
Preemptive Multi-Queue FairQueuing
Yong Zhao1, Kun Suo1, Xiaofeng Wu1, Jia Rao1, Song Wu2 and Hai Jin2

1The University of Texas at Arlington, USA
2National Engineering Research Center for Big Data Technology and System

Services Computing Technology and System Lab, Cluster and Grid Computing Lab
School of Computer Science and Technology, Huazhong University of Science and Technology

Email: {yong.zhao, kun.suo, xiaofeng.wu jia.rao}@uta.edu, {wusong, hjin}@hust.edu.cn

ABSTRACT
Fair queuing (FQ) algorithms have been widely adopted in com-
puter systems to share resources among multiple users. Modern
operating systems and hypervisors use variants of FQ algorithms
to implement the critical OS resource management – the thread
scheduler. While the existing FQ algorithms enforce fair CPU allo-
cation on a per-core basis, there lacks an algorithm to fairly allocate
CPU on multiple cores. This common deficiency in state-of-the-
art multicore schedulers causes unfair CPU allocations to parallel
programs using blocking synchronization, leading to severe perfor-
mance degradation. Parallel threads that frequently block due to
synchronization exhibit deceptive idleness and are penalized by the
thread scheduler. To this end, we propose a preemptive multi-queue
fair queuing (P-MQFQ) algorithm that uses a centralized queue to
fairly dispatch threads from different programs based on their re-
ceived CPU bandwidth from multiple cores. We demonstrate that
P-MQFQ can be approximated by augmenting the existing load
balancing in the OS without requiring to implement the centralized
queue or undermining scalability. We implement P-MQFQ in Linux
and Xen, respectively, and show significantly improved utilization
and performance for parallel programs.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Scheduling; • Computer systems organiza-
tion → Multicore architectures; Cloud computing; • Math-
ematics of computing → Queueing theory.

KEYWORDS
Performance, Scheduling, Multicore, Cloud Computing.

ACM Reference Format:
Yong Zhao, Kun Suo, Xiaofeng Wu, Jia Rao, Song Wu and Hai Jin. 2019. Pre-
emptive Multi-Queue Fair Queuing. In Proceedings of The 28th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
’19). ACM, 12 pages. https://doi.org/10.1145/3307681.3326605

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6670-0/19/06. . . $15.00
https://doi.org/10.1145/3307681.3326605

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 24 48

Native	Linux KVM XenFair share

Loss of CPU allocation

Number of threads/cores

Re
la

tiv
e

to
 fa

ir
sh

ar
e

Figure 1: The deficiency in state-of-the-art multiprocessor
schedulers. Multithreaded programs with blocking synchro-
nization suffer unfair CPU allocation.

1 INTRODUCTION
The prevalence of shared services, such as multi-tenant clouds [2,
19, 50], shared storage [24, 43], and multi-user clusters [12, 30],
has led to a plethora of studies on fair and predictable resource
allocation of shared resources. An important method for achieving
resource fairness is using a fair queuing (FQ) scheduler, which
allows competing tenants to take turns to use a shared resource.
While FQ is a packet scheduling technique originally designed
for sharing a network link between multiple flows, it has since
been extended to managing various types of resources [43, 46],
scheduling flows with variable packet lengths [4, 5, 13, 28], and
supporting fair queuing on multiple links [6].

Modern operating systems (OSes) and hypervisors employ vari-
ants of FQ algorithms in the thread scheduler or the virtual CPU
(vCPU) scheduler. In this context, an FQ scheduler allocates proces-
sor bandwidth, i.e., CPU cycles, to competing threads 1. The time
quantum each thread receives in a round corresponds to a packet
serviced in the original FQ algorithm. On a single-core system, FQ
schedulers effectively guarantee fair CPU allocation among active
threads while allowing some threads to use more than their share if
otherwise the core would become idle. This ensures that the sched-
uler is work conserving. However, on multicore systems, existing
FQ schedulers fail to provide necessary resource isolation between
competing applications, causing unfairness and performance un-
predictability.

Figure 1 demonstrates the severity of unfairness in state-of-the-
art multicore schedulers. We placed two multi-threaded applica-
tions to share the same set of cores, with the number of threads in
each application matching the number of cores. We measured the
aggregate CPU allocation to each application as a whole to evaluate

1We use threads and vCPUs interchangeably.

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

147

https://doi.org/10.1145/3307681.3326605
https://doi.org/10.1145/3307681.3326605

the fairness of a multiprocessor scheduler. In the tests of hypervisor
schedulers, the two applications ran in separate virtual machines
(VMs) with the same number of vCPUs. Ideally, ifmax-min fairness
is enforced, each application should receive a fair share of the total
capacity of all available cores if the aggregate demand of all its
threads exceeds the fair share. We empirically confirmed that both
applications were able to consume almost all CPU when running
in solo. The program under test was streamcluster from the PAR-
SEC benchmark suite [45]. It employs blocking synchronization,
which puts threads to sleep if they fail to enter the critical section.
The colocated application was a synthetic benchmark with persis-
tent CPU demand (see Section 4.2 for details). It could be either
a parallel program with busy-waiting (spinning) synchronization
or a multiprogramming workload. As shown in Figure 1, stream-
cluster suffered unfair CPU allocation under all three schedulers
and the unfairness was aggravated as the number of threads/cores
increased.

This previously unknown deficiency of multicore schedulers can
cause significant performance slowdown and high variability to
parallel applications in multi-tenant systems. As a consequence, due
to concerns of poor service quality, leading public cloud providers,
such as Amazon AWS, Microsoft Azure and Google Compute En-
gine, do not allow CPU multiplexing among symmetric multipro-
cessing (SMP) VMs. Such a conservative strategy diminishes the
benefits of workload consolidation, resulting in low CPU utilization
and high user cost. This deficiency can also hamper the adoption
of the emerging serverless computing model, in which thousands
of short-lived, possibly inter-dependent and/or chained containers
are multiplexed on multicore systems.

The discovered unfairness in multicore scheduling is the result
of the complex interplay between parallel workloads and OS thread
schedulers. On the one hand, parallel programs rely on simulta-
neous access to CPU to make collective progress among multiple
threads and otherwise suffer substantial performance slowdown if
critical threads holding important locks are preempted. The remain-
ing threads who are waiting on the synchronization cannot make
progress, either performing futile spinning or being put to sleep
(block). On the other hand, multicore schedulers enforce fair CPU
allocation on a per-core basis and are usually work-conserving.
Therefore, threads that are idling due to synchronization forfeit
their CPU shares, leading to unfair allocation between a parallel
program and other competing programs. OS Load balancing could
further aggravate this problem. Frequently idling threads, which
show low CPU load, are gradually moved onto a few cores as con-
solidating fragmented load helps improve load balance. If CPU
stacking occurs, sibling threads belonging to the same application
compete with each other, introducing more idleness.

The culprit of such harmful interactions is twofold – 1) parallel
programs exhibit deceptive idleness (DI) under contention, failing
to expose their actual CPU demand to the OS scheduler; 2) there
is no mechanism to fairly schedule inter-dependent threads on
multiple CPUs. Therefore, parallel programs are unfairly penalized
for being idle but not appropriately compensated. To address these
issues, we extend the FQ algorithm for sharing a single network
link to thread scheduling on multiple cores. We propose preemptive
multi-queue fair queuing (P-MQFQ), a close approximation of the
idealized generalized processor sharing (GPS) service discipline for

multiple CPUs. P-MQFQ assumes a centralized queue to dispatch
threads to multiple CPUs such that competing programs as a whole
receive a fair share of the aggregated capacity of multiple CPUs.
To tackle deceptive idleness, P-MQFQ allows threads from under-
served programs to preempt currently running threads from other
programs. As such, programs experiencing deceptive idleness are
temporarily prioritized to catch up with those who have exceeded
their fair shares.

Maintaining a centralized thread queue imposes a major scala-
bility bottleneck in multicore scheduling. To implement P-MQFQ
in real systems, we augment state-of-the-art multicore schedulers
that use independent local queues with three queue operations:
MIGRATE, PPREEMPT and SWITCH to approximate global fairness on mul-
tiple queues. We have implemented P-MQFQ in Linux completely
fair scheduler (CFS), the default scheduler for native Linux and
KVM, and Xen’s credit scheduler. Experimental results show that
P-MQFQ effectively addresses deceptive idleness and improves
fairness in multicore scheduling. Parallel programs with blocking
synchronization are able to utilize close to, but never exceed their
fair shares. Our results also show significant improvement over
three representative multicore optimizations.

