,
cloud middleware in the control node will move the cor-
responding private caches and their snapshots (detailed
in Section 3.7.2) to the back-end storage and change their
backing files (i.e., base VDI) to the template VDIs they
used. These private caches in back-end storage can be
considered as new customized template VDIs, though
they cannot be booted up without the original template
VDIs. That is to say, the template VDIs are not updated
actually, but we append the modifications as incremental
VDIs to the template VDIs and consider them as a whole.
In order to avoid the performance degradation caused by
massive incremental VDIs, we merge the child and grand-
child of a template VDI when the depth of a VDI tree
exceeds 3.

Note that there is a trade off whether the new template
VDIs need to be registered to ACStor as presented in
Section 3.4.3. For example, a new template VDI containing
tens of gigabytes of someone’s private data can hardly be
shared by others. Thus, caching it to public caches would
occupy a lot of space and reduce the number of common
chunks in system, so as to reduce the cache hit ratio after
re-mapping. However, in our prototype system, we still
cache each template VDI to public cache for simplicity.

3.7.2 Fault Tolerance

In our implementation, ACStor is able to protect the execu-
tion of VMs and users’ data against unexpected faults/fail-
ures such as node crashes, by adopting both checkpoint/
restart model and replica mechanism. The fault tolerance is
completely transparent to users, because it is automatically
conducted by the system.

ACStor protects the private cache in case of failures, by
periodically setting the checkpoint files for each running VM
to the back-end storage. The checkpoint files (a.k.a., snap-
shots) are very easy to be generated in ACStor, because of
our private cache designed to handle users’ modifications to
VMs. Specifically, when a checkpoint file needs to be created
for a VM, what ACStor needs to do is just to save the current
corresponding private cache into the back-end storage. In
order to reduce the VM-recovery overhead upon failures,
the checkpoint files generated will also be kept in the local
disk for a certain period until the next checkpoint setting.

The back-end storage in ACStor is protected by the rep-
lica mechanism in case of storage failures, and each VDI file
has three replicas in the back-end storage. As for the public
cache, it can be constructed based on existing distributed
file systems with inherent fault-tolerance mechanism.

Although we have fault tolerance considerations above,
our system has a single-point failure on control node. Fortu-
nately, if the decision maker on control node crashes during
system running, ACStor still can work, which is because
chunk access does not rely on decision maker. But, ACStor
can not adapt to network loads anymore, due to re-mapping
operation depending on the v-node information received
from decision maker. In the follow-up study, we will solve
this problem by adding a backup node.

4 IMPLEMENTATION

In this section, we elaborate the implementation of ACStor
in detail (the code of ACStor is publicly available online at
https://github.com/CGCL-codes/ACStor). The system module
chart is shown in Fig. 5. ACStor includes two parts: I/O sub-
system and monitor subsystem. We will present the work
flows step by step.

Note that the core ACStor driver component is based on
Sheepdog [24]. Sheepdog is an open-source distributed stor-
age system, providing highly available block level storage
volumes that can be attached to KVM virtual machines. It is
chosen for sake of the following three reasons. First, the
KVM’s userspace tools (called qemu-kvm) support sheep-
dog block driver. Therefore, it is convenient for us to

Fig. 5. The system module chart.

2420 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017



implement the data transmission from local VMs to remote
VDI storage servers. Second, Sheepdog has no centralized
master node, which alleviates the bottleneck and accelerate
the I/O performance for public cache accesses. Last, Sheep-
dog has a built-in fault-tolerance mechanism, which can be
used on the public cache layer.

4.1 I/O Flow

I/O subsystem is responsible for dealing with the I/O
requests. The I/O flow is shown in Fig. 5. Step 1: Each request
(e.g., open, read, write, close) from VMs accesses private
cache first which is handled by the QCOW2 driver in QEMU-
KVM. Private cache is an incremental image in QCOW2 for-
mat, whose backing file contains the chunks in public cache.
Step 2: When a private cache miss happens, QCOW2 driver
passes the request to its backing file driver (i.e., ACStor cli-
ent). Since the size of private cache is restricted, when the
size of a private cache exceeds the quota, we move it to the
back-end storage and create a new private cache file whose
base VDI is the older private cache. This process is controlled
by the cloud middleware in control node. Step 3: ACStor cli-
ent will directly send requests to ACStor driver (We use the
Sheepdog’s communicationmodule). Step 4:After an ACStor
driver receives a request, it parses this request into OID and
forwards it to the target host by consistent hashing. Then,
when an ACStor driver receives a request from itself (the tar-
get of this request is local host) or others, it gets the corre-
sponding CID from OTC table and reads the data from the
chunk. Step 5: If the chunk is not available, it generates a pub-
lic cache missing signal, and then accesses the data from
back-end storage. At the same time, a new thread is raised in
charge of fetching the missing chunks from back-end storage
to public cache. This asynchronous and non-block cache
fetching process accelerates the chunk access.

