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ABSTRACT
As OS-level virtualization advances, containers have become a vi-
able alternative to virtual machines in deploying applications in
the cloud. Unlike virtual machines, which allow guest OSes to run
atop virtual hardware, containers have direct access to physical
hardware and share one OS kernel. While the absence of virtual
hardware abstractions eliminates most virtualization overhead, it
presents unique challenges for containerized applications to ef-
ficiently utilize the underlying hardware. The lack of hardware
abstraction exposes the total amount of resources that are shared
among all containers to each individual container. Parallel runtimes
(e.g., OpenMP) and managed programming languages (e.g., Java)
that rely on OS-exported information for resource management
could suffer from suboptimal performance.

In this paper, we develop a per-container view of resources to
export information on the actual resource allocation to container-
ized applications. The central design of the resource view is a per-
container sys_namespace that calculates the effective capacity of
CPU and memory in the presence of resource sharing among con-
tainers. We further create a virtual sysfs to seamlessly interface
user space applications with sys_namespace. We use two case
studies to demonstrate how to leverage the continuously updated
resource view to enable elasticity in the HotSpot JVM and OpenMP.
Experimental results show that an accurate view of resource al-
location leads to more appropriate configurations and improved
performance in a variety of containerized applications.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Garbage collection; • Computer systems or-
ganization → Multicore architectures.

KEYWORDS
Container, Scheduling, Memory Management, Performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6670-0/19/06. . . $15.00
https://doi.org/10.1145/3307681.3325403

ACM Reference Format:
Hang Huang, Jia Rao, Song Wu, Hai Jin, Kun Suo, and Xiaofeng Wu. 2019.
Adaptive Resource Views for Containers. In The 28th International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC ’19),
June 22–29, 2019, Phoenix, AZ, USA. ACM, 12 pages. https://doi.org/10.1145/
3307681.3325403

1 INTRODUCTION
As a lightweight alternative to virtual machines (VMs), containers
have been increasingly adopted to package applications for fast,
cross-platform deployment. Leading cloud providers, such as Ama-
zon AWS, Google Compute Engine, and Microsoft Azure, support a
wide range of containerized applications, from long-running batch
jobs to short-lived microservices, and to complicated machine learn-
ing workloads. Cluster management frameworks, including Mesos,
YARN, and Kubernetes, also use containers as the basic unit for
resource allocation and scheduling. Unlike virtual machines, which
are isolated from each other through the abstraction of virtual hard-
ware, containers execute directly on the physical hardware and
share the same operating system (OS) kernel. Isolation between con-
tainers is attained through separate namespaces and control groups
(cgroups). Namespaces give each container its own view of the
PID space, file systems, networks, etc; cgroups allow fine-grained,
precise allocation of resources, such as CPU, memory, disk, and
network bandwidth, in containers. The absence of the virtual hard-
ware abstraction in container-based virtualization eliminates most
of the overhead in conventional VM-based virtualization. Studies
have shown that containers achieve near-native performance on
CPU, memory, and I/O in various workloads [10, 26, 27].

While the weak isolation in containers helps attain near-native
performance, it can cause several issues. Besides exposing security
vulnerabilities, the weak isolation creates a semantic gap in con-
tainerized applications. On the one hand, containers usually have
limited access to resources. System administrators often control the
amount of the resources allocated to a container through resource
shares and limits. On the other hand, the absence of the virtual
hardware abstraction allows containers to observe the total avail-
able resources on a host, though they can only access a subset of
the resources.

The gap on the view of resources can undermine the efficiency
of a wide range of applications when containerized [10]. Server
programs, programming runtimes, and libraries often devise so-
phisticated schemes to manage resources on their own. The illusion
of total resource availability deceives applications to improperly
manage resources, thereby leading to suboptimal performance or
even program crash. For example, the HotSpot Java virtual machine
(JVM) automatically probes online CPUs at startup and uses the
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CPU count to determine the number of JVM threads in a parallel
garbage collection (GC); OpenMP dynamically adjusts the number
of threads in a parallel region based on the availability of CPUs.
The HotSpot JVM sets the maximum heap size of a Java program to
one fourth of the total memory size. When such applications run
in containers with resource constraints, over-threading or memory
overcommitment could lead to substantial performance loss.

A few applications have recognized this issue and started to add
container awareness into their designs. The Java JDK, since version
9, detects CPU and memory limits when launching a Java program
from a container and configures the JVM accordingly. Specifically, it
uses three configurations set by administrator, i.e., the CPU affinity,
quota, and limit, to infer CPU availability and limits the JVM heap
size to the hard memory limit of a container. However, there lacks
a general solution in containers to export per-container resource
availability to applications. Furthermore, it is challenging to accu-
rately determine the effective resource capacity of a container in a
multi-tenant environment with resource multiplexing, reservation,
and capping. LXCFS [1] is an userspace file system that exports per-
container resource limits through the procfs interface. The Linux
kernel version 4.6 introduces a private control groups namespace
to expose per-container resource limits to each container. However,
these approaches only export the resource constraints set by the
administrator but do not reflect the actual amount of resources that
are allocated to a container. Since most OSes are work-conserving,
allowing users to use more than their quotas if otherwise resources
are left idle, the actual resource constraints seen by a container
depends on not only its own resource limits but also the resource
usage of colocated containers.

In this paper, we demonstrate that an isolated, per-container
view of available resources is necessary for attaining high efficiency
and preventing erroneous behaviors in containerized applications.
To this end, we develop a sysfs namespace in addition to the
existing namespaces in containers. The virtual sysfs exports the
effective resources, such as the number of cores and the amount of
memory that are available to a container. Effective resources are
calculated based on the resource reservation, share and limit and are
updated in real time. We further demonstrate that by leveraging the
proposed adaptive container resource view, two popular runtime
systems, HotSpot JVM and OpenMP, can be made elastic to the
availability of resources. Experimental results with Docker using
representative Java and OpenMP benchmarks show significant
performance improvement.

The rest of this paper is organized as follows. Section 2 introduces
the background of container-based virtualization and presents mo-
tivating examples on the issue of the semantic gap. Section 3 intro-
duces the design and implementation of our proposed per-container
adaptive resource view and Section 4 presents two case studies that
leverage the resource view to enable dynamic parallelism and elas-
tic heap management. Section 5 presents experimental results and
Section 6 reviews the related work. Section 7 concludes this paper.