2 BACKGROUND AND PROBLEM ANALYSIS
Classical fair queuing (FQ) algorithms are concerned with sharing
a single network link among a set of flows [39]. Each flow consists
of a sequence of packets that need to be transmitted through the
shared link. Generalized processor sharing (GPS) is a reference
model for fair queuing disciplines. A GPS server operates at a fixed
rate r and can transmit multiple flows simultaneously. A flow is
backlogged at time t1 if a positive amount of that flow’s requests is
queued at time t1. Then the idealized GPS model guarantees that
during any interval [t1, t2], in which the set of backlogged flows F
is unchanged, each backlogged flow i receives a minimum service
rate ri according to its weight ϕi :

ri =
ϕi∑
j ∈F ϕ j

r .

To approximate GPS in realistic systems that can only transmit
one flow at a time, a number of packet-based GPS (PGPS) approx-
imations have been developed [4, 5, 13, 18, 20, 21, 24, 32, 39, 40,
42, 52, 53]. PGPS transmits packet by packet in its entirety and
only serves one packet at a time. PGPS approximates bandwidth
allocation in GPS by serving packets in the increasing order of their
finish time F under GPS. PGPS uses a notion of virtual time to track
the progress of packet transmission in GPS. Virtual time measures
the number of bits has been transmitted on a per-flow basis. System
virtual time and a flow’s virtual time advance at a rate of r∑

j∈F ϕj

and ϕi∑
j∈F ϕj

r , respectively. If there is only one backlogged flow, its
virtual time advances at the rate of server capacity r and is identical
to wall-clock time. When multiple flows are being serviced, flow
virtual time is slower than real time and reflects its progress under
the idealized GPS discipline. System virtual time stops advancing
when the server is idle.

Virtual time-based PGPS implementation assigns each packet k
from flow i a virtual start tag Ski and a virtual finish tag Fki when
the packet arrives. Assume that server capacity is normalized to

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

148

1 and all flow weights sum to 1. The finish tag of a packet can be
calculated based on its start tag:

Fki = Ski +
Lki
ϕi
, (1)

where Lki is size of the packet. The start tag is the maximum of
system virtual time v(t) at packet arrival time t and the finish tag
of the last packet from the same flow:

Ski = max{Fk−1i ,v(t)}. (2)

The update of start tag ensures that inactive flows would not lag
arbitrarily behind active flows in virtual time such that they could
penalize active flows for utilizing the bandwidth left idle by inactive
flows.

2.1 Start-time Fair Queuing
One obstacle to implement virtual time-based PGPS is the compu-
tation of system virtual time v(t), which requires the simulation
of a bit-by-bit GPS server. This simulation is computationally ex-
pensive to perform at each packet dispatch. Start-time fair queuing
(SFQ) [20] dispatches packets in the increasing order of start tags
instead of finish tags. Ties are broken arbitrarily. Further, v(t) is
defined as the start tag of the packet in service at time t . SFQ offers
two advantages [20]: 1) the packet size does not need to be known
a priori and SFQ is able to handle variable server rates; 2) the com-
putation of v(t) is inexpensive as it only requires to examine the
packets in service.

2.2 Fair-share CPU Scheduling
Similar to fair queuing in shared network, fair-share CPU schedul-
ing aims to fairly allocate CPU bandwidth to competing threads.
The time quantum each thread receives each time it runs on CPU
is equivalent to dispatching a packet from a flow. Due to the ad-
vantages we previously discussed, SFQ and its variants are widely
adopted in fair-share CPU scheduling. The default Linux completely
fair scheduler (CFS) implements SFQ for fair sharing each individ-
ual CPU. CFS maintains a per-thread virtual runtime (vruntime)
for each thread and tracks the minimum vruntime on a CPU. A
thread’s vruntime is updated each time it finishes a time quantum
and the advancement is calculated based on the length of the time
quantum and the thread’s weight. CFS schedules threads based on
the increasing order of their vruntimes. The minimum vruntime is
defined as the maximum of the current minimum vruntime and the
vruntime of the current running (in service) thread. It is updated
each time a thread finishes a time quantum. When a thread wakes
up from idling, its vruntime is set to the maximum of the current
minimum vruntime and its vruntime before sleep.

In a multiprocessor (or multicore) 2 system, the operating sys-
tem (OS) runs multiple copies of the fair-share CPU scheduling
algorithm, one on each CPU, and relies on load balancing to evenly
distribute threads over CPUs. Ideally, if all threads are runnable
(backlogged) all the time and there are an equal number of threads
on each CPU, fairly allocating CPU on a per-CPU basis leads to
global fairness. However, system load often fluctuates over time and
2We use multiprocessor and multicore interchangeably throughout this paper to refer
to multiple CPU queues.

threads need to be migrated across CPUs to balance the load. Load
imbalance undermines global fairness among threads as threads
on CPU with higher load receive less CPU than those on CPUs
with less load even they have the same weight. The fundamental
problem is that weight is only significant to threads on the same
CPU and affects the allocation on a particular CPU.

Unfortunately, threadmigration is expensive as it requires double
run queue locking to move a thread from the source to the desti-
nation CPU and it also undermines cache locality. Therefore, load
balancing is performed infrequently and largely based on heuristics.
For example, Linux performs load balancing on two occasions: 1)
when a core becomes idle, it pulls threads from the busiest CPU; 2)
the OS periodically moves threads from the busiest CPU to the least
loaded CPU. The busyness of a CPU is measured by the number of
runnable threads during a specified period. The busyness measure
decays over time with recently runnable threads weighing more
than older threads.

2.3 Deceptive Idleness
Despite fair-share scheduling on individual CPUs, parallel programs
are susceptible to unfair CPU allocation on multiprocessors. A crit-
ical component of parallel programs is synchronization, which
serializes the execution of threads in the critical section through
locking. Threads could either spin on the lock or block if they
failed to acquire the lock. Futile spinning wastes CPU cycles and
can inflict priority inversions [7]. Therefore, blocking and the hy-
brid spin-then-block synchronization, which eventually puts lock
waiter threads to sleep, is widely adopted in parallel libraries. For
example, the default implementations of mutex locks, barrier and
semaphore in Pthread use blocking. Similar to an issue in disk sched-
uling [23], parallel threads using blocking synchronization exhibit
deceptive idleness (DI) when a thread on the critical path is pre-
empted. The critical thread could be a lock holder or a designated
waiter to acquire the lock, which refers to the well-studied lock-
holder preemption (LHP) [17] and lock-waiter preemption (LWP)
problems [1, 37], respectively. However, it is not well understood
why these problems cause cascading performance degradation.

Recall that SFQ-based fair sharing is work-conserving and does
not penalize threads that consume resources that are otherwise
left idle. Since system virtual time v(t) on each CPU advances
according to the start tag of the current running thread, the finish
tag Fi of an idle thread is guaranteed to be smaller than v(t) when
it wakes up. Therefore, according to equation 2, an idle thread will
align its start tag with v(t) when waking up. This will allow the
continuously running thread, which consumes more than its fair
share, an equal opportunity to compete with the waking thread.
As this pattern repeats, a frequently idling thread forfeits its share
but is not compensated. Since in multiprocessor scheduling, CPUs
independently enforce fair allocation on local queues, deceptive
idleness costs parallel programs a significant proportion of their
share of CPU. The heuristic-based load balancing further aggravates
the issue. A CPU with deceptively idling threads appears to be
lightly loaded and pulls threads from heavily loaded CPUs. If sibling
threads belonging to a parallel program are stacked on the same
CPU, intra-program CPU competition leads to severe serialization
and more idleness.

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

149

2.4 Multi-Queue Fair Queuing
Multi-queue fair queuing is concerned with sharing the aggregated
capacity of multiple links among flows [6, 24]. A notable work
extends SFQ to dispatch concurrent requests to utilize multiple
links and controls the number of requests dispatched from differ-
ent flows to enforce fair sharing [24]. The core problem is how to
define system virtual time v(t). Assume that there are D queues.
Min-SFQ(D) [24] defines v(t) as the minimum start tag of any out-
standing requests, which include queued and dispatched yet com-
pleted requests. SFQ(D) defines v(t) as the maximum start tag of
any dispatched yet completed requests.