Here we give a scenario example to describe the flow in
detail. Suppose Node A has private cache misses, and the
request is sent to Node B. If Node B has the public cache hit, B
will transfer the chunk toA. The transferred chunkwill not be
saved to Node A. If Node B has the public cache miss, B will
access data from back-end storage and the data is read to B’s
public cache.AndNodeB needs to transfer the data back toA.

4.2 Monitoring Flow

Monitor subsystem lets ACStor perceive the network state
in data center, and helps I/O subsystem to forward requests
adaptively. The Monitoring flow is shown in Fig. 5. Step 1:
First, monitor agents collect traffic state in local hosts and
send it to decision maker periodically. Each agent can dis-
tinguish the traffic generated by chunk accesses by monitor-
ing the incoming and outgoing traffic in ACStor driver
daemon. So, the traffic volume used in Equation (1) is set to
the difference of the total traffic and the traffic generated by
chunk accesses. Step 2: Decision maker calculates the suit-
able v-nodes information according to the network state by
Equation (1). Then it sends this information to a ACStor
driver, which will synchronize the information with others
later (i.e., Step 3).

5 PERFORMANCE EVALUATION

In this section, we first measure the I/O performance of
VMs by using different VDI storage approaches under

various traffic patterns in a physical platform with 32 nodes.
We then evaluate the scalability of our approach in a simu-
lated platform with 256 nodes.

5.1 Experimental Setting

Platform. We perform the experiments on two platforms: a
32-node experimental testbed and a 256-node simulated plat-
form. The simulated platform aims at simulating a large-scale
data center, and it is only used for evaluating the scalability
(detailed in Section 5.8). In the 32-node real cluster testbed,
each blade node has two x86_64 CPUs (2.6 GHz) with hard-
ware virtualization support, 64 GBmemory and 300 GB local
disk. The back-end centralized storage is served with one
storage server, which has x86_64 CPUs (1.8 GHz), 16 GB of
memory and 18 TB of storage, and it is mounted to compute
nodes through NFS. These nodes are interconnected with
Gigabit Ethernet. A blade center consists of 12 blade servers
and the backplane bandwidth of the switch which connects
the blade centers is 640 Gbps. The hypervisors running on all
compute nodes are KVM 1.2.0, while the operating system is
RedHat Enterprise Linux Server release 6.2.

VDIs. We use a series of VDIs each with size of 4 GB. In
order to simulate the real environment, we deploy some
common softwares such as Apache, MySQL on each of
them. The operating systems of the VDIs include 64-bit Cen-
tos 5.5, 64-bit Centos 6.6, 64-bit Ubuntu 12.04, 32-bit Ubuntu
12.04 and 64-bit Windows Server 2008. We upload these
VDIs to back-end storage in advance, and each of them is
divided into many 64 KB chunks.

Traffic.Asmentioned in Section 2.2, the total traffic consists
of two parts: the traffic generated by chunk accesses and the
traffic independent of chunk accesses. We call the latter extra
trafficwhichwill be used as an independent variable in the fol-
lowing experiments to simulate different traffic patterns. We
make use of two factors to generate various extra traffic pat-
terns, mean traffic load and traffic coefficient of variation. The
larger the size ofmean traffic load is, the heavier traffic in data
center is. In order to generate different traffic patterns, we let
each VM send TCP or UDP messages with different sizes of
packets to VMs in other compute nodewith a fixed rate.

5.2 Approaches to Evaluate

We compare ACStor to three well-known VDI storage
approaches: non-cache based storage, local-cache based
storage and collaborative-cache based storage.

