
Communication-Driven Scheduling for Virtual Clusters in
Cloud

Haibao Chen
Serv. Comp. Tech.&Sys. Lab
Cluster & Grid Comput. Lab

School of Computers
Huazhong Univ. of Sci.&Tech.

Wuhan, 430074, China
chenhaibao@hust.edu.cn

Song Wu
Serv. Comp. Tech.&Sys. Lab
Cluster & Grid Comput. Lab

School of Computers
Huazhong Univ. of Sci.&Tech.

Wuhan, 430074, China
wusong@hust.edu.cn

Sheng Di
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439

INRIA, Grenoble, France
sheng.di@inria.fr

Bingbing Zhou
School of Information Tech.
The University of Sydney

NSW 2006, Australia
bing.zhou@sydney.edu.au

Zhenjiang Xie
Serv. Comp. Tech.&Sys. Lab
Cluster & Grid Comput. Lab

School of Computers
Huazhong Univ. of Sci.&Tech.

Wuhan, 430074, China
xiezhenjiang@hust.edu.cn

Hai Jin, and Xuanhua Shi
Serv. Comp. Tech.&Sys. Lab
Cluster & Grid Comput. Lab

School of Computers
Huazhong Univ. of Sci.&Tech.

Wuhan, 430074, China
hjin@hust.edu.cn

ABSTRACT

Recent research already confirmed the feasibility of running
tightly-coupled parallel applications with virtual clusters.
However, such types of applications suffer from significant
performance degradation, especially as the overcommitment
is common in cloud. That is, the number of executable Vir-
tual CPUs (VCPUs) is often larger than that of available
Physical CPUs (PCPUs) in the system. The performance
degradation mainly results from that the current Virtual
Machine Monitors (VMMs) cannot co-schedule (or coordi-
nate at the same time) the VCPUs that host parallel applica-
tion threads/processes with synchronization requirements.

We introduce a communication-driven scheduling approach
for virtual clusters in this paper, which can effectively mit-
igate the performance degradation of tightly-coupled par-
allel applications running atop them in overcommitted sit-
uation. There are two key contributions. 1) We propose
a communication-driven VM scheduling (CVS) algorithm,
by which the involved VMM schedulers can autonomously
schedule suitable VMs at runtime. 2) We integrate the CVS
algorithm into Xen VMM scheduler, and rigorously imple-
ment a prototype. We evaluate our design on a real clus-
ter environment, and experiments show that our solution
attains better performance for tightly-coupled parallel ap-
plications than the state-of-the-art approaches like Credit
scheduler of Xen, balance scheduling, and hybrid schedul-
ing.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC’14, June 23–27, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2749-7/14/06 ...$15.00.

http://dx.doi.org/10.1145/2600212.2600714.

Categories and Subject Descriptors

D.4.1 [Operating System]: process management—Schedul-
ing

Keywords

Virtual cluster; Scheduling; Cloud computing

1. INTRODUCTION
Virtualized cloud datacenter, because of its flexibility and

cost-effectiveness, is increasingly being explored as an alter-
native to local clusters by academic and commercial users
to run tightly-coupled parallel applications [1]. However,
these users still face the performance degradation problem
when running such applications in cloud. This problem is
mainly due to the fact that current Virtual Machine Mon-
itors (VMMs) do not simultaneously coordinate/schedule
Virtual CPUs (VCPUs) that host threads/processes of par-
allel applications with synchronization requirements.

Despite some works [2, 3, 4] on scheduling in virtual-
ized environment, the focus has so far been primarily on
a single symmetric multiprocessing (SMP) VM that runs
multi-thread application with synchronisation operations,
yet there is no existing research about scheduling on vir-
tual clusters hosting tightly-coupled parallel applications.
Moreover, in order to maximize cloud resource utilization,
overcommitment is a fairly common phenomenon in cloud.
For example, recent research from VMware shows that the
average VCPU-to-core ratio is 4:1, based on the analysis
of 17 real-world datacenters [5]. Such overcommitted sit-
uation aggravates the performance degradation problem of
parallel applications running in cloud. This paper targets
the challenge of how to efficiently schedule virtual cluster
hosting parallel applications in overcommitted cloud envi-
ronment. We introduce a communication-driven approach
for scheduling virtual clusters, which can effectively miti-
gate the performance degradation of tightly-coupled parallel
applications running in overcommitted cloud environment.

125

The rest of this paper is organized as follows. We explain
our design motivation in Section 2 followed by the descrip-
tion of our approach in Section 3. Section 4 presents the
performance evaluation results. Finally, we conclude the
paper in Section 5.

2. DESIGN MOTIVATION
In this section, we analyze the asynchronous scheduling

problem and discuss the disadvantage of existing solutions.