The distinction between the two algorithms is important to ad-
dress deceptive idleness. 1) Min-SFQ(D) advances v(t) according to
the lagging flow that cannot fully utilize its share. For example, a
slow flow with no concurrency but always backlogged determines
v(t). Thus, it always has precedence over faster flows that use ex-
cessive resources. However, Min-SFQ(D) can cause starvation to
fast flows if the slow flow issues a burst of requests. 2) SFQ(D) ad-
vances v(t) according to the start tag of last dispatched request in
backlogged flow. Therefore, it allows multiple queues to be fully uti-
lized without penalizing backlogged flows or compensating lagging
flows. Four-tag start-time fair queuing (FSFQ(D)) [24] combines the
benefits of Min-SFQ(D) and SFQ(D) by maintaining four tags, the
adjusted start and adjusted finish tags in Min-SFQ(D) and start and
finisht tags in SFQ(D), for each request. Request scheduling is still
based on start tags under SFQ(D) but ties are broken according to
adjusted start tags under Min-SFQ(D). This compensates a lagging
flow by giving it precedence in breaking ties.

Unfortunately, none of these algorithms is able to address decep-
tive idleness in parallel programs. Assume D queues (CPUs). When
deceptive idleness occurs and there is only one critical thread active
in a parallel program, in the worst case, there could beD−1 threads
dispatched from another backlogged program that are ahead of
the blocked threads in the parallel program. Therefore, at each
critical section of length lc , a parallel program loses (D − 1)lmax
utilization to another backlogged program after finishes Dlnc cy-
cles, where lmax is the time quantum and lnc is the length of the
non-critical section. Under Min-SFQ(D), which always treats the
parallel program as a lagging flow, the parallel program receives at
best Dlnc + lmax cycles on D CPUs in each round while the com-
peting backlogged program receives (D − 1)lmax cycles. We use
half of the total cycles allocated to both programs as the fair share
and measure fairness using the absolute relative lag |

Sfair−Sparallel
Sfair

|,
where Sparallel is the parallel program’s CPU allocation. Therefore,
we have

laд =

���� lmax − lnc
lmax + lnc

−
2lmax

D(lmax + lnc)

���� . (3)

One can observe that when D is large and lnc << lmax , laд → 1.
It suggests that parallel programs with fine-grained synchroniza-
tion could suffer starvation on large-scale multicore systems due
to deceptive idleness. Starvation is aggravated under SFQ(D) and
FSFQ(D) as parallel threads forfeit CPU shares after they wake up.

3 PREEMPTIVE MULTI-QUEUE FAIR
QUEUING

Our analysis finds that the keys to address deceptive idleness are 1)
deriving a global dispatch order of threads on multiple CPUs so as
to enforce fairness at the program level; 2) devising a multi-queue
fair queuing algorithm that allows threads from a lagging program
to be timely scheduled on CPU. In what follows, we elaborate on the
design of preemptive multi-queue fair queuing (P-MQFQ) to meet
these goals and present a practical implementation of P-MQFQ in
state-of-the-art multicore schedulers.

Figure 2 (a) shows the P-MQFQ model for multiprocessor sched-
uling. The objective is to schedule requests from different programs
(i.e., P1 and P2) such that the aggregated CPU time received by
all threads of each program is proportional to program weights.
If processors are available, programs with multiple threads can
have multiple requests dispatched. A request represents the CPU
demand from one thread. The request service time is either the
maximum time quantum a thread can run or the actual runtime if
the thread blocks before its time quantum expires. A thread imme-
diately re-submits a request for another time quantum if its current
quantum expires or waits until waking up to submit a request if it
was blocked. Similar to the existing MQFQ algorithms, P-MQFQ
maintains a centralized request dispatch queue, where requests are
scheduled in the increasing order of their start tags. The centralized
queue also tracks system virtual time v(t). The algorithm is defined
as follows:

(1) System virtual time v(t) is defined as the maximum start
tag of all requests in service. Per-program virtual time vi (t)
is defined as the maximum start tag of requests in service
that belong to a particular program. Defining virtual time
according to requests in service allows lagging programs to
preempt threads from aggressive programs.

(2) If a program is backlogged, i.e., there is at least one thread
from the program having a request running on a CPU or
queued, a request’s start tag is themaximum of the program’s
last finish tag and the program’s virtual time. Otherwise, i.e.,
the program has been idling or is newly launched, request
start tag is aligned with the system virtual time.

(3) On arrival, if a request’s start tag is smaller than the sys-
tem virtual time, it indicates that another program receives
more service than this program. The newly arrived request
preempts the request with the largest start tag in service.
Note that the preempted request is guaranteed to be from a
different program as only such requests can advance system
virtual time beyond the new request’s program virtual time.

(4) After the request with the largest start tag in service is pre-
empted, the system virtual timev(t) is updated to the second
largest start tag in service. The finish tag of the preempted
request is Ski +

lr
ϕi
, where Ski is the start tag, lr is the amount

of time the request has been running on CPU before being
preempted and ϕi is the weight of the program.

The use of two types of virtual time, i.e., system virtual time and per-
program virtual time, allows P-MQFQ to track the amount of service
received by each program and prioritize lagging programs. Most
importantly, request preemption guarantees that threads blocked

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

150

v(t)

…Program 1

…

run queue processor

migrate
&

preempt
…

run queue processor

sw
itch

(a) P-MQFQ (b) Implement P-MQFQ on distributed queues

v1(t)

…
…

Tn

T1

Tn

T1

Program 2

CPU1

CPU2

CPUn-1

CPUn

Scheduler

Send Reqs
Dispatch Reqs

v2(t)

Figure 2: (a) The idealized P-MQFQ model with a centralized request queue. (b) A practical implementation of P-MQFQ on
distributed queues by augmenting multicore schedulers with three run-queue operations.

due to synchronization can have requests immediately scheduled
after waking up if they belong to a lagging program. This prevents
deceptive idleness from happening.
Fairness Analysis
As shown in [20], during any interval [t1, t2], the difference between
the amount of service received by two backlogged flows f and д
under start-time fair queuing (SFQ) is given as:�����wf (t1, t2)

ϕf
−
wд(t1, t2)

ϕд

����� ≤ lmax
f

ϕf
+
lmax
д

ϕд
, (4)

where ϕf and ϕд are the weights of flows f and д, and lmax
f and

lmax
д are their maximum packet sizes, respectively. In CPU fair
scheduling, lmax

f refers to the maximum time thread f is allowed
to execute on CPU. In SFQ, system virtual time v(t), which is used
to track the progress under the idealized GPS model, is defined as
the start tag of the packet (request) in service (running on CPU) at
time t . Inaccuracies arise in using start tags to track the progress
under GPS during interval [t1, t2] if there exist packets that arrived
before t1 and completed before t2 or arrived before t2 and completed
after t2. The inaccuracy is at most lmax

ϕ for any flow. Therefore,
the theorem in (4) suggests that unfairness is maximum when one
flow receives maximum service while the other minimum service.
Since there is only one processor in a uniprocessor system, the
unfairness is bounded by the service equivalent to serving two
maximum packets (requests). This unfairness bound extends to

(D + 1) ∗ (
lmax
f
ϕf
+

lmax
д
ϕд

) in a D-processor system under SFQ(D) [24]
when a flow with no concurrency lags behind aggressive flows that
can fully utilize D processors. Since there are now D processors,
there exist at most D requests that do not completely fall in the
interval [t1, t2] but either started or completed in the interval. This

leads to a service difference of (D+1)∗(
lmax
f
ϕf
+
lmax
д
ϕд

), in which one

additional term
lmax
f
ϕf
+

lmax
д
ϕд

is added to account for the unfairness
of SFQ on a single CPU.

The key difference between P-MQFQ and SFQ-based approaches
is that P-MQFQ allows threads from a lagging program to preempt
a running thread at any time. If preemption had no cost, packet
(request) scheduling can be made bit-by-bit (cycle-by-cycle). As
such, in uniprocessor systems, the unfairness bound reduces to 1

ϕf
+

1
ϕд

, assuming that 1 is the resolution of virtual time. Unlike SFQ(D)
whose unfairness bound scales with the number of processors D,
ideally, P-MQFQ retains the same constant unfairness bound in

multiprocessor systems as that in uniprocessor systems. When
the program-level virtual time of a lagging program falls behind,
threads from this program can even preempt threads from other
programs that are dispatched but not started on CPU. Note that
this is not possible in uniprocessor systems because dispatched
threads must have a smaller start tag than any queued threads. In
real systems, CPU schedulers enforce a minimum time slice lmin to
prevent too frequent context switching. Therefore, in the worst case,
when a lagging program intends to preempt, there could be at most
D threads that have just started on CPU and are each guaranteed to
run for lmin . Following the proof in [24], the unfairness in P-MQFQ
is bounded by (D + 1) ∗ (lmin

ϕf
+

lmin
ϕд

).