Non-Cache Based Storage. Is the baseline in our evaluation.
For fair comparison, we also deploy a QCOW2 format VDI
in each node whose backing file is stored in NFS server (a
centralized storage mode). So, when the VMs are booting or
running, they always access the data from the centralized
storage on demand.

Local-Cache Based Storage. Is the improvement of the pre-
vious one. We append local caches in the disks of compute
nodes between the QCOW2 incremental VDIs and their
backing files like [3]. These local caches, whose size is half
of a VDI, are also chunk-based and adopt FIFO cache
replacement strategy.

Collaborative-Cache Based Storage. Is pretty close to our pro-
posal. However, there are two differences between this
approach and ACStor. It has no re-mapping function, there-
fore I/O requests cannot be forwarded dynamically. And, its
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mapping policy only contains the topological information for
simplicity. In this way, all I/O requests are forwarded to the
compute nodes with relatively close topological range with-
out considering the dynamic traffic like [5]. For fair compari-
son, we set the total size of private cache and public cache in
each host to that of local cache in the former approach.

5.3 Evaluation Metrics

In this section, we present the indicators which are used to
evaluate different approaches.

Average Booting Time for Each VM. In VMs’ booting pro-
cess, there are a lot of concurrent I/O requests which are
dominated by reads. This metric reflects the performance of
VM deployment phase. It is computed by measuring the
time of each VM from the moment of issuing boot instruc-
tion to the completion of all start-up services.

I/O Throughput. This metric measures the sum of I/O
throughput for all VMs when we conduct a series of reads
or writes. Different from the booting time, it stands for the
I/O performance during the running phase of VMs.

Traffic Coefficient of Variation. This metric stands for the
uneven degree of the traffic among compute nodes in the
data center. A traffic coefficient of variation can be calculated by

CV ¼ traffic standard deviation

mean traffic load
: (2)

The CV value can be larger than 1. The bigger value of the
traffic CV is, the more uneven the traffic distribution is. The
minimum value of the traffic CV is 0, which means all com-
pute nodes have the same traffic volumes.

Note that the global traffic CV is not only used as a metric
to measure the uneven degree of overall traffic, but is also
an independent variable to generate different extra traffic
patterns (detailed in Section 5.4).

5.4 Evaluation of Booting Time

In this section, We evaluate booting time changing with dif-
ferent values of vnode-count factor � (defined in Formula
(1)), traffic states and amount of VMs. Traffic states include
the size of mean traffic load and traffic CVs in data center.

5.4.1 Sensitivity of Vnode-Count Factor

The vnode-count factor � is designed for avoiding too large
or too small number of v-nodes on a host. Its value has no

clear influence on the system performance because it does
not change the proportion of v-node between compute
nodes. Table 1 shows the mean booting time changing with
� in Equation (1). We can see that it has little influence on
the average booting times. In the following experiments, we
set it to 1.67 in our experiment, which already is able to get
a satisfying result in our evaluation.

5.4.2 Traffic States

In this experiment, five VMs are co-running on each physi-
cal node. The template VDIs of these VMs are randomly
selected from VDIs mentioned in Section 5.1. The number of
VMs cannot be booted in four approaches is about 1-5, and
it grows as traffic CV or mean traffic load increases. We dis-
card the unbooted VMs when calculating the average boot-
ing time. Fig. 6 shows the mean booting times when the
mean traffic loads are 40, 70, and 100 MB/s, respectively. In
each experiment, the traffic of hosts follows a distribution of
traffic CVs, ranging from 0 to 1.2 (some of VMs cannot be
booted normally when the traffic CV is larger than 1.2).

There are two observations. First, the non-cache storage
system performs stably but it suffers relatively low perfor-
mance with various traffic CV values, while the local-cache
based storage system obviously outperforms it. On average,
booting time of local-cache storage system is 40-50 percent
of the non-cache storage system. Since these two VDI stor-
age systems are not involved in the cross-host accesses, the
extra traffic among compute nodes can hardly effect their
performance. When traffic CV increases up to a certain level
(such as 0.8 with the mean traffic load as 70 MB/s), the per-
formance of the non-cache storage system and local-cache
storage system is still lower than that of the collaborative-
cache based storage system. This is because the incoming
traffic load of some compute nodes are even heavier than
that of the outgoing traffic of the back-end storage device,
leading to serious hot spots in the network.