Virtual Machine Monitor: VMM1

Physical Node 1 (2cores in total)

VCPU VCPU

VM

VCPU VCPU

VM vm1

Virtual Machine Monitor: VMM2

Physical Node 2 (2cores in total)

VCPU VCPU

VM

VCPU VCPU

VM vm2

Virtual cluster

Figure 1: Virtual cluster deployed among two phys-
ical nodes. Each VMM carries out scheduling asyn-
chronously without considering the synchronization
requirement of VMs belonging to the virtual cluster.

Asynchronous VM scheduling method used by VMMs in
multi-core physical nodes is simple to implement and ben-
eficial for high-throughput workloads, yet it is inefficient
for virtual cluster running parallel applications that require
much coordination among tasks, especially in overcommit-
ted environment. We use Figure 1 to illustrate this prob-
lem. In this example, a 4-process tightly-coupled parallel
application runs on a virtual cluster, which consists of two
2-VCPU VMs (vm1 and vm2) hosted in two different phys-
ical machines (node1 and node2). Suppose Xen is used as
the VMM, adopting Credit scheduler (a proportional-share
scheduling policy). With the Credit scheduler, VCPUs in
all run-queues of PCPUs are scheduled asynchronously on
each physical machine. This kind of asynchronous schedul-
ing policy usually cannot take over the lock-holder preemp-
tion problem [3], which will vastly increase synchronization
latency and potentially block the progress of other VCPUs
waiting to acquire the same lock.

Recently, most of existing work (e.g., co-scheduling meth-
ods of VMware, hybrid scheduling [3], and dynamic co-
scheduling [4]) on VM-based scheduling is only focused on
the performance improvement of concurrent workload pro-
cessing (multi-thread application with synchronization op-
erations) over SMP VM, instead of the parallel applications
on virtual clusters. The problem of these approaches is that
all VMs inside a virtual cluster are still scheduled asyn-
chronously from the perspective of virtual cluster, which re-
sults in the decreased performance of tightly-coupled parallel
application running in virtual cluster. As shown in Figure
1, since VMM1 and VMM2 make VM scheduling decisions
autonomously, the probability of vm1 and vm2 (managed
by different VMMs) being scheduled simultaneously is very
low. That is, the existing scheduling methods for SMP VMs
neglect the synchronization requirement among VMs, be-
longing to the same virtual cluster.

3. OUR APPROACH
We introduce our basic idea in Section 3.1, and propose

communication-driven VM scheduling (CVS) algorithm and
CVS scheduler in this Section 3.2 and 3.3, respectively.

3.1 Basic Idea
Based on experiments in virtualized environment, we find

that the inter-VM communication (e.g., the number of re-
ceived packets) can serve as a signal to detect the coordina-
tion demands from the viewpoint of VM-level synchroniza-
tion. That is, VMMs can make VM scheduling decisions
based on this signal to satisfy the coordination demands of
VMs belonging to the same virtual cluster.

In order to explore the correlation between the number
of packets received by VM and the synchronization require-
ments, we characterize the number of spinlocks (an indicator
of synchronization requirement) and the number of packets
via experiments. Four 8-VCPU VMs are used to run a set
of MPI programs with 32 processes in parallel. We choose
three benchmark programs (called is, ep, and lu) from NPB
suite of version 2.4, as they exhibit three typical types of par-
allel executions: communication intensive application with
little computation (is); CPU intensive application with lit-
tle communication (ep); and the one that lies in between
them (lu). For each VM, the number of packets and that of
spinlocks are recorded every 120 milliseconds (multiplying
the 30ms of Xen Credit scheduler by the number of VMs in
this experiment) over 60 seconds.

The analysis of experimental results shows that the av-
erage Pearson Correlation Coefficients (PCC) between the
number of packets and that of spinlocks in tightly-coupled
parallel applications (i.e., lu and is) are 0.89 and 0.97 re-
spectively, while that value in computation-intensive appli-
cation (i.e., ep) is only 0.17. This implies that the inter-VM
communication is a fairly good signal to detect potential
synchronization requirements.

3.2 CVS Algorithm
CVS algorithm helps VMMs select and schedule the VM

(running tightly-coupled parallel application) with the largest
number of received packets counted from the last de-scheduled
moment and promotes its priority. The key idea of CVS is
based on such an intuition: when running tightly-coupled
parallel application in a virtual cluster, the more packets a
VM receives during a scheduling period, the more urgent the
synchronization requirement of this VM probably is.

Particularly, according to the information of PCPU run-
queue, there are three situations that CVS algorithm needs
to deal with. If there is no VM that runs tightly-coupled par-
allel application in the run-queue of PCPU, CVS algorithm
will select the VM at the head of run-queue directly, just like
the Credit scheduler of Xen does. If there exists only one
VM that runs parallel application in the run-queue of PCPU,
CVS algorithm will select that VM without any hesitation.
When there are more than one VM, which runs tightly-
coupled parallel application in the run-queue of PCPU, CVS
algorithm will select the VM that receives the largest num-
ber of packets counted from the last de-scheduled moment.
Further more, if two VMs receive the same number of pack-
ets, their remaining CPU shares (e.g., remaining credit val-
ues of Xen) will be used to carry out the VM selection, and
the more the remaining CPU shares, the higher the priority.
If the VMs still cannot be differentiated, CVS algorithm will
pick a VM from among all qualified VMs according to their
original orders in the run-queue of PCPU.