3.1 Approximating P-MQFQ on Distributed
Queues

P-MQFQ relies on a centralized queue to derive a global notion
of virtual time and requires tracking per-program virtual time.
However, state-of-the-art multicore schedulers employ a distributed
queue architecture because it scales well with a large number of
CPUs. Each CPUmaintains per-CPU virtual time and independently
enforces fair sharing on local queues. To approximate P-MQFQ
without requiring to maintain the system and per-program virtual
time, we augment multicore schedulers with distributed queues
with three run queue operations: MIGRATE, PPREEMPT and SWITCH.

With distributed queues, there lacks a notion of global system
virtual time. Per-CPU system virtual time progresses independently.
Therefore, request start tags on different queues do not reflect the
amount of service received by requests; in other words, start tags
are not comparable across queues. Recall that P-MQFQ preempts
the in-service request with the largest start tag. It is equivalent to
finding the last dispatched request from the program that received
the most service. We relax the requirement for finding the global
maximum of all start tags. Instead, as shown by the left figure in
Figure 2 (b), after a request is completed (i.e., its time slice expires),
the thread who submitted this request preempts a thread that has
received more service on another CPU queue. We also ensure that
the preempted thread belongs to a different program. Since per-
CPU system virtual time progresses as request start tag increases,
we consider the current running thread on a queue with the fastest
virtual time progression to have received the most service. If such a
thread is found on a queue, the threadwith an expired time quantum
is MIGRATED to the queue and PREEMPTS the running thread.

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

151

Per-program virtual time tracks the aggregate service time of all
threads in a program on multiple queues. During synchronization,
per-program virtual time advances slowly as only the critical thread
is active. This ensures that the critical thread has a small start
tag and is always timely scheduled to avoid lock holder or waiter
preemption. However, tracking per-program virtual time across
multiple queues will impose a significant scalability bottleneck. We
approximate the effect of per-program virtual time by ensuring
that the critical thread is timely scheduled. As shown by the right
figure in Figure 2 (b), if a thread is blocked (dotted box) before its
time quantum expires, it iterates over queues to look for a runnable
(queued) sibling thread from the same program. If found, P-MQFQ
will switch these two threads and allows the selected runnable
thread to use the remaining time quantum left by the blocked
thread. The SWITCH operation moves the two threads but retains the
virtual time on the original queues. The selected runnable thread
will inherit the virtual time of the blocked thread and vice versa.
This ensures that thread switching does not undermine fairness and
programs can continuously receive service during synchronization.

3.2 Implementation
Native Linux and KVM Since the completely fair scheduler (CFS)
in Linux is an implementation of SFQ on a per-CPU basis, P-MQFQ
naturally extends to CFS. In CFS, each CPU (queue) independently
maintains per-queue system virtual time (minimum vruntime),
which is the vruntime of the current running thread. Minimum
vruntime is updated at each timer interrupt (by default every 1ms
in Linux) with the vruntime of the current running thread. P-MQFQ
tracks the progression of per-queue minimum vruntime in a 3ms
time window and considers the queue with the largest vruntime
advancement as the one receiving most service. When a thread is
blocked, it scans all queues to look for a runnable thread with the
same parent and switch to the thread. This method finds sibling
threads belonging to the same program in native Linux and sibling
vCPUs in KVM.
Xen In Xen’s credit scheduler, CPU allocation is measured by credits.
As a vCPU consumes CPU, credits are debited and the balance
determines the vCPU’s priority. vCPUs with non-negative credit
balance are assigned with the normal UNDER priority while those
with negative balance are given a lower OVER priority. Xen refills
vCPUs’ credits at the beginning of each accounting period (every
30ms). Each time a vCPU is allocated the amount of credits that
lasts for a time quantum (30ms in Xen). If a vCPU cannot use up its
credits in an accounting period, the unused credits are discarded,
which is intended to prevent vCPUs from accumulating credits.
Although the credit scheduler does not use the notion of virtual
time, the consumption of credits is equivalent to the progression of
virtual time. To implement P-MQFQ, we record the discarded credits
on each CPU in each accounting period. The CPU with the least
discarded credits is considered to have received themost service and
the running vCPU on this CPU is preempted. The implementation
of the SWITCH operation is similar to that in Linux.

4 EVALUATION
In this section, we present an evaluation of P-MQFQ in both a
bare-metal Linux environment and two representative virtualized

environments (KVM and Xen). We first study the effectiveness of
P-MQFQ in addressing deceptive idleness in parallel workloads
with blocking synchronization (§ 4.2). We then show that P-MQFQ
can significantly improve the performance of parallel workloads
with different types of synchronization (§ 4.3). Finally, we study the
overall system efficiency under P-MQFQ when multiple parallel
applications are each scheduled by P-MQFQ (§ 4.4).

4.1 Experimental Setup
All experiments were performed on two servers. One is a DELL
PowerEdge T420 server with two six-core Intel Xeon E5-2420 pro-
cessors (24 cores with hyperthreading enabled) and 32GB memory.
Another is a DELL PowerEdge R830 with four twelve-core Intel
Xeon E5-4640 processors (48 cores with hyperthreading disabled)
and 256GB memory. The settings were intended to demonstrate
the effectiveness of P-MQFQ at different scales as well as with or
without hyperthreading. Linux 4.1.39 was used as the native Linux
OS, the host OS in KVM, and the guest OS in KVM and Xen. Xen
4.5.0 was used in the Xen test. For the tests in KVM and Xen, two
VMs were used to run the parallel programs under test and the
interfering workloads. All results were the average of 5 runs.
WorkloadsWe selected the PARSEC [45] and NASA parallel bench-
marks [3] as the parallel workloads under test. PARSEC is a shared
memory parallel benchmark suite with various blocking synchro-
nization primitives such as mutex locks, condition variables and
barriers. We compiled PARSEC using pthreads and used the native
input size. NASA parallel benchmarks include 9 parallel programs.
We used the OpenMP implementation of benchmarks with the class
C input size. We set the environment variable OMP_WAIT_POLICY
to INACTIVE to enable blocking synchronization.
Scheduling strategies We compare the performance of P-MQFQ
with the baseline multicore schedulers and three representative
scheduling strategies:

• Linux CFS and Xen credit schedulerwere used as the baseline
schedulers in native Linux, KVM and Xen, respectively.

• Pin + {Linux, KVM and Xen}: To avoid the severe CPU stack-
ing issue due to deceptive idleness, we pinned threads and vCPUs
to individual cores to disable OS load balancing. This strategy is
often employed in production systems to improve performance
predictability and preserve locality.

• Relaxed-Co:we implemented the VMware’s relaxed co-scheduling
in native Linux, KVM and Xen. Relaxed-Co monitors the execu-
tion skew of each vCPU (thread) and stops the vCPU that makes
significantly more progress than the slowest vCPU. When a VM
(program)’s leading vCPU (thread) is stopped, the hypervisor
switches it with its slowest sibling vCPU to boost the lagging
vCPU.

• Gleaner [14]: Inmulti-tenant systems, CPUmultiplexing causes
suboptimal scheduling and fragmented CPU allocation in paral-
lel programs. Gleaner consolidates fragmented CPU allocation
into a few dedicated CPUs. Although CPU consolidation does
not provide enough concurrency to user-level threads, it avoids
expensive trapping to the hypervisor due to idling and harmful
competition with co-running applications.

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

152

FSRTX264SWFRBTVPFACNSTDPBS

2

1.5
1

0.5
0N

or
m

al
ize

d
C

PU
 A

llo
ca

tio
n

1

0.5
0

2
1.5

Inter. Linux.app Pin + Linux.app Relaxed-Co.app P-MQFQ.app
(a) 48 Cores PARSEC (b) 48 Cores NPB

UA SP LU BT CG EP IS MG FT

Figure 3: Normalized CPU allocation on physical machines for PARSEC (a) and NPB (b).

2
1.5
1

0.5
0

N
or

m
al

ize
d

C
PU

 A
llo

ca
tio

n

(a) 48 Cores KVM

1

0.5
0

2
1.5

(b) 48 Cores Xen
Inter. Linux.app Pin + Linux.app Relaxed-Co.app Gleaner.app P-MQFQ.app

FSRTX264SWFRBTVPFACNSTDPBS FSRTX264SWFRBTVPFACNSTDPBS

Figure 4: Normalized CPU allocation on KVM (a) and Xen (b) for PARSEC.