Second, the collaborative-cache based storage system
suffers the interference from the extra traffic easily. The per-
formance is further degraded with the increasing traffic CV.
For example, when the traffic CV is over 0.8 with 100 MB/s
mean traffic load, it performs worse than the local-cache
based storage system. This is because when some compute
nodes become overloaded, the new bottleneck is generated
in these nodes, which leads the performance of chunk acce-
sses from them to degrade. By comparison, our approach
outperforms the traditional collaborative storage method
under various traffic CVs. The booting time of ACStor is 38-
95 percent of the traditional collaborative storage. The
advantage of ACStor is rather clearer with higher traffic CV.
For example, when the traffic CV is 1.2 and mean traffic is

TABLE 1
Booting Time Changing with � in ACStor

� value 1 1.40 1.67 1.80 2.20 2.60 3

Booting time 53.1 s 55.1 s 54.7 s 52.1 s 55.3 s 54.9 s 53.1 s

Mean traffic load is 20 MB/s, traffic CV is 0.8.

Fig. 6. Booting time changing with the traffic CV under different sizes of mean traffic load (160 VMs).
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70 MB/s, ACStor can get 2:6� performance gain compared
to the traditional collaborative storage.

Fig. 7 shows the mean booting time that changes with the
size of mean traffic load, when the traffic CV is 0.4, 0.8 and
1.2, respectively. In each experiment, the size of mean traffic
load on compute nodes ranges from 0 to 100 MB/s (Some of
VMs cannot be booted normallywhen the size ofmean traffic
load is larger than 100MB/s). The changing trend of the per-
formance under different sizes of mean traffic load is similar
to that under different traffic CVs. The non-cache based
storage and the local-cache based storage are hardly affected
under different extra traffic loads. The performance of
collaborative-cache based storage apparently degrades with
increasing traffic loads. ACStor also has a performance deg-
radation but less than the traditional collaborative storage,
since the adaptive chunk access avoids the traffic hot spots
on the potential overloaded nodes.

5.4.3 Data Amount

We further compared ACStor with the collaborative-cache
based storage in this experiment. Fig. 8 shows the mean
booting time changing with the amount of VMs, when the
traffic CV is 0.4, 0.8 and 1.2, respectively. In each experiment,
the amount of VMs ranges from 32 to 192. According to the
increasing trend of booting time, We can find that ACStor
has a lower slope than the collaborative-cache based storage
system, and the scope gap is getting lager when traffic CV
grows. Once again, It proves that ACStor has a lower perfor-
mance degradation than the traditional collaborative storage.

In summary, we can draw two conclusions. First, the
higher the traffic load or CV is, the more performance gains
ACStor will get, due to the more benefits of traffic load bal-
ance. Second, the collaborative-cache based storage outper-
forms the local-cache storage in most cases. However, when
the traffic load or CV across compute nodes is too high, the
local-cache storage may be a better choice.

5.5 Evaluation of I/O Throughput

A good VDI storage system not only performs well in VM
booting phase, but it is also supposed to have a good run-
time performance. In this experiment, we choose three types

of workloads with different characteristics of disk I/O (i.e.,
web server, web proxy, and video server) from Filebench [25]
and measure the corresponding I/O throughput under dif-
ferent traffic patterns.

The results are shown in Fig. 9. The x-axis stands for
‘mean traffic load-traffic CV’. For example, ‘40-0.4’ stands
for the scenario with the mean traffic load size of 40 MB/s
and the traffic CV of 0.4. Since the web server in Fig. 9 a is
dominated by read operations, most of the reads access the
public cache in ACStor. We observe that during the running
period, they always keep accessing the remote chunks with
a stable rate in a large time-scale. So, ACStor does not need
to conduct the re-mapping operation frequently. Thus, our
approach can usually outperform the traditional collabora-
tive storage, especially in the situation with uneven traffic.

Compared to the web server, the performance improve-
ment of ACStor in web proxy (Fig. 9 b) is less, though the
web proxy is also dominated by read operations, because
the chunk access rate in web proxy is unstable and the size
of requests are usually small, unlike the web server. This
means the mapping policy is not always optimal. However,
when the traffic is uneven, ACStor also has a big promotion.