2 BACKGROUND AND MOTIVATION
2.1 Container-based Virtualization
Containers rely on two OS mechanisms, namespace and resource
control group, to realize isolation. Without loss of generality, we

describe these two mechanisms in the context of Docker and Linux.
Other containers, such as Rkt and LXC, and other OSes employ
similar techniques. A container is essentially a group of processes
running together. Namespaces create restricted views of the host
system to isolate containers from each other. Typical namespaces
include the PID namespace, the user namespace, the mount names-
pace, the UTS namespace, and the network namespace. For example,
the PID namespace allows processes in a container to have virtual
PIDs starting with PID 1. The real PIDs in the host OS are mapped
to the virtual PIDs but are hidden from the container. Similarly, the
user namespace re-maps a privileged user from within a container
to a non-privileged user in the host; the mount namespace provides
isolated view of the filesystem. Each container is configured a local
root filesystem, in which application binaries and system libraries
are loaded for program execution. Besides the root filesystem, the
procfs and sysfs are required to be mounted into a container.
These filesystems provide the local view of the system, including
the private PID space and user groups.

Control groups (cgroups) isolate the resource usage, such as CPU,
memory, disk, and network, of containers. Processes belonging to
the same container form a resource control group and share the
same resource budget. Cgroups use share and limit to precisely
control the resource allocation to each container. Share reflects
the relative importance of containers when competing for shared
resources; limit sets up an upper bound on the amount of resources
a container can consume. Additional constraints can be further
configured to specify the locality or affinity of resources. In what
follows, we discuss the allocation of CPU andmemory in containers.

Linux relies on the completely fair scheduler (CFS) to enforce
priority and performance isolation among containers/cgroups. The
tunable parameter cpu.shares determines the relative share of
CPU time allocated to each container. If n containers contend
for CPU, each attempting to use 100% CPU, the CPU time a con-
tainer receives is cpu .shares∑n cpu .shares . Parameters cfs_period_us and
cfs_quota_us together determine the limit of CPU allocation. cfs
_period_us specifies the accounting period of CPU in microseconds,
at the end of which CPU should be reallocated. cfs_quota_us indi-
cates the total amount of CPU time a container can use during one
period. The ratio of quota to period determines the CPU capacity of
the container. If the ratio is less than one, a container can only use
part of the time on a single CPU, after which it is throttled. If the
ratio is larger than one, the container can run on multiple CPUs.
In addition, parameter cpuset.cpus specifies the set of CPUs on
which a container is permitted to run.

Cgroups use two types of memory limits to control memory al-
location. memory.limit_in_bytes sets the absolute upper bound
on a container’s memory usage. If a container’s memory exceeds
this hard limit, the container either is killed or starts swapping.
memory.soft_limit_in_bytes sets a soft limit on container mem-
ory. Unlike a hard limit, which cannot be surpassed even the system
has sufficient available memory, a soft limit allows a container to
use as much as memory as needed unless there is a memory short-
age in the system. When Linux detects low memory, containers
whose memory usage exceeds their soft limits gradually reclaim
memory until either their memory usage falls below the respective
soft limits or the system-wide memory shortage is resolved.
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2.2 Resource Availability vs. Constraints
Although namespaces provide a per-container view of the host
system, an important piece of information is missing in the existing
namespaces. Since containers share the OS kernel, all hardware
devices and resources are visible to them, though each only has
access to a subset of the total resources. The illusion of total resource
availability and the actual resource constraints present a semantic
gap to applications running in containers.

The semantic gap can cause severe inefficiencies or even lead
to program crashes. A wide range of applications automatically
configure runtime parameters based on the probing of available
resources. For example, HotSpot, the most widely used JVM, deter-
mines the degree of concurrency in parallel garbage collection (GC)
based on the number of online CPUs. OpenMP dynamically adjusts
the number of threads in each parallel section based on available
CPU. If not explicitly configured by users, HotSpot automatically
sets the maximum heap size of a Java program to a quarter of the
total memory.

When the effective capacity of a container due to resource con-
straints is lower than the total capacity, the autoconfiguration will
unfortunately over-provision threads and memory. Over-threading
can cause excessive threadmanagement overhead; over-committing
heap memory can lead to significant swapping activities or out-
of-memory (OOM) crashes. Most containerized applications detect
resource availability through the OS kernel. For example, many
programming runtimes, including the JVM and OpenMP, acquire
information on available resources through the standard sysconf
interface in the GNU C library (glibc). sysconf queries sysfs or
procfs in order to determine the number of online CPUs. Memory
size is calculated based on two memory parameters provided by
the Linux kernel: _SC_PHYS_PAGES * _SC_PAGESIZE.

Unfortunately, the sysconf interface and the sysfs pseudo
filesystem in the Linux kernel are not container aware and always
report the total resource availability instead of the per-container
resource constraints. Therefore, containerized applications may
mistakenly over-commit resources. To estimate the severity of the
problem, we manually examined the top 100 application images in
DockerHub. Specifically, we looked into the source code of applica-
tions (e.g., httpd, tomcat, and MongoDB) and runtimes (e.g., JVM,
OpenMP, and Chrome V8) to see if they rely on the Linux kernel
to report resource availability for auto-configuration. We classified
application images into two categories: affected by the semantic
gap and unaffected. Applications are grouped by the programming
language they use. As shown in Figure 1, a total number of 62 out
of the top 100 applications are potentially affected by this semantic
gap. Among the 7 languages we studies, all Java and PHP-based
programs could suffer resource over-commitment. A majority of
C++-based applications and half of C-based applications are also
affected.

Note that our analysis only revealed the risk of potential con-
tainer resource over-commitment, but did not quantify the impact
on application performance. To this end, we selected a few repre-
sentative, Java-based applications to evaluate how this semantic
gap would affect performance. JVM transparently sets the number
of parallel GC threads and JIT compiler threads, and the maximum
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Figure 1: Analysis of the top 100 application images onDock-
erHub

Java heap size according to the host configuration of CPU and mem-
ory. The Java community has recognized this issue and starts to
add container awareness since Java version 9. Specifically, JDK 9
queries the Linux kernel to obtain the CPU and memory limits, and
uses them to configure the JVM.