2
1.5
1

0.5
0

2
1.5
1

0.5
0

N
or

m
al

ize
d

C
PU

 A
llo

ca
tio

n

UA SP LU BT CG EP IS MG FT UA SP LU BT CG EP IS MG FT

(a) 48 Cores KVM (b) 48 Cores Xen
Inter. Linux.app Pin + Linux.app Relaxed-Co.app Gleaner.app P-MQFQ.app

Figure 5: Normalized CPU allocation on KVM (a) and Xen (b) for NPB.

4.2 Addressing Deceptive Idleness
In this section, we evaluate the effectiveness of P-MQFQ in ad-
dressing deceptive idleness and improving the fairness of CPU
allocation. Similar to the experiments in Figure 1, we collocated
parallel workloads with a synthetic benchmark that had persis-
tent CPU demand. The synthetic benchmark consisted of the same
number of CPU hogs as the number of CPUs and was intended
to create a contentious scenario to cause unfair CPU allocation.
Figures 3, 4 and 5 show the normalized CPU allocation to the fore-
ground parallel programs and the background interfering workload.
The stacked bars show the allocation to the parallel applications
(e.g., P-MQFQ.app) and the interfering workload (e.g., Inter.) un-
der various approaches. A normalized allocation of 1 refers to fair
allocation while a value less than 1 indicates that parallel programs
receive less than the fair share. From these figures, we have the
following observations:
First, compared with the baselines, P-MQFQ significantly increased
the CPU allocation to most parallel workloads. P-MQFQ is most
effective for programs with fine-grained synchronization. For exam-
ple, among PARSEC benchmarks, dedup, streamcluster and canneal
benefited most from P-MQFQ. According to the equation 3, the
shorter the non-critical section (lnc), i.e., more frequent synchro-
nization, the higher degree of unfairness. In comparison, the im-
provement on CPU allocation was less in NPB benchmarks, which

have much longer non-critical sections and less frequent synchro-
nization. This observation was consistent both in the physical and
virtualized environments.
Second, most benchmarks suffered more from deceptive idleness
as the number of CPUs scaled but P-MQFQ also had diminishing
gains 3. Intuitively, deceptive idleness is aggravated with a larger
number of threads as more threads would be idling during synchro-
nization. As shown in equation 3, the degree of unfairness increases
with the number of CPUs D. P-MQFQ mitigated deceptive idleness
by prioritizing the critical thread to avoid unnecessary idleness.
However, P-MQFQ was unable to entirely eliminate idleness at
scale, in which the critical section weighed more to the non-critical
section. We empirically confirmed that fine-grained programs, such
as streamcluster and canneal, were unable to utilize their fair shares
even in solo mode. For example, streamcluster only utilized around
1400% (equivalent to the capacity of 14 CPUs) CPU on the 48-core
machine with 48 threads. This limits the gain of P-MQFQ at scale.
Third, different multicore schedulers suffered differently from de-
ceptive idleness, which also affected the effectiveness of P-MQFQ.
Xen employs a longer time quantum lmax (i.e., 30ms) than that in
CFS (i.e., 6ms). Therefore, parallel programs’ CPU allocation was
much lower in baseline Xen compared to Linux and KVM. This
does not affect the effectiveness of P-MQFQ as thread preemption
in P-MQFQ effectively mitigate deceptive idleness, regardless of

3We have tested with 12, 24, and 48 cores. Due to limited space, only the results on 48
cores are shown.

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

153

-118 -663-336-22-63-246-610 -45.5 -31.8

40
20

0
-20

60
80

100

0
-20

20
40
60
80

UA SP LU BT CG EP IS MG FT

(a) 48 Cores PARSEC (b) 48 Cores NPB

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

) Pin + Linux Relaxed-Co P-MQFQ

FSRTX264SWFRBTVPFACNSTDPBS

Figure 6: Performance improvement of PARSEC (a) and NPB (b) on physical machine.

-633.3-118.2-204-98-96.3

(a) 48 Cores KVM

0
-20

20
40
60
80

100
120

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

-168

-46.7-24

-31.4

-2021-63.9

(b) 48 Cores Xen
Pin + Linux Relaxed-Co Gleaner P-MQFQ

0
-20

20
40
60
80

100
120

FSRTX264SWFRBTVPFACNSTDPBS FSRTX264SWFRBTVPFACNSTDPBS

Figure 7: Performance improvement of PARSEC on KVM (a) and Xen (b).

-500
-20

20
40
60
80

100
120

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

)

UA SP LU BT CG EP IS MG FT

(a) 48 Cores KVM

-125.20
-20

20
40
60
80

100
120

(b) 48 Cores Xen

UA SP LU BT CG EP IS MG FT

Pin + Linux Relaxed-Co Gleaner P-MQFQ

Figure 8: Performance improvement of NPB on KVM (a) and Xen (b).

the length of the time quantum. P-MQFQ was able to achieve a
similar level of utilization improvement in Xen compared to that in
Linux. In contrast, P-MQFQ was less effective in KVM. Although
both native Linux and KVM use CFS as the scheduler, in KVM, the
scheduling entity is the vCPU. KVM employs hardware assisted
virtualization (e.g., Intel VT-x) to virtualize vCPUs and thus incurs
higher overhead for vCPUs migration. Significantly, a vCPU is not
immediately eligible for migration after it is preempted because
of a write barrier to enforce consistency across cores. In KVM, it
takes more than 1ms before P-MQFQ can migrate a critical thread
after the thread is preempted, thereby unable to timely schedule the
critical thread. As a result, P-MQFQ achieved lower CPU allocation
in KVM than that in Linux and Xen.
Fourth, P-MQFQ achieved a higher CPU allocation than the three
representative scheduling strategies Pin, Relaxed-co and Gleaner
in all tests except for EP from NPB, which is embarrassingly parallel
and uses no synchronization. The key in P-MQFQ to increasing
CPU utilization is to eliminate idleness as much as possible. To
achieve this goal, P-MQFQ allows a preempted thread a chance
to continue running by preempting another over-serving threads
and moves threads across CPUs to avoid forfeiting allocated time
quantum. Neither of the three approaches devise both optimizations.
Pin avoids CPU stacking due to deceptive idleness but does not
address the preemption of critical threads; Relaxed-co could not

guarantee the simultaneous progress of all threads and thus is still
susceptible to idleness-induced CPU stacking; thread consolidation
in Gleaner does not expose enough parallelism to the user-level
thread, thereby aggravating serialization at the critical section.

4.3 Improving Performance
For programs with blocking synchronization, scheduling ineffi-
ciencies manifest as excessive idleness. Thus, it is expected that
P-MQFQ leads to performance improvement as it can eliminate
much of the idleness and improve CPU utilization. Figures 6, 7 and 8
show the execution time of PARSEC and NPB benchmarks due to
different scheduling strategies in native Linux, KVM and Xen, re-
spectively. Performance is normalized to that in the baselines, i.e.,
vanilla Linux, KVM and Xen. From these figures, we can see that
P-MQFQ improved the performance of all benchmarks compared
to that in the baselines. The performance improvement was up to
97% and 96% for PARSEC and NPB benchmarks, respectively.

In contrast, there were benchmarks suffering performance degra-
dation under other approaches. For example, streamcluster had a
degradation of 400% under Pin on the 24-core physical machine
since Pin cannot mitigate the deceptive idleness; Relaxed-co de-
graded x264 by as much as 663% on the 48-core physical machine
due to the loss of 25% CPU allocation; Gleaner inflicted a 2021%
slowdown to streamcluster on the 48-core Xen machine. The reason

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

154

25
0

50
75

100
125
150
175

75
50

100
125
150
175
200

25
0

(a) 48 Cores w/ Streamcluster (b) 48 Cores w/ UA

W
ei

gh
te

d
Sp

ee
du

p
(%

)

UA SP LU BT CG EP IS MG FT

Linux Pin + Linux P-MQFQGleaner

FSRTX264SWFRBTVPFACNSTDPBS

Figure 9: Weighted speedup of PARSEC (a) and NPB (b) on physical machine.

150
200
250

100
50

0

150
200

100
50

0

275 332 201
(a) 48 Cores KVM (b) 48 Cores Xen

W
ei

gh
te

d
Sp

ee
du

p
(%

)

P-MQFQGleanerRelaxed-CoPin + LinuxLinux

FSRTX264SWFRBTVPFACNSTDPBS FSRTX264SWFRBTVPFACNSTDPBS

Figure 10: Weighted speedup of PARSEC and streamcluster on KVM (a) and Xen (b).