The video server in Fig. 9 c consists ofmanywrites aswell as
reads. So, all the storages have a performance improvement
due to the Copy-on-Write (all the writes will only access local
disk). Besides, as VMs read the newly updated data, they
also access only the local disk. So, we find the different traffic
patterns almost have no effect on I/Operformance.

5.6 Evaluation of Traffic CV

In this experiment, we mainly observe the change of traffic
CV, which is a critical metric indicating the traffic balancing
state around the whole system. Fig. 10 illustrates the change
of total traffic CV (regarding the traffic generated by chunk
accesses and extra traffic) in the VM booting phase under
different extra traffic CVs (0.4, 0.8 and 1.2). Since the non-
cache storage and the local-cache storage have little effect
on the traffic CV, we here mainly compare the collabora-
tive-cache storage and our designed ACStor. It should be
noted that we start the monitor process before we boot the

Fig. 7. Booting time changing with the size of mean traffic load under different traffic CVs (160 VMs).

Fig. 8. Booting time changing with the amount of VMs under different traffic CVs (mean taffic load is 70 MB/s).
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VMs, which leads to the stable CV during the first period of
time (from second 0 to 30).

It is observed that the traffic CV exhibits the same for
both storage systems at the beginning. It fluctuates through
the booting phase with the collaborative-cache based stor-
age. The total traffic CVs are maintained at a relatively
higher level in this period than the beginning. The reason is
that the traffic generated by chunk accesses aggravates the
uneven degree of global traffic. However, if the original
extra traffic CV is uneven enough (e.g., 1.2), the total traffic
CV may not be affected a lot.

As expected, the total traffic CVs are significantly reduced
under ACStor. Whereas, there are still fluctuations during
the time of VM booting and it looks more serious than those
in the traditional collaborative storage. This is because
ACStor lets chunk accesses adapt to the extra traffic pattern.

5.7 Evaluation of Extra Overhead

There are three kinds of extra overhead in our approach:
OTC-table query, OTC-table update and cache-miss caused
by re-mapping. We evaluate them from the perspective of
the traffic generation, time consumption and space con-
sumption, during the VM booting by using a 4 GB VDI with
64 KB chunk size.

The most frequent OTC-table query operation takes only
569.4 ms with no extra space consumption and traffic gener-
ation. Since we maintain this OTC table in local memory,
the overhead of the OTC table accesses are far less than I/O
operations which can be ignored.

The OTC-table update is another important operation. As
a new VDI is registered in ACStor, we should divide the VDI
file into chunks and broadcast their OID and CID messages
to all nodes. In the OTC table, each entry consists of 192 bits,
so we also need to transfer more than 24� 31 Bytes (exclud-
ing the size of TCP/IP header) to other compute nodes in our

32-node testbed. As for a 4 GB VDI which is divided into
64 KB chunks, we only need a 1.5 MB OTC table in each
node. The overhead of synchronizing a OTC table with those
on other nodes is about 46.5 MB. If we register two different
4 GB VDIs, the memory overhead of OTC table will be dou-
bled. Since the update operations are not so frequent, the
synchronization overhead is acceptable inmost situations.

The last overhead is caused by the cache miss caused by
re-mapping. Each cache miss generates more than 64 KB
traffic, because it needs to fetch the chunk from back-end
storage to public cache. We do not consider the normal
cache miss, in that it will also appear in the traditional sto-
rages. The cache miss rate is related to the cross-similarity
of VDIs [9]. Moreover, the larger the cross-similarity is, the
more cache hits in the re-mapping procedure. Although the
cache-miss ratio is higher than the traditional collaborative
storage (since they do not have re-mapping, this rate is 0),
ACStor still has the better I/O performance especially in the
environments with high traffic CVs, because accessing
the back-end storage will be more efficient than accessing
the overloaded compute nodes sometimes.

5.8 Evaluation of Scalability

We evaluate the scalability of ACStor, by combining the real
experiments and simulations.