We created two container environments to study how the con-
figuration of GC threads and Java heap size can affect performance,
respectively. For each experiment, we compared JDK 8 and JDK
9 with hand-optimized JVMs that had perfect knowledge on the
resource constraints. To study the semantic gap on CPU availability,
we collocated 5 docker containers on a machine with 20 cores. All
containers were configured with a CPU limit of 10 cores and an
equal CPU share. The five containers ran the same program from
the Dacapo benchmarks [7]. Since 5 containers shared 20 cores,
our hand-optimized JVMs set the number of GC threads to 4 for
each container. We normalized performance to state-of-the-art JDK
9 with docker awareness. As shown in Figure 2(a), the container
awareness in JDK 9 had limited impact on performance compared
to JDK 8, which is oblivious to container resource constraints. The
reason is that JDK 9 only detected the static CPU limit (i.e., 10 cores)
configured by cgroups while unable to recognize the effective CPU
capacity (i.e., 4 cores). In contrast, hand-optimized JDK 8 and 9 sig-
nificantly outperformed the existing auto-configuration schemes
in most cases, indicating the importance of detecting resource con-
straints during runtime and accurately determining the effective
capacity.

The determination of memory capacity of a container during
runtime is more challenging. We placed one container on a machine
with 128GB memory and set its hard limit on memory to 1GB and
the soft limit to 500MB. As such, the default JDK 8without container
awareness (denoted as auto_JVM8) will set the maximum heap size
to one quarter of the physical memory, i.e., 32GB., while JDK 9
(denoted as auto_JVM9) will set to one quarter of the hard limit
(1GB), i.e., 256MB. The two hand-optimized JVMs, i.e., hard_JVM8
and soft_JVM8, set the maximum heap size to the hard limit and the
soft limit, respectively. We also ran a memory-intensive workload
in the background to cause memory shortage on the machine. One
notable observation is that JDK 9 had large performance improve-
ment over JDK 8, which mistakenly set to a too large heap based on
the physical memory size and caused significant swapping. How-
ever, the heuristic used in JDK 9 does reflect the real-time usage of
memory and can cause OOM errors (the missing data in Figure 2(b))
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Figure 2: The impact of container resource constraints on Java performance
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as the working set size of H2 cannot fit in the heap size set by JDK9
(i.e., 256MB). Overall, setting the maximum heap size to the soft
limit achieved the best performance as this prevented expensive
memory swapping.
Summary We have used two examples to demonstrate that it is
important to make applications aware of the container resource
constraints. The challenges lie in 1) how to accurately determine
the effective capacity of a container in real time in a multi-tenant
environment with resource affinity, share, and limit; 2) how to adapt
applications to the possible changing capacity of a container, with-
out extensive changes to the application source code. In the next
few sections, we elaborate on the design of an adaptive resource
view for containers and how to build elastic apps based on the
resource view.

3 DESIGN
To bridge the semantic gap between the illusion of total resource
availability and the actual constrained resource allocation in con-
tainers, we develop a per-container view of real-time resource al-
location. The adaptive resource view is continuously updated to
reflect the effective capacity of a container. Figure 3 illustrates the
system architecture that enables the resource view. It consists of
three components: a virtual sysfs, a new sys_namespace, and a
system-wide daemon Ns_Monitor. The virtual sysfs provides an

interface connecting the sys_namespace with user space applica-
tions. It intercepts application queries to the sysfs and re-directs
them to the new sys_namespace, from where per-container view
of resources is returned. sys_namespace maintains the effective
capacity of CPU and memory allocated to a container. Ns_Monitor
tracks changes in cgroups settings, including container creation/ter-
mination and adjustments to resource constraints, and updates the
corresponding sys_namespaces.

3.1 Sys_namespace
While the existing namespaces, such as PID and network names-
paces, isolate containers by limiting their access to system resources,
sys_namespace is designed to provide a per-container view of re-
source allocation of containers. It calculates the effective capacity
of resources allocated to a container and exposes it to applications
running in the container through the sysfs interface. In this paper,
we focus on the effective capacity of CPU and memory. Besides
being updated by ns_monitor, sys_namespace is equipped with a
timer that periodically updates effective CPU and memory based
on container resource usage.
Effective CPU is the maximum amount of CPU time that can
be utilized by a container, given its resource limit and share. To
interface with sysfs, sys_namespace exports the information on
effective CPU capacity in a way similar to that in a physical system,
in which CPU capacity is measured by the number of online CPUs.
Specifically, for each container, sys_namespace exports a finite
number of CPUs, whose aggregate capacity equals the amount of
CPU time that can be used by the container. Expressing effective
CPU as discrete CPU count offers two advantages. First, existing
studies [9, 23] have shown that, for a variety of workloads, it is more
efficient to execute threads on a few stronger, dedicated CPUs than
running them on a large number of shared CPUs, on which each
thread only gets a slice of CPU time. Exporting effective CPU in the
form of an equivalent number of dedicated CPUs allows user space
applications to appropriately determine thread-level parallelism (as
will be discussed in Section 4.1). Second, this design is compatible
with applications that probe system resources based on CPU count.

Algorithm 1 shows the calculation of effective CPU for each con-
tainer. First, we determine the lower and upper bounds of effective
CPU, which refer to the reservation and limit of a container’s CPU
allocation, respectively. The sharew determines the portion of the
total CPU capacity (|P| CPUs) that is guaranteed to be allocated to
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Algorithm 1 The calculation of effective CPU
1: Variables: CPU share of the ith container wi ; CPU limit of the ith

container li ; CPUmask of the ith containerMi ; effective CPU updating
period t ; CPU usage of container i during the updating period ui ;
system-wide unused CPU capacity pslack ; online CPU set P;

2: Output: The number of effective CPU E_CPUi for container i .
3: /* Calculate effective CPU based on limit, affinity and

share*/
4: LOW ER_CPUi = min( lit , |Mi |, ⌈

wi∑
wj

· |P | ⌉)

5: U PPER_CPUi = min( lit , |Mi |)

6: E_CPUi = LOW ER_CPUi
7: /* Adjust effective CPU based on container CPU usage*/
8: repeat
9: if pslack > 0 then
10: if ui

E_CPUi ·t > 95% and E_CPUi < U PPER_CPUi then
11: E_CPUi + +
12: end if
13: else
14: if E_CPUi > LOW ER_CPUi then
15: E_CPUi − −

16: end if
17: end if
18: Reset update timer and sleep for t period
19: until Container i is terminated

a container, if other constraints (CPU affinityM and limit l ) permit.
The lower bound on effective CPU count is rounded up to the clos-
est integer (line 4). The upper bound is the minimum of |M| and l

t ,
with the latter equivalent to cpu .cf s_quota_us

cpu .cf s_per iod_us (line 5). The lower
and upper bounds are updated by the ns_monitor upon container
creation/deletion or changes to cgroups settings. Otherwise, they
remain unchanged throughout the life time of a container.