25
0

50
75

100
125
150
175

(a) 48 Cores KVM

W
ei

gh
te

d
Sp

ee
du

p
(%

) (b) 48 Cores Xen

UA SP LU BT CG EP IS MG FT UA SP LU BT CG EP IS MG FT
0

100
120
140

80
60
40
20

160
180

P-MQFQGleanerRelaxed-CoPin + LinuxLinux

222
240

Figure 11: Weighted speedup of NPB and UA on KVM (a) and Xen (b).

is that Xen hypervisor employed the comparison of vCPU priority
to decide the load balance. Therefore, consolidating more threads
onto a single vCPU in Xen would make the stacking problem more
serious and thus performance is further degraded.

4.4 System Efficiency
The results presented so far focused on improving the utilization
and performance of the foreground parallel programs. P-MQFQ did
not take effect for the background workloads. We are also interested
in evaluating P-MQFQ in managing multiple parallel workloads,
each is actively scheduled by P-MQFQ. We collocated two blocking
parallel workloads to share the same set of CPUs and used the geo-
metric mean of individual programs’ speedups (weighted speedup)
to measure the overall system efficiency. The higher the weighted
speedup, the higher the system efficiency. A weighted speedup
of 1 indicates the same performance as the baseline system. The
foreground and background workloads were both repeated at least
five times to ensure their execution completely overlapped with
each other. We selected streamcluster as the background workload
for the PARSEC benchmarks and UA for the NBP benchmarks.

Figures 9, 10 and 11 show the weighted speedup of PARSEC and
NPB benchmarks due to different scheduling strategies in native
Linux, KVM and Xen, respectively. Our results indicated that P-
MQFQ improved the system-wide weighted speedup by as much as
332%. In a physical environment, it achieved an average weighted

speedup of 13% and 27.7% for PARSEC and NBP benchmarks, re-
spectively. The overall performance improvement for both the fore-
ground and background benchmarks were higher in virtualized
environments (KVM and Xen). An examination of the foreground
and background workloads revealed that the gain in system-wide
weighted speedup was due to the performance improvement in
both applications. Furthermore, both foreground and background
applications had improved CPU utilizations.

Compared to P-MQFQ, the pinning mechanism either had mar-
ginal improvement on the weighted speedup or hurt the overall
system efficiency. For example, pinning degraded the weighted
speedup considerably for x264 on physical machine, ferret on
KVM and dedup on Xen. Relaxed-Co achieved better performance
than pinning, but still hurt overall system efficiency when running
streamcluster and facesim. Gleaner performed better in some
cases than P-MQFQ such as ferret and x264 on 24 cores KVM.
Overall, P-MQFQ significantly outperformed these approaches in
the average speedup over all workloads combinations.

4.5 Proportional Fair Sharing
Next, we evaluate the effectiveness of P-MQFQ in enforcing pro-
portional fair sharing. We set larger weights for the foreground
parallel program and use two metrics: program execution time and
absolute relative lag, to quantify the benefit of P-MQFQ compared
to other approaches. Table 1 compares P-MQFQ with PIN+{Linux,

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

155

Pin + Linux (1:2) Pin + Linux (1:4) Pin + KVM (1:2) Pin + KVM (1:4) Pin + Xen (1:2) Pin + Xen (1:4)
of apps (maximum

improvement)
Parsec: 7 (51%)
NPB: 3 (12%)

Parsec: 7 (55%)
NPB: 3 (14.2%)

Parsec: 4 (58%)
NPB: 3 (35.9%)

Parsec: 3 (42.9%)
NPB: 2 (61%)

Parsec: 9 (91%)
NPB: 6 (92%)

Parsec: 9 (93%)
NPB: 6 (89%)

Average performance
improvement across all apps

Parsec: 14.8%
NPB: -8.4%

Parsec: 16.3%
NPB: -3.7%

Parsec: 6.9%
NPB: 0%

Parsec: 6.8%
NPB: -4.7%

Parsec: 67%
NPB: -1%

Parsec: 68%
NPB: -0.9%

Average fairness
improvement across all apps

Parsec: 20%
NPB: 18%

Parsec: 30%
NPB: 19.6%

Parsec: 31.8%
NPB: 4.3%

Parsec: 26%
NPB: 10.6%

Parsec: 29.2%
NPB: 32.5%

Parsec: 27.4%
NPB: 41.4%

Table 1: Comparison of P-MQFQ and PIN+{Linux, KVM and Xen} with two weight settings.

KVM and Xen}. Due to limited space, we do not show the compar-
ison with vanilla Linux and other approaches. Overall, P-MQFQ
significantly outperformed these approaches in all benchmarks as
bigger weights did not prevent CPU stacking. In contrast, bigger
weights together with CPU pinning (e.g., PIN+Linux) effectively
addressed deceptive idleness as the parallel thread in the critical
section is less likely to be preempted. As shown in Table 1, P-MQFQ
still outperformed PIN-based approaches in most cases. The first
row in Table 1 lists the number of benchmarks in PARSEC and NPB
in which P-MQFQ outperformed PIN-based approaches and the
maximum improvement over PIN. Two weight settings: 1:2 and 1:4
(larger weights for parallel programs) were tested. One can observe
that 1) PARSEC benchmarks benefited more from P-MQFQ as they
suffer most from deceptive idleness due to fine-grained synchroniza-
tion; 2) on average, P-MQFQ improved the performance of PARSEC
benchmarks but incurred slight degradation to NPB benchmarks; 3)
P-MQFQ achieved CPU allocations closer to the proportional fair
share in both benchmarks. Among the three platforms, P-MQFQ
attained the least fairness improvement for NPB benchmarks in
PIN+KVM. KVM employs hardware-assisted CPU virtualization, e.g.,
Intel’s VT-x, which causes expensive virtual CPU context switching
due to blocking synchronization. Such expensive blocking hinders a
parallel program from scaling its CPU utilization even with a larger
weight. Compared to PARSEC, NPB benchmarks employ coarse-
grained synchronization and suffer less from deceptive idleness,
thereby leaving less room for CPU utilization improvement.

5 RELATEDWORK
Packet Scheduling. Fair queuing algorithms have been exten-
sively studied in the literature. Most algorithms use the generalized
processor sharing discipline [28] as the reference model. Since GPS
uses an idealized fluid model and cannot be implemented in real
systems, various packet-based approximations of GPS have been
developed [4–6, 13, 18, 20, 21, 24, 32, 39, 40, 42, 52, 53]. Among
these algorithms, weighted fair queuing (WFQ) [13] also known as
Packet-by-Packet Generalized Processor Sharing (PGPS) [39] has
been considered to be the best approximation to the GPS with re-
spect to the accuracy. WFQ will schedule the packets in the increas-
ing order of their departure times in the GPS. However, WF2Q [5]
demonstrates that WFQ can be far ahead of GPS in terms of number
of bits served for a session which could cause large discrepancies be-
tween the services provided by WFQ and GPS. In order to mitigate
this unfairness of WFQ, WF2Q only consideres the packets which
have already started receiving service in GPS system. For integrated
services networks (e.g., video and audio applications), start-time
fair queueing [20] or SFQ showed it was better suited than WFQ
to provide fairness over servers with time varying capacity. SFQ
associated each packet with start tag and finish tag and scheduled

these packets in the increasing order of start tag. Furthermore, SFQ
changed the definition of system virtual timev(t) to be the start tag
of the packet in the service time t. SFQ(D) [24] is adaption of start-
time fair queueing (SFQ) for servers with a configurable degree
of internal concurrency and it makes it possible to share a server
among multiple request flows. Hierarchical packet fair queueing [4]
or H-PFQ proposed the WF2Q+ algorithm which extended WF2Q
but with a lower complexity to provide the bounded-delay and
fairness for hierarchical link sharing and traffic management be-
tween different service classes. All these fair sharing algorithms
only provide methods for proportionally sharing a single server
among competing flows. Unfortunately, they do not address the
problem of fair sharing on multiple servers. MSFQ [6] extends WFQ
to support multiple servers. It dispatches packets whenever there is
an idle server and according to the order of packet completion under
GPS. An important limitation of these packet-based fair queuing
algorithms is that fairness is only guaranteed between backlogged
flows and those that exhibit deceptive idleness are penalized under
these algorithms.