In order to evaluate the performance in a more complex
data center, we use CloudSim toolkit [26] to simulate a
three-level tree topology data center with 4� 8� 8 nodes.
Specifically, we assign 1 Gbps bandwidth for edge and
aggregate switches as well as 10 Gbps for root switch. The
root switch connects four aggregate switches. Each of them
connects eight racks, each consisting of eight nodes. For the
back-end storage, we assume that the bandwidth from any
host to it is 1 Gbps. We measure only the VM booting time
in this set of experiments and the VM I/O patterns are set
according to the trace generated in the real experiments.
With scaling up of a data center, the inter-VM communica-
tions become more complex due to the topology. So, we use
the following way to generate the extra traffic patterns. We
let a VM in each node randomly choose 1 to 32 VMs to com-
municate with one another, and repeatedly generate many
different traffic patterns (traffic CVs are 0.4, 0.8 and 1.2).

The evaluation results are presented in Fig. 11. The non-
cache storage and local-cache storage exhibit stable with
low performance under different traffic patterns. However,
the performance of the collaborative-cache storage and our
ACStor exhibit relatively high, though fluctuating signifi-
cantly. This indicates the performance of collaborative stor-
age system is not only related to the traffic CV among
nodes, but also influenced by the traffic patterns in data

Fig. 9. I/O throughput for different workloads under various traffic CVs.

Fig. 10. The average traffic CV among compute nodes during monitoring
of VMs booting.
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centers. For example, when a large number of VMs need to
communicate with distant VMs (i.e., there are many hops
between the source and the destination), the links associated
with aggregate switches or root switch may be congested.
Hence, the reads in ACStor will prefer to choose the neigh-
boring hosts though they may be already overloaded. In the
contrary, if most of inter-VM communications are short-
distance traffic like [12], ACStor will have a big performance
gain. As requests are forwarded to distant hosts, the links
associated with aggregate switches or root switch will have
no traffic bottleneck.

6 DISCUSSION AND FUTURE WORK

Alternative Caching Medium. ACStor uses local HDD in com-
pute nodes to cache the VDIs in back-end storage, which is
a cheap way to optimize the access performance of VDI. It
is no doubt that using either solid-state disk (SSD) or in-
memory caching of chunks will achieve better performance.
However, the space of SSD and memory is far less than the
normal HDD, so we need to improve the cache utilization
further. For example, we plan to avoid the duplication
between the private cache and the public cache in ACStor
due to the usage of copy-on-write strategy. On the other
hand, we also need to implement the data transmission in a
high-speed network like Infiniband to match the access rate
of high performance caches.

Cross-Similarity and Performance. In Section 5.7, we show
the cross-similarity of VDIs in ACStor. More accurately, the
I/O performance of VMs is related to the cross-similarity of
chunks in different hosts rather than different VDIs. For
example, in a single VDI environment, there are few same
chunks within the same VDI (except the zero-filled chunks)
[8]. So there must be lots of cache misses in the re-mapping
procedure. In multi-VDI environment, it may also happen
because of the low cross-similarity of VDIs or due to the fact
that the chunks with same content are exactly hashed to the
same host. In the future, we will focus on how to handle the
I/O requests in this situation.

Mapping Policy Extensions.We show that the network traf-
fic has effects on the remote chunk accesses and how ACStor
deals with this negative effect by using mapping strategies.
However, the strategies proposed may be not always effi-
cient in all cases, especially when the targets and the sizes of

I/O requests change frequently (as shown in Fig. 9b). In the
future, we plan to add the I/O information to our mapping
policy, in order to realize a fine-grained control.

Dedicated Storage Network. Some production environments
may have dedicated storage and management networks.
The uneven traffic pattern will become more complex in this
situation. We will investigate how to optimize the I/O
performance and improve the resource utilization further in
this kind of heterogeneous network environment in our
futurework.

Transient Workload Spikes. We periodically collect network
traffic. And we conduct the re-mapping operations only
when there is an overloaded host in two successive collection.
However, adopting workload prediction systems would be a
better choice in the face of transient workload spikes. In the
future, we will focus on a new re-mapping strategy which
takes advantage of transient workload prediction.

Location Constrained Storage. Honestly, ACStor can not
adapt to location constrained storage environments. The
key reason is that one of the important features of our
design is to dynamically adapt to diverse network load over
time, while the environment with constrained storage loca-
tions has relatively stable network status because of the
fixed data access amounts on each node. If we consider
these requirements, ACStor will be rather complicated and
our mapping strategy will be influenced greatly.