Second, we dynamically adjust effective CPU in the range of
[LOWR_CPU,UPPER_CPU] according to the CPU usage of a con-
tainer. As most modern OSes are work-conserving, a container is
allowed to use more than its fair share of CPU if the system has
slack CPU (pslack ) that would otherwise be left idle. We gradually
increase the number of effective CPU (line 9-11) if the actual CPU
usage of a containerui (in terms of CPU cycles) is close to or higher
than the capacity of effective CPU. Given each updating period
t , the total available CPU time on effective CPU is E_CPUi · t . If
the ratio of a container’s CPU usage to the capacity of effective
CPU is larger than a threshold (UTIL_THRSHD), effective CPU is
incremented by 1. We empirically set UTIL_THRSHD to 95%. In
contrast, if the system has no idle CPU, decrement effective CPU by
1 at each sys_namespace update period until reaching the lower
bound (line 14-15). Dynamically adjusting effective CPU to reflect
the actual CPU allocation of a container is important for user space
applications to control their concurrency. For example, decrement-
ing effective CPU until there is slack CPU allows containers to
individually reduce concurrency and agree on an optimal degree of
concurrency. Changes to effective CPU are limited to 1 per update
to prevent abrupt fluctuations.
Effectivememory reflects the actual memory usage of a container
as well as the memory limits enforced by cgroups. Sys_namespace
records the soft (Lsof t ) and hard limits (Lhard ) of memory, i.e.,

Algorithm 2 The calculation of effective memory

1: Variables: Container i’s hard memory limit Lhardi and soft
memory limit Lsof ti ; system-wide current free memory cf r ee ;
system-wide free memory in previous update interval pf r ee ;
container i’s current memory usage cmem

i and previous mem-
ory usage pmem

i .
2: Output: The effective memory size E_MEMi .
3: E_MEMi = L

sof t
i

4: /* Expand effective memory until there is a
system-wide memory shortage */

5: if cf r ee > LOW _MARK then

6: if cmem
i

E_MEMi
> 90% and E_MEMi < Lhardi then

7: ∆mem
i = (Lhardi − E_MEMi ) · 10%

8: ∆mem
predict =

pf r ee−cf r ee
cmem
i −pmem

i
· ∆mem

i
9: if (cf r ee − ∆mem

predict ) > HIGH_MARK then
10: E_MEMi+ = ∆mem

i
11: end if
12: end if
13: else /* Reset effective memory if reclaiming memory

*/

14: E_MEMi = L
sof t
i

15: end if

soft_limit_in_bytes and limit_in_bytes and periodically up-
dates effective memory when the update timer fires. A container
can use more memory than the soft limit if there is free memory in
the system but will be killed or trigger swapping when exceeding
the hard limit. Whenever there is a system memory shortage, the
portion of memory beyond the soft limit will be reclaimed, causing
swapping. Unlike managing effective CPU, in which the CFS sched-
uler enforces fair sharing among containers and over-subscription
usually results in graceful slowdowns, over-committing memory
can cause memory thrashing and performance collapse. Therefore,
individual containers’ effective memory should be carefully man-
aged to avoid swapping or thrashing.

Kswapd is a kernel daemon responsible for managing swap space
in response to memory pressure. It uses three watermarks to track
memory pressure. When the number of free pages in the system
falls below low_watermark, kswapd reclaims memory from con-
tainers that exceed their soft limits until system-wide free mem-
ory reaches high_watermark. If free memory further drops below
min_watermark, kswapd performs direct reclaiming, which indis-
criminately frees memory from any containers, including those
do not exceed their soft limits. As shown in Algorithm 2, effective
memory is initialized to a container’s soft memory limit (line 3). If
there is no memory shortage (line 5) and a container uses more than
90% of its effective memory, the container is allowed to gradually
expand its effective memory, at an increment of 10% towards its
hard limit (line 7). To prevent memory thrashing or swapping, we
need to ensure that the increment of individual containers’ effective
memory does not trigger kswapd for memory swapping. We use
the ratio of system-wide change of free memory to the change
of memory usage of a container in a previous round to estimate
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the change in system-wide free memory given the change in con-
tainer effective memory ∆mem

i in this round (line 8). Note that
this could be an over-estimation of the change of system-wide free
memory as the container may not use up all the additional effective
memory. If the predicted change of free memory does not bring
system-wide free memory below high_watermark, the container’s
effective memory is incremented by ∆mem

i (line 10). Otherwise, the
container’s effective memory remains unchanged. This algorithm
aligns with the design of kswapd and treats high_watermark as the
threshold for sufficient free memory. Whenever, system memory is
in shortage and kswapd is reclaiming memory, reset a container’s
effective memory to its soft limit (line 14).

3.2 Implementation
In a conventional OS, applications probe system resources through
system-wide procfs or sysfs. To display effective resources in
containerized applications, we intercept system calls to procfs or
sysfs and test if the calls are from an ordinary process or from
within a container. Containerized processes are within their own
namespaces and thus have links from their task_struct to these
namespaces. In contrast, ordinary Linux processes are in the names-
paces of the init process, the parent of all processes. Therefore,
when a process probes system resources and is linked to its own
namespaces other than the init namespaces, a virtual sysfs is
created for this process. Future queries issued by this process to
the sysfs will be redirected to the newly created virtual sysfs and
the calculated effective resources will be returned.

Containers, such as docker, are ephemeral by design. At launch,
a container is assigned with a per-container init process to set up
the namespaces, including the added new sys_namespace. After
the environment is set up, the init process calls exec to start the
process specified by command docker run, after which the origi-
nal init process is terminated and the process started by the exec
system call becomes the new init process of the container. Any
processes later forked in the container will inherit the namespaces,
but the namespaces can only be accessed from within the container
because the owner, i.e., the original init process, has been termi-
nated. As sys_namespace needs to be periodically updated by the
OS, a key issue is to access the per-container sys_namespace from
outside of a container. To address this issue, we transfer the own-
ership of sys_namespace to the new init process, which will be
alive throughout the life of a container. Specifically, we modify the
execve system call to change the ownership of sys_namespace to
the current task when the state of the original init process changes
to TASK_DEAD. This ensures that the new owner is the new init
process of the container and all tasks created later share the same
cgroups settings.