CPU Fair Scheduling. Proportional share resource manage-
ment provides a flexible and useful abstraction for multiplexing
scarce resources such as the CPU, memory and disk among multiple
users. The basic idea is to associate each user a weight and allocate
resources to users in proportion to their weights. Many propor-
tional fair share algorithms have been proposed to allocate CPU
bandwidth [11, 14–16, 20, 22, 25–27, 29, 31, 33–36, 38, 41, 43, 44, 46–
49, 51].

In uniprocessor systems, early CPU schedulers [22, 26] are based
on the concept of task priority and failed to precisely control CPU
allocation in proportion to user weights. Lottery scheduling [46]
is a randomized resource allocation mechanism based on the no-
tion of a ticket. Compared to the traditional priority-based sched-
ulers, lottery scheduling approximates proportional fair sharing in
the long-term scheduling. Stride scheduling [47] further improves
over lottery scheduling with significantly improved accuracy over
relative throughput rates and less response time variability. The
core allocation mechanism used by lottery and stride scheduling
is based on WFQ or SFQ algorithms for packet scheduling. Hier-
archical CPU scheduler [20] implemented the SFQ algorithm in
multithreaded scheduling and could support hard and soft real-
time, as well as best effort applications in a multimedia operating
systems. Borrowed Virtual Time Scheduling [15] or BVT aimed to
provide low-latency for real-time and interactive applications by
introducing a latency parameter into SFQ algorithm. Virtual time
round robin [34] combined the round robin and WFQ fair queue-
ing algorithm to guarantee proportional allocation CPU resource
among a set of clients.

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

156

In multiprocessor systems, GPS-based fair sharing algorithms
can result in unbounded unfairness. Since a thread can only run
on a single processor at a time, certain weight assignments are
infeasible in multiprocessor environments, allowing some threads
to lag arbitrarily behind other threads. To address this issue, a series
of works [8–10] focus on adjusting infeasible weights to the closest
feasible weights and employed variants of the SFQ algorithm to
schedule threads under the new weight assignments. Surplus Fair
Scheduling [8] or SFS schedules threads in the increasing order
of service surplus, which is the difference between the amount of
CPU service received by a thread and the service that the thread
would have received under the generalized multiprocessor sharing.
Deadline Fair Scheduling [9] ensures that the number of times a
thread is scheduled on multiprocessors is proportional to its weight.
Hierarchical multiprocessor scheduling (H-SMP) [10] employs a
space scheduler to allocate an integer number of CPUs to each
thread group and uses SFS to schedule individual threads within
each group. While the approaches to address infeasible weights are
complementary to our work, the thread schedulers in [8–10] do not
take the dependency between threads of a parallel program into
account, thereby unable to enforce program-level fairness. Take SFS
for example, it tracks per-thread virtual time and allows threads
to forfeit its CPU allocation as system virtual time advances. Since
SFS and other similar approaches do not have a notion of program
virtual time, they fail to compensate a parallel program that have
threads suffering from deceptive idleness. In the worst case, a par-
allel program can lose concurrency (i.e., all threads stacking on a
single core) and lags arbitrarily behind other programs. In contrast,
P-MQFQ tracks per-program virtual time and allows threads from
lagging programs to preempt threads from programs that received
excessive CPU. This allows threads from a parallel program to be
compensated if their sibling threads (not necessarily themselves)
forfeited CPU.

6 DISCUSSION
Spinning workloads face a different challenge in multi-tenant
systems. Futile spinning due to the preemption of the critical thread
wastes the fair CPU share of the spinning workload. Since spinning
workloads do not block, they do not suffer from deceptive idleness
and thereby are unable to benefit from P-MQFQ. Recent advances in
processor design allow the OS to detect excessive spinning through
hardware-based techniques, such as pause-loop exiting (PLE), and
to forcibly stop (blocks) a spinning thread. PLE is especially useful
in virtualized environments, where the hypervisor is oblivious
of spinning inside VMs. As such, spinning workloads will suffer
deceptive idleness when threads are involuntarily put to sleep and
thus they also can benefit from P-MQFQ.
Overhead Approximating a centralized request dispatch queue
requires synchronization between CPUs. Our implementation of P-
MQFQ on multicore schedulers incurs two types of overhead. First,
to identify the thread that received most service, P-MQFQ needs
to monitor the progression of virtual time on all CPUs and find
the queue with the largest virtual time progression. This requires
traversing all CPUs every 3ms. To isolate the overhead due to this
operation, we compared program performance with and without P-
MQFQ in solo mode, in which no thread migration is performed.We

found approximating global virtual time incurs negligible overhead,
adding an average of 1.3%, 3.7% and 2.4% overhead to execution
time in Linux, KVM and Xen respectively.

Second, frequent threadmigrations undermine cache locality and
require an expensive run queue operation in multicore schedulers
– double run queue locking, which locks the source and destina-
tion CPUs before a thread migration is completed. When deceptive
idleness occurs, P-MQFQ effectively improves CPU allocations to
parallel programs, though inevitably incurs overhead. We measured
the migration cost and cache miss ratio which are introduced by
the three operations of P-MQFQ in all experiments, including those
with the synthetic benchmark and with a realistic parallel workload,
in Linux, KVM and Xen. Migration cost equals the total number of
threads migration multiplied by time needed to move one thread
from one core to another. Experimental results show that the mi-
gration cost of all threads in applications from PARSEC and NPB
benchmarks range from 0.014s to 0.02s which is only 0.005% to
0.2% of total execution time. Cache miss ratio represents the total
cache misses divided by the issued cache references. Experimental
results show that cache miss ratio caused by P-MQFQ is less than
default Linux by 0.2% to 2% which indicates P-MQFQ did not bring
high memory cost through thread migration. It is also important
to study which factor, improving utilization or expensive thread
migration, weighs more in overall performance. We consider that
the overhead of thread migration dominates overall performance
if P-MQFQ outperforms Pin in CPU utilizations but results in less
performance improvement. For example, P-MQFQ outperformed
Pin in CPU utilization (10% vs. 2.5%) but achieved less performance
improvement than Pin (26.4% vs. 66.9%) in KVM. In a physical en-
vironment, 44 out of 48 PARSEC tests and 33 out of 36 NPB tests
show that the benefit of P-MQFQ outweighed its overhead. Similar
observations were also made in KVM and Xen.

7 CONCLUSION
This paper identifies an important deficiency in state-of-the-art
multicore schedulers that causes unfair CPU allocation to paral-
lel programs with blocking synchronization and leads to severe
performance degradation. This deficiency will seriously hamper
CPU multiplexing in shared services, such as public clouds. We
attribute the deficiency to the inability of existing schedulers to
deal with deceptive idleness and the lack of multi-queue fair queu-
ing in the context of thread scheduling. To this end, we proposed
preemptive multi-queue fair queuing (P-MQFQ), a centralized algo-
rithm that uses thread preemption to guarantee fair CPU allocation
for multi-threaded programs on multiple CPUs. P-MQFQ can be
approximated by augmenting distributed queue-based schedulers
with three run queue operations. Results show that P-MQFQ im-
proves utilization and performance compared to three representa-
tive scheduling strategies.

8 ACKNOWLEDGEMENT
We thank our shepherd Giuliano Casale and the anonymous re-
viewers for their insightful suggestions. This research is supported
by National Science Foundation under grant CCF-1845706.

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

157

REFERENCES
[1] J. Ahn, C. H. Park, and J. Huh. Micro-sliced Virtual Processors to Hide the Effect

of Discontinuous CPU Availability for Consolidated Systems. In Proceedings
of the 47th IEEE/ACM International Symposium on Microarchitecture (Micro-47),
2014.

[2] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2.
[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks Sum-
mary and Preliminary Results. In Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing (SC’91), 1991.

[4] J. C. R. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithm. In
Proceedings of the ACM Symposium on Communications Architectures and Protocols
(SIGCOMM’96), 1996.

[5] J. C. R. Bennett and H. Zhang. WF2Q: Worst-case Fair Weighted Fair Queue-
ing. In Proceedings of 15th International Conference on Networking for Global
Communications (INFOCOM’96), 1996.

[6] J. M. Blanquer and B. Ozden. Fair Queueing for Aggregated Multiple Links. In
Proceedings of the ACM Symposium on Communications Architectures and Protocols
(SIGCOMM’01), 2001.

[7] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The Convoy Phenomenon. SIGOPS
Operating System Review, 13(2), 1979.