7 RELATED WORK

Many studies aim to improve the I/O performance of VMs
from the perspective of VDI storage system. A straightfor-
ward way is to cache a part of data from the VDIs in back-
end storage to the local disks of the compute nodes. One rep-
resentative work is Fast Virtual Disk (FVD) [27], which inte-
grates the Copy-on-Read (CoR) mechanism and the data pre-
fetching method to accelerate remote reads. Razavi et al. [3]
also improve the traditional QCOW2 VDI format [28] by
using on-demand CoR caches and validate the efficiency of a
warm local cache. However, these approaches adopt only
single-VDI caches which neglect the similarities across VDIs.

Considering the common data blocks across VDIs, an
efficient way for VMs to access the local caches (content-
based address) is provided in [20], by which the VMs
booted from different VDIs are able to leverage the data
blocks with the same content in local cache. The similar
method is adopted by [9], which compresses the local
caches by using the cross-similarity of VDIs. Through these
methods, they can make full use of the small local caches.
However, the hit ratio of local caches may decrease with
increasing variety of VDIs. [29] propose a method called
probabilistic deduplication to improve the resource utiliza-
tion, though it is used in cluster-based storage systems.

Accordingly, a straightforward solution is to discard the
centralized storage, such as [4], which aggregates the local
disks of compute nodes to a distributed storage pool, substi-
tuting the original back-end storage device. Meyer et al. [30]
and Hansen et al. [31] propose specific distributed file sys-
tems to store VDIs respectively. Their solutions split VDIs
into small chunks and store them on distributed compute
nodes. Such designs can effectively alleviate the I/O bottle-
neck of centralized storage. Another two solutions [6], [7]
are proposed to make use of collaborative cache across

Fig. 11. Booting time in 128-nodes under various traffic patterns.
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compute nodes with centralized storage as back-end stor-
age. Compared with the former methods, these two meth-
ods try to leverage the cross-similarity of VDIs in the
distributed environment. Jayaram et al. [8] analyze the simi-
larities across different VDIs by splitting whole VDI files
into small chunks like [4]. They design a VDI storage system
with collaborative cache in [5], which distributes VDI
chunks to local disks of compute nodes in data centers and
make chunks be shared in a P2P manner. They also opti-
mize the chunk addressing by utilizing the topological
information of a data center to reduce the overhead of
remote chunk accesses. Unfortunately, it neglects the influ-
ence of dynamic traffic across compute nodes (e.g., gener-
ated by inter-VM communication), which may suffer from
the performance degradation in a large-scale system. By
contrast, our solution takes into account both the dynamic
traffic load and the topology information, which can resolve
the performance issue caused by the unbalanced network
traffic very well.

Some previous researches are orthogonal to our work.
For example, OpenFlow [32] provides bandwidth guarantee
so as to moderate the I/O performance degradation issue
caused by uneven network traffic, and [10] proposes a
traffic-aware VM placement which also does good to traffic
load balancing.

8 CONCLUSION

VDI Storage systems significantly affects overall perfor-
mance of virtualized cloud platforms. In this paper, we pro-
pose Adaptive and Collaborative Storage System to optimize
the I/O performance of virtualized cloud platforms. Our
proposed solution employs a two-level cache to achieve the
chunk sharing across different compute nodes. We devise an
adaptive addressing mode to locate the requested chunk in
compute nodes according to the traffic patterns by using
mapping and re-mapping mechanisms. By taking into
account both traffic load and the network topology, ourmap-
ping and remapping strategies are able to adaptively control
the chunk accesses under the dynamic traffic in data centers.

We use a real cluster environment with 32 physical nodes
and a large-scale simulated platform with up to 256 nodes
to evaluate our solution, as well as three other state-of-the-
art approaches. Based on our experiments, we have follow-
ing key findings. First, VMs’ I/O performance significantly
depends on traffic status of data centers, especially when
the traffic distribution exhibits unevenly across compute
nodes. Second, ACStor significantly outperforms other
state-of-the-art approaches (with performance gain up to
2� 8� than others), with respect to the VM booting time
and VM’s I/O throughput. Third, the total traffic CVs are
significantly reduced under ACStor, which means ACStor
has a better load balancing capability. Last, ACStor also
exhibits an excellent scalability, with the increase on the
number of VMs or nodes in data center.
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