Ns_monitor is implemented as a system-wide kernel thread.
We modify the source code of cgroups to invoke ns_monitor if a
sys_namespace exists for a control group and there is a change
to the cgroups settings. The sys_namespace update timer is an
original low-resolution timer and its update interval is set to the
scheduling period in Linux, during which all tasks are guaranteed
to run at least once. This ensures that any changes to the CPU allo-
cation of containers are immediately reflected in sys_namespace.
In Linux CFS, the length of a scheduling period depends on the

Minor Collection
Begin

Set Active
Wokers

Scavenge
Process 

reference
Flush

Get  Available CPUs
Thread PoolActive Workers IdleGCTask

OldToYoungRootsTasks

ScavengeRootsTasks

StealTasks

GCTaskQueue

PSRefProcTaskProxy

StealTask

GCTaskQueue

Figure 4: Parallel GC with dynamic parallelism

number of ready tasks. When there are no more than 8 tasks, the
scheduling period is set to 24ms. Otherwise, the period is set to
3ms×num _of_tasks. Since the change of memory usage is less fre-
quent than that of CPU allocation, we use the same update interval
of effective CPU in calculating effective memory.

4 CASE STUDIES: BUILDING ELASTIC APPS
In this section, we demonstrate how to leverage the per-container
resource view to enable elasticity in some representative appli-
cations. Although requiring changes to application source code,
enabling elasticity offers two advantages: 1) applications are able
to use additional resources when they are available; 2) applications
can more efficiently utilize resources when sharing with others.

4.1 Dynamic Parallelism
We begin with dynamically controlling the degree of parallelism in
multi-threaded programs in response to varying CPU allocation. In
general, launching a variable number of threads during runtime is
very challenging. Therefore, we focus on applications that employ a
thread pool to dynamically assign work to threads. As such, altering
the number of worker threads does not affect the completion of the
program.
HotSpot is a widely adopted JVM that use multiple threads to
perform parallel garbage collection (GC) on the heap space. The
number of GC threads created when launching the JVM is deter-
mined by the number of CPUs in the system. HotSpot uses a fairly
sophisticated design for parallel GC. It implements a centralized
GCTaskQueue, from where individual GC threads fetch GC tasks.
This design is key to enabling dynamic work assignment, which
allows faster GC threads to fetch more tasks. GCTaskQueue is pro-
tected by GCTaskManager, a monitor construct that not only en-
forces mutual exclusive access to the queue but also provides a con-
dition variable to synchronize GC threads. When the GCTaskQueue
is empty, i.e., the completion of a GC, all GC threads are put to sleep.
They are woken up when the next GC starts and GCTaskQueue is
refilled with GC tasks. This design allows a variable number of GC
threads to be activated/woken up at each GC.

Figure 4 shows how to integrate effective CPU into the process of
parallel GC. There are two types of GC, minor and major GC, which
perform a partial and full heap scan, respectively. For illustration,
we only show the process of a minor GC while major GCs can be
modified in a similar way to use dynamic parallelism. As shown in
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the figure, at the beginning of each GC, the parallel garbage collec-
tor, i.e., parallel scavenge (PS), first determines the number of GC
threads to activate. The existing design, called dynamic GC threads,
calculates the number of active threads based on the number of Java
application threads (i.e., mutators) and the size of the heap. Assume
the total number of GC threads created when launching the JVM
is N and the number of calculated active threads is Nactive , the
actual threads woken up at each GC is Nдc = min(N ,Nactive ). As
discussed in Section 2.2, the Java community has recognized the
issue, and starting JDK 9, sets N according to a container’s CPU
limit rather than the number of online CPUs in the host. While this
design incorporates container awareness into JDK, it has two limi-
tations that hamper elasticity. First, the JVM cannot launch more
GC threads if the container’s CPU limit is lifted and more CPUs
are available. Second, static CPU limit and share do not accurately
reflect a container’s CPU allocation, thereby unable to fully exploit
elasticity.

To truly enable elasticity, we make two changes to the PS col-
lector in HotSpot. First, we launch as many GC threads as possible
according to the number of online CPUs, retaining the potential
to expand the JVM with more CPUs. Second, we instrument the
PS collector to query the number of effective CPUs to dynami-
cally adjust the number of GC threads. Specifically, we use for-
mulaNдc = min(N ,N_active,E_CPU ) to adjust GC threads, where
E_CPU is the effective CPU count read from the sys_namespace.
OpenMP provides a mechanism to alter thread-level parallelism at
runtime. If a user enables dynamic threads in OpenMP, a variable
number of threads will be created for parallel constructs, depending
on the number of online CPUs and system load. gomp_dynamic_max
_threads calculates the number of threads using n_onln− loadavд,
where n_onln is the number of online CPUs and load_avд is the
average load, in terms of running tasks, of the system in a 15-minute
period. Our change to OpenMP is straightforward. We substitute
n_onln with E_CPU and remove the second term of the formula as
effective CPU already includes load information at a much finer
granularity.

4.2 Elastic Heap
Making memory allocation elastic is more challenging. Therefore,
we focus on enabling elastic memory for runtime systems that are
already equipped with dynamic memory allocation. Heap manage-
ment in the HotSpot JVM employs an adaptive sizing algorithm
to dynamically change the size of the JVM heap. Users specify an
initial heap size (-Xms) and a maximum heap size (-Xmx) at JVM
launch time. The adaptive sizing algorithm automatically deter-
mines an appropriate heap size based on feedbacks from completed
GCs. However, the sizing algorithm cannot expand the heap beyond
the maximum heap size set at JVM launch time or shrink the heap
in response to memory pressure in a container.

To enable elastic heap, it is necessary to understand the structure
of JVM heap to properly expand or shrink the heap while still retain-
ing the properties of the original design. We follow the discussions
on Java heap in [6] to divide heap memory into three states: used,
committed, and reserved. Used space is where objects (live or dead)
are stored; committed space is a super set of used memory and may
include memory that is allocated to the JVM but is currently free;

EdenSurvivor

MaxHeapSize

Old

Young Max Old Max

Virtual Virtual

Figure 5: Realizing elastic heap in HotSpot

reserved space, similar to a virtual address space, is the maximum
expandable heap size, in which memory beyond the committed
space is not yet allocated. Scaling JVM heap is essentially to adjust
the committed space. When additional memory is available, the
committed space should be able to expand beyond the limit of a
previous reserved space while able to free memory and shrink itself
if the reserved size falls below the committed size.