After CVS algorithm determines which VM should be
scheduled for running parallel application, the scheduler of
VMM will schedule all VCPUs of the VM simultaneously

126

by sending Inter-Processor Interrupt (IPI) signal to the in-
volved PCPUs on the same physical machine.

CPU CPU ... CPU

Physical Machine

Packet analysis

CVS Scheduler

CPU

VMM

VCPU VCPU...
VM

...

Scheduling all

VCPUs of VM

simultaneously

when necessary

Virtual Cluster

Packets

VCPU VCPU...
VM

CPU CPU ... CPU

Physical Machine

Packet analysis

CVS Scheduler

CPU

VMM

VCPU VCPU...
VM

...

Scheduling all

VCPUs of VM

simultaneously

when necessary

VCPU VCPU...
VM

Considering the

synchronization

requirement among

VMs when making

VM scheduling

decision

Figure 2: Overview of CVS scheduler. With CVS
algorithm, this scheduler takes the synchronization
requirement among VMs belonging to the same clus-
ter into consideration when scheduling VMs.

3.3 CVS Scheduler
Based on CVS algorithm, we design and implement our

CVS scheduler by extending the Credit scheduler of Xen 3.2,
the overview of which is presented by giving an example as
shown in Figure 2.

The CVS scheduler monitors the communication states
inside each VMM, and dynamically analyzes the statistics
of received packets. The monitored communication state
is driven by the running parallel application, and we call
it locally visible synchronization requirement information.
With such information, our CVS scheduler can take the syn-
chronization requirement into consideration when schedul-
ing VMs. Meanwhile, CVS scheduler suffers little overheads,
because the coordination information demanded (i.e., the
statistics of received packets in VM) is implicitly carried in
the communication messages. As for the intra-VM schedul-
ing, all VCPUs of each SMP VM can be scheduled at the
same time by sending Inter-Processor-Interrupt (IPI) to in-
volved PCPUs when demanded.

4. PERFORMANCE EVALUATION
We first describe our experimental methodology, and then

present experimental results in the following sections.

4.1 Experimental Methodology
In order to compare our CVS approach to the state-of-the-

art scheduling approaches: CREDIT: the default scheduler
of Xen, Hybrid Scheduling (HS), and Balance Scheduling
(BS), we devise a test in this section with some restrictions,
e.g., using the given configuration (the size, number, and
placement) of virtual clusters, which is split into two parts.

4.2 Fixed Ratio of VCPU to PCPU
In this experiment, we scale the number of physical nodes

(each one is equipped with two Intel Xeon E5345 quad-core
CPU) from 2 to 32 (2, 4, 8, 16, and 32), and four 4-VCPU
VMs are booted up on each physical node. The fixed VCPU-
to-PCPU ratio is 2.5:1. Four identical virtual clusters are
built using all VMs in the platform, and the four VMs on
each physical node belong to them separately. We run lu on
these four virtual clusters simultaneously for ten times, and
record the execution time of lu on each virtual cluster. The
same test procedures also go to is and ep, respectively.

Based on Figure 3(a) and 3(b), it is clearly observed that
our CVS approach exhibits the best performance and scal-
ability for lu and is. The performance and scalability of HS

is much better than that of BS. We analyze the key reasons
as follows. First, for tightly-coupled parallel applications
(e.g., lu and is), our CVS scheduler outperforms the other
three approaches (BS, HS and CREDIT) and scales better
because it considers the synchronization requirements of the
VMs that belong to the same virtual cluster when making
VM scheduling decisions. Second, BS is a probabilistic co-
scheduling approach, and the probability of co-scheduling
VCPUs of virtual cluster will become lower and lower with
increasing number of physical nodes (VMs of virtual cluster).
Thus, BS has a slight performance gain over CREDIT when
the number of physical nodes is small (e.g., 2), while the
performance gain is not clear with large number of nodes.
Third, although HS co-schedules all VCPUs of SMP VMs
on single physical node, all VMs belonging to the same
virtual cluster are still scheduled asynchronously because
involved VMMs neglect the synchronization requirements
among VMs when making scheduling decision. Therefore,
the performance and scalability of HS are between these of
CVS and BS.

From Figure 3(c), we can observe that these four ap-
proaches have almost the same performance and scalability.
The reason is that CVS and HS will gracefully degrade into
CREDIT with respect to the CPU intensive applications
with little communication (e.g., ep).

4.3 Varying Ratios of VCPU-to-PCPU
In this experiment, we dynamically adjust the ratio of

VCPU-to-PCPU from 2.5 to 4 by changing the number of
VMs hosted on each physical node of platform from 4 to 7.
As the configuration of virtual clusters in Section 4.2, VMs
on each physical node belong to different virtual