[8] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus Fair Scheduling: A
Proportional-share CPU Scheduling Algorithm for Symmetric Multiprocessors.
In Proceedings of the 4th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’00), 2000.

[9] A. Chandra, M. Adler, and P. Shenoy. Deadline Fair Scheduling: Bridging the
Theory and Practice of Proportionate Fair Scheduling in Multiprocessor Systems.
In Proceedings of 7th IEEE Symposium on Real-time Technology and Applications
(RTTAS’01), 2001.

[10] A. Chandra and P. Shenoy. Hierarchical Scheduling forSymmetric Multiproces-
sors. IEEE Transaction on Parallel and Distributed Systems., 19, 2008.

[11] L. Cheng, J. Rao, and F. C. M. Lau. vScale: Automatic and Efficient Processor
Scaling for SMP Virtual Machines. In Proceedings of the 11th European Conference
on Computer Systems (EuroSys’16), 2016.

[12] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-aware
Cluster Management. In Proceedings of the 19th International Conference on Archi-
tecture Support for Programming Languages and Operating Systems (ASPLOS’14),
2014.

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing
Algorithm. In Proceedings of Symposium on Communications Architecture and
Protocals (SIGCOMM’89), 1989.

[14] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan. Gleaner: Mitigating the Block-
waiter Wakeup Problem for Virtualized Multicore Applications. In Proceedings of
the 2014 USENIX Annual Technical Conference (ATC’14), 2014.

[15] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time Scheduling: Supporting
Latency-sensitive Threads in a General-purpose Scheduler. In Proceedings of the
7th ACM Symposium on Operating Systems Principles (SOSP’99), 1999.

[16] R. Essick. An Event-based Fair Share Scheduler. In Proceedings of the Winter 1990
USENIX Conference, 1990.

[17] T. Friebel and S. Biemueller. How to Deal With Lock Holder Preemption. In Xen
Developer Summit, 2008.

[18] S. J. Golestani. A Self-clocked Fair Queueing Scheme for Broadband Applica-
tions. In Proceedings of 13th International Conference on Networking for Global
Communications (INFOCOM’94), 1994.

[19] Google Cloud Platform. http://cloud.google.com/compute.
[20] P. Goyal, H. M. Vin, and H. Chen. Start-time Fair Queueing: A Scheduling Algo-

rithm for Integrated Services Packet Scheduling Networks. In Proceedings of the
ACM Symposium on Communications Architectures and Protocols (SIGCOMM’96),
1996.

[21] A. G. Greenberg and N. Madras. How Fair is Fair Queueing. Journal of ACM, 39,
1992.

[22] G. J. Henry. The Fair Share Scheduler. AT&T Bell Laboratories Technical Journal,
63, 1984.

[23] S. Iyer and P. Druschel. Anticipatory Scheduling: A Disk Scheduling Framework
to Overcome Deceptive Idleness in Synchronous I/O. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP’01), 2001.

[24] W. Jin, J. S. Chase, and J. Kaur. Interposed Proportional Sharing for Storage
Service Utility. In Proceedings of International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’04), 2004.

[25] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Antfarm: Tracking
Processes in a Virtual Machine Environment. In Proceedings of the 2006 USENIX
Annual Technical Conference (ATC’06), 2006.

[26] J. Kay and P. Lauder. The Fair Share Scheduler. Communications of the ACM, 31,
1988.

[27] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. Demand-Based Coordinated
Scheduling for SMP VMs. In Proceedings of 18th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’13),
2013.

[28] L. Kleinrock. Queueing System. 1975.
[29] T. Li, D. Baumberger, and S. Hahn. Efficient and Scalable Multiprocessor Fair

Scheduling Using Distributed Weighted Round Robin. In Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Computing
(PPoPP’09), 2009.

[30] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-Up: Increasing
Utilization in Modern Warehouse Scale Computers via Sensible collocations. In
Proceedings of the 44th IEEE/ACM International Symposium on Microarchitecture
(Micro-44), 2011.

[31] I. Molnar. Completely Fair Scheduler. In Linux Journal, 2009.
[32] J. Nagle. On Packet Switches with Infinite Storage. In RFC 970, FACC Palo Alto,

1985.
[33] J. Nieh and M. S. Lam. The Design, Implementation and Evaluation of SMART: A

Scheduler forMultimedia Applications. In Proceedings of the 16th ACMSymposium
on Operating Systems Principles (SOSP’97), 1997.

[34] J. Nieh, C. Vaill, and H. Zhong. Virtual-Time-Round-Robin: An O(1) Proportional
Share Scheduler . In Proceedings of the 2001 USENIX Annual Technical Conference
(ATC’11), 2011.

[35] S. Orathai and K. S. Hyong. Is Co-Scheduling Too Expensive for SMP VMs? In
Proceedings of the 6th European Conference on Computer Systems (EuroSys’11),
2011.

[36] J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. In Proceedings
of the IEEE Distributed Compute System, 1982.

[37] J. Ouyang and J. R. Lange. Preemptable Ticket Spinlocks: Improving Consolidated
Performance in the Cloud. In Proceedings of the 9th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environment (VEE’13), 2013.

[38] S. Panneerselvam and M. M. Swift. Chameleon: Operating System Support
for Dynamic Processors. In Proceedings of the 17th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’12), 2012.

[39] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach
to Flow Control in Integrated Service Networks: the Single-node Case. ACM
Transaction on Networking., 1, 1993.

[40] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to
Flow Control in Integrated Service Networks: the Multiple Node Case. ACM
Transaction on Networking., 2, 1994.

[41] J. Rao, K. Wang, X. Zhou, and C. Xu. Optimizing Virtual Machine Schedul-
ing in NUMA Multicore Systems. In Proceedings of the 19th IEEE International
Symposium on High Performance Computer Architecture (HPCA’13), 2013.

[42] M. Shreedhar and G. Varghese. Efficient Fair Queueing Using Deficit Round
Robin. In Proceedings of the ACM Symposium on Communications Architectures
and Protocols (SIGCOMM’95), 1995.

[43] D. Shue, M. J. Freedman, and A. Shaikh. Performance Isolation and Fairness for
Multi-tenant Cloud Storage. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI’12)), 2012.

[44] I. Stoica, H. Adbel-Wahab, and K. Jeffay. On the Duality between Resource Reser-
vation and Proportional Share Resource Allocation. In Proceedings of Multimedia
Computing and Networking, 1996.

[45] The Princeton Application Repository for Shared-Memory Computers (PARSEC)
. http://parsec.cs.princeton.edu/.

[46] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible Proportional-
share Resource Management. In Proceedings of the 1st USENIX conference on
Operating Systems Design and Implementation (OSDI’94), 1994.

[47] C. A. Waldspurger andW. E. Weihl. Stride Scheduling: Determinstic Proportional-
share Resource Management. In MIT Technical Report, 1995.

[48] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware Support for Spin Manage-
ment in Overcommitted Virtual Machines. In Proceedings of the 15th International
Conference on Parallel Architectures and Compilation Techniques (PACT’06)), 2006.

[49] C. Weng, Z. Zhang, M. Li, and X. Lu. The Hybrid Scheduling Framework for
Virtual Machine Systems. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environment (VEE’09), 2009.

[50] Windows Azure Open Cloud Platform. http://www.windowsazure.com.
[51] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella, and D. Xu. vSlicer:

Latency-aware Virtual Machine Scheduling via Differentiated-frequency CPU
Slicing . In Proceedings of the 21th International Symposium on High Performance
Parallel and Distributed Computing (HPDC’12)), 2012.

[52] H. Zhang and S. Keshav. Comparison of Rate-Based Service Dispilines. In
Proceedings of the ACM Symposium on Communications Architectures and Protocols
(SIGCOMM’91), 1991.

[53] L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet Switching
Networks. In Proceedings of the ACM Symposium on Communications Architectures
and Protocols (SIGCOMM’90), 1990.

Fairness and Performance HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

158

	Abstract
	1 Introduction
	2 Background and Problem Analysis
	2.1 Start-time Fair Queuing
	2.2 Fair-share CPU Scheduling
	2.3 Deceptive Idleness
	2.4 Multi-Queue Fair Queuing

	3 Preemptive Multi-Queue Fair Queuing
	3.1 Approximating P-MQFQ on Distributed Queues
	3.2 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Addressing Deceptive Idleness
	4.3 Improving Performance
	4.4 System Efficiency
	4.5 Proportional Fair Sharing

	5 Related Work
	6 Discussion
	7 Conclusion
	8 Acknowledgement
	References