The parallel scavenge (PS) collector, the default garbage collector
in JDK 8, is a generational collector that divides the heap into young,
old, and permanent generations. The young generation is where
new objects are first allocated and a memory allocation failure
in this area triggers a minor GC. If objects survive a predefined
number of minor GCs, they are promoted to the old generation,
which is larger than the young generation and holds long-living
objects. The collection of the old generation, which is called a
major GC, is less frequently performed. The sizes of the young and
old generations are determined by the adaptive sizing algorithm.
The JVM maintains a fixed ratio of 1:2 between the sizes of the
young and old generations. The permanent generation contains
JVM metadata and thus does not participate in size adjustment.

The sizing algorithm maintains two invariants: 1) the expansion
of the heap should not exceed the reserved size, a static limit set at
JVM launch time; 2) the shrinkage of the heap should preserve the
size ratio of generations. The sizing algorithm validates a proposed
new size to be smaller than the reserved size. Inspired by Bruno
et al.,’s work on vertical heap scaling [6], we decouple the sizing
algorithm from the static reserved size by adding a new, dynamic
size limit VirtualMax on the heap. By setting the original reserved
size MaxHeapSize to a sufficiently large value, close to the size
of physical memory, and dynamically adjusting VirtualMax to
realize elasticity. In addition, we impose two new limits YoungMax
and OldMax on the young and old generation, respectively, to retain
the size ratio.

Intuitively, we use effective memory from the sys_namespace
as VirtualMax and set YoungMax and OldMax accordingly. Heap
expansion is straightforward. We simply set VirtualMax to a larger
value and rely on the adaptive sizing algorithm to gradually expand
the heap. In contrast, heap shrinkage is challenging. Figure 5 shows
the structure of JVM heap. MaxHeapSize is the original static upper
bound, close to physical memory size. The spaces between solid
vertical black lines are the committed spaces of the young and
old generations. The dotted vertical red lines indicate the current
YoungMax and OldMax. When effective memory drops, the dotted
lines need to be moved to the right and there exist three scenarios:
1) If no dotted red lines cross solid black lines, i.e., the change in
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(c) DaCapo and SPECjvm2008 GC time

Figure 6: Performance comparison on DaCapo execution
time (lower is better) and SPECjvm2008 throughput (higher
is better)

effective memory not affecting the committed sizes of young and
old generations, only the values of YoungMax and OldMax need to
be changed; 2) if red lines cross black lines but do not touch used
spaces, the sizing algorithm is instructed to shrink the committed
sizes in addition to changing YoungMax and OldMax; 3) if red lines
cross used spaces, the corresponding type of GCs are invoked to free
the used spaces. If a single GC may not be able to free enough space,
we invoke GCs every 10s until success. We query sys_namespace
every 10s and perform the adjustment if needed. Note that the
elastic heap management only deals with the size limits and is
independent from the original sizing algorithm, thereby applicable
to other dynamic Java heap management schemes.

5 EVALUATION
In this section, we present an evaluation of the adaptive resource
view in containers. Because we did not observe measurable over-
head associated with creating and updating sys_namespace, our
focus is on evaluating the performance improvement due to dy-
namic parallelism and elastic heap.

5.1 Experimental Settings
Hardware.Our experiments were performed on a PowerEdge R730
server, which was equipped with dual 10-core Intel Xeon 2.30 GHz
processors, 128GB memory, and a 1TB SATA hard drive.

Software.We used CentOS 7 64bit and Linux kernel version 4.12.3
as the host OS. Docker 17.06.1 was used as the containers tech-
nology. Experiments were conducted on OpenJDK with Parallel
Scavenge as the garbage collector and OpenMP in gcc 4.8.
Benchmarks andmethodology.We selected Dacapo [7], SPECjv-
m2008 [28], and HiBench [14] as the workloads to evaluate the
optimized JVM, and used NAS parallel benchmarks (NPB) [21] to
evaluate OpenMP with dynamic parallelism. The heap sizes of Java-
based benchmarks were set to 3x of their respective minimum heap
sizes. Each result was the average of 10 runs. Performance compar-
ison was made between the original JVM and OpenMP (denoted as
vanilla) and the optimized versions that use the adaptive resource
view (denoted as adaptive). In addition, we evaluate the effective-
ness of the existing dynamic parallelism schemes in HotSpot and
OpenMP (denoted as dynamic) and the recently released JVMs with
container awareness (e.g., JVM9 and JVM10).

5.2 Results on Dynamic Parallelism
We begin with a well-tuned environment with five containers run-
ning five copies of the same Java benchmark. We empirically de-
termined that five benchmarks sharing a total number of 20 cores,
each with four GC threads, achieved the best performance. We are
interested in if effective CPU can lead to an optimal number of GC
threads and how is its performance compared to the vanilla JVM.
We used OpenJDK 1.8 as the JVM as it is not incorporated with
container awareness. Figure 6 shows the performance of DaCapo
and SPECjvm2008 benchmarks due to different JVMs. The adaptive
JVM with effective CPU clearly outperformed the vanilla JVM by
as much as 49% in DaCapo and by 18% in SPECjvm2008, respec-
tively. The existing dynamic GC threads scheme in JVM improved
performance over the vanilla JVM with static GC threads. Since it
imposes a minimum amount of work for a GC thread to process, it
effectively mitigated over-threading. However, as the number of
containers increases, its performance gain would diminish because
the increasing competition from other containers does not affect
the heap size to GC thread ratio. As shown in Figure 6(c), most
performance gain was due to improved GC time.

JDK 9 is the first container-aware Java runtime. Before launching
a JVM, it detects if there is a CPU mask associated with the Java
process, a typical way to limit CPU allocation to a container using
CPU affinity. If CPU affinity is found, the JDK calculates the number
of CPUs the JVM is permitted to access and uses this count to
determine the number of GC threads. We configured the CPU mask
to access two cores in each container and varied the number of
co-running containers from 2 to 10. Dynamic threads was enabled
in the JVM. As shown in Figure 7, our adaptive approach based on
effective resources outperformed the container-aware JVM9 in all
benchmarks. Note that the overall performance gain (Figure 7(a)
- (e)) diminished as the number of containers increased. However,
Figure 7 (f) - (j) show that GC performance due to adaptive was
worse than JVM9 with a fixed number of GC threads and the gap
widened as more containers were added except in Jython.

This presents a difficult trade-off between performance isolation
and resource elasticity. On the one hand, CPU affinity in JVM 9
restricts the benchmarks, including their application threads, to
use a few cores, which led to inferior overall performance. On the
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Figure 7: DaCapo performance due to static CPU limit and effective CPU with a varying number of containers
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Figure 8: DaCapo performance due to static CPU shares and
effective CPU with varying CPU availability

other hand, CPU affinity provides isolation between GC threads and
application threads. In comparison, the adaptive approach based
on effective CPUs faced performance interference from co-running
benchmarks. In addition, elastic GC threads do not necessarily lead
to improved performance if GC is not scalable to a large number of
threads.

JVM 10 further improves container awareness by considering
CPU shares of a container. If CPU limit is not present, JVM 10
uses an algorithm similar to that in Algorithm 1 (line 4) to derive
a core count based on CPU share, and uses this static core count
throughout a JVM’s life time. However, JVM 10’s algorithm based
on static CPU shares does not allow a container to dynamically
adjust its CPU count according to the actual CPU usage in the host.
We create a realistic scenario in which a mixture of containers with
different CPU usages are collocated. Specifically, we collocated ten
containers, each with an equal CPU share, on the same host. One
container ran a Dacapo benchmark and the remaining nine con-
tainers ran different sysbench benchmarks. The host CPU was fully
utilized when all ten containers were running benchmarks but CPU
availability varied as different sysbench benchmarks completed at
different times. Based on static CPU shares, JVM 10 limited the
number of GC threads to 2 even when other containers became
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Figure 9: Performance improvement on big data applica-
tions with large datasets

idle. The vanilla JVM (i.e., JVM 8 and earlier) configured 15 GC
threads throughout the test, according to the number of online
CPUs in the host. In contrast, our adaptive JVM varied the number
of GC threads based on effective CPUs. Figure 8 (a) shows that the
adaptive JVM outperforms JVM 10 in GC performance for most
cases, by as much as 42%. Compared with the vanilla JVM, con-
tainer awareness in JVM 10 led to significant reduction in GC time.
For some benchmarks with short completion time (e.g., jython and
lusearch), the performance of adaptive was slightly worse than that
of JVM 10 because there was not enough time for adaptive to adjust
concurrency in GC. Figure 8 (b) plots the number of GC threads
throughout the execution of sunflow, which benefits from the adap-
tive JVM. As shown in the figure, adaptive adjusted the number of
GC threads as some collocated sysbench benchmarks freed their
CPU allocations.
Big data applicationsWhile DaCapo and SPECjvm2008 are widely
adopted Java benchmarks, they are limited by their input sizes
and require only small heap sizes. Therefore, not all such small-
scale workloads benefit from the adaptive resource views as GC
may not be scalable to a large thread count. Realistic Java-based
workloads, such as big data processing frameworks, require much
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(a) Five containers with equal shares.
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(b) One container with a quota equivalent to 4 cores.

Figure 10: Performance comparison of OpenMP applications of NPB due to static, dynamic and adaptive threads

larger heap sizes. Figure 9 shows the results with four applications
in the HiBench benchmark. Because HiBench is not compatible
with JDK 9 or 10, the baseline is vanilla JDK 8 with no container
awareness. We incorporated container awareness into JDK 8 and
enabled dynamic threads (denoted as dynamic). The results on
the overall execution time and GC time suggest that the adaptive
approach consistently outperformed the baseline and the one based
on static cgroups settings.
OpenMP applications OpenMP provides another perspective on
dynamic parallelism in runtime systems. Unlike JVM, which creates
all threads at launch time, OpenMP creates threads when a parallel
region is executed. The static strategy launches the same number
of threads, matching the number of online CPUs 1, for all parallel
regions. The dynamic strategy uses formula n_onln − loadavд to
determine thread counts for each parallel region. Figure 10 shows
the performance comparison in two scenarios. We first co-ran 5
containers with equal shares, each running an identical NPB pro-
gram. In the second test, we ran one NPB program in one container
and assigned the container a CPU quota equivalent to 4 cores.
This limits the container to use up to 4 CPUs. Surprisingly, the
dynamic approach had the worst performance in both scenarios. In
the five-containers experiment, the high system-wide load limits
the number of threads in containers, even they each are guaranteed
a fair share. In the one-container test, dynamic launched a large
number of threads into a 4-CPU container. Both misconfigurations
led to substantial performance degradation. Our adaptive approach
achieved significantly better performance compared with static or
dynamic.

5.3 Results on Elastic Heap
The goal of devising elastic heap management is to utilize additional
memory when it is available without being constrained bymanually
set memory limits and to gracefully scale up and down heap size
in a shared environment without invoking memory thrashing or
swapping. We use DaCapo benchmarks and a micro-benchmark to
evaluate our elastic heap management in HotSpot. We first created
a container with a 1GB hard memory limit. If an application uses
more than 1GB of memory, it triggers swapping and will likely
cause a performance collapse. We started DaCapo benchmarks with
an initial heap size of 500MB without a maximum heap size. This

1Users may specify the number of threads by setting environment variable
OMP_NUM_THREADS.
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Figure 11: Avoiding memory overcommitment in DaCapo

allows the JVM to automatically set the maximum heap size to one
quarter of the physical memory size, i.e., 32GB, a much higher value
than the hard limit. Figure 11 shows benchmark completion time
and GC time under the vanilla JVM (JDK 8) and the optimized JVM
with elastic heap. Note that JDK 9 and 10 detect the 1GB hard limit
and automatically set the maximum heap size to one quarter of
the hard limit, i.e., 250MB. Most DaCapo applications crash with
out-of-memory (OOM) errors. As shown in the figures, elastic heap
did not offer any benefit to applications that did not use more than
1GB memory, such as h2, jython, and sunflow. The vanilla JVM
incurred performance collapse due to swapping for applications
that exceeded the hard limit. In contrast, our elastic heap was aware
of the hard limit and never allowed the heap to grow beyond the
limit, though at a cost of more frequent GCs. The performance
due to elastic heap is an order of magnitude better than that in the
vanilla JVM.

Second, we wrote a Java micro-benchmark with controlled mem-
ory demand. The benchmark iterates for 40,000 times and at each
iteration allocates 1MB objects and deallocates 512KB objects in
the JVM heap. This creates an ever-increasing heap space with
half capacity storing “dead” objects. The benchmark results in a
working set size of 20GB while touching at most 40GB memory
space. We created a single container with a 30GB hard limit and 15
GB soft limit. The JVM used was from JDK 10 with awareness on
memory limits. Figure 12 (a)-(b) show the trend of used, committed,
and VirtualMax (i.e., dynamic reserved space) memory when ex-
ecuting the micro-benchmark. Note that VirtualMax, i.e., the red
dotted line, is set according to effective memory but not used by
the vanilla JVM. In Figure 12 (a), the vanilla JVM initialized the
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(b) Single container with elastic JVM

0 200 400 600 800 1000 1200 1400
0

8

16

24

32

  
  
  
  
 

M
e

m
o

ry
 s

iz
e

(G
B

)

Time(s)

 Used 

 Commited

 VirtualMax

(c) Five containers with elastic JVM

Figure 12: The statistics of used, committed, and reserved memory in the vanilla JVM and elastic JVM

heap to be one quarter of the hard limit, i.e., around 10GB, and the
adaptive sizing algorithm quickly expanded the heap. Accordingly,
VirtualMax was increased. In Figure 12 (b), the elastic JVM started
with a smaller initial heap size (around 10GB, one quarter of the
initial VirtualMax) and ramped up slowly until the used space
approached to 90% of effective memory (VirtualMax). Eventually,
both the vanilla JVM and the elastic JVM converged to the hard
limit. Figure 12 (c) shows the results when five such containers
are collocated, each running the micro-benchmark. Since each con-
tainer touches 40GB, all of themwill eventually reach the 30GB hard
memory limit, causing memory thrashing as the aggregate demand
exceeding the physical memory size. Therefore, the vanilla JVM
failed to complete any of the micro-benchmarks. In comparison, the
elastic JVM was able to complete all benchmarks and determined
an appropriate heap size (i.e., 24GB) for each container.

5.4 Overhead
There are two sources of overhead associated with the adaptive re-
source views. First, the update timer periodically fires to re-calculate
effective CPU and memory in each container’s sys_namespace. On
our testbed, the update to a sys_namespace takes 1 µs . No addi-
tional synchronization or locking is needed for the updates – 1)
each update is done along with the existing scheduler bookkeeping
routines when a scheduling period ends; 2) no locking is enforced
between the updater and queries from the containers. Second, there
is a cost each time a container queries its virtual sysfs for effective
CPU and memory. From user space, the time to call sysconf and
query effective CPU and memory takes 5 µs and 100 µs , respectively.
Reading effective memory is more expensive because it involves
querying multiple files in sysinfo. Since the adjustment to the
number of threads only occurs when there is a change to CPU allo-
cation (every 24ms to 100ms in Linux) and memory adjustment is
less frequently due to data loading and freeing, we do not anticipate
the overheads to contribute much in the overall performance.

6 RELATEDWORK
There are recent works focusing on evaluating the performance
and isolation of containers compared with other virtualization tech-
niques [10, 26, 27]. Sharma et al., [26] analyzed the performance in
containers and VMs due to resource overcommitment and ineffec-
tive isolation. They found that performance degradation is more
significant in containers than that in VMs due to the weak isolation.

To this end, approaches have been proposed to enhance isolation or
add container awareness into the OS or application stack. Arnautov
et al., [3] proposed to run containers inside SGX enclaves. Khalid
et al., [16] proposed a mechanism for accounting packet processing
in the OS kernel to provide isolation between different types of
containers. Zhang et al., [32] recognized a similar semantic gap and
incorporated container awareness into an MPI library.

Felter et al.,[10] first discovered that the lack of knowledge on
resource limits incurs performance degradation in containerized
applications. The JDK community has recently released a series of
container optimizations based on static resource limits and shares.
However, it takes a tremendous effort for individual applications
to incorporate container awareness. In this work, we proposed a
per-container view on resource allocations and developed a virtual
sysfs interface to seamlessly connect with user space applications
without requiring any source code changes.

There is a large body of work dedicated to dynamic parallelism
and elastic memory management. As observed in many applica-
tions [18, 24], oversubscription incurs substantial performance
degradation due to various reasons [15]. Therefore, searching for
the optimal degree of parallelism (DoP) and optimizing core alloca-
tions have been an active research topic [13]. Atachiants et al., [4]
pointed out the difficulties in matching program parallelism to
platform parallelism in a multiprogrammed and multi-tenant en-
vironment. There are studies [12, 15, 24] focusing on dynamically
changing DoP according to system load, and some are in the area
of Java garbage collection [5, 6, 11, 22, 29].

Memory overcommitment is a form of elastic memory manage-
ment and has attracted much attention in literature. Memory over-
subscription has been studied in virtualized environments [2, 8, 19,
25, 30] and there are various memory ballooning mechanisms [17]
proposed to dynamically adjust VM memory allocations without
incurring major performance overhead. Nakazawa et al., [20] an-
alyzed the performance degradation of containers when memory
is overcommitted and proposed techniques to mitigate it by dy-
namically identifying heavily loaded containers and tuning their
swappiness to prevent them from being swapped out. Many studies
have shown that swapping out memory pages belonging to a heap
area of a Java virtual machine (JVM) degrades the performance
significantly [31]. In this work, we leveraged adaptive resource
views to allow JVM to make more informed decisions on heap siz-
ing. Various heap sizing approaches have been proposed [31]. Our
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proposed elastic heap management does not rely on specific sizing
algorithms and is complementary to the existing approaches.

7 CONCLUSION
In this paper, we discovered that the weak isolation between con-
tainers sharing the same OS kernel has led to an important semantic
gap in resource management in containerized systems. The illusion
of being able to access all resources available on a physical host
while being constrained by resource limits and shares, presents
challenges to containerized applications in determining an appro-
priate degree of thread-level parallelism and a proper memory size.
We have demonstrated that a significant portion of applications
on DockerHub are susceptible to the semantic gap. To bridge this
gap, we proposed a per-container view of resources. The central
design is a sys_namespace for each container that reports real-time
resource allocations of a container based on resource limits, shares,
and the actual usage from other containers. We further develop
a virtual sysfs interface to seamlessly connect sys_namespace
with user space applications. Through two case studies, we showe
that a reasonable amount of engineering effort is sufficient to en-
able dynamic parallelism and elastic heap for Java and OpenMP
applications.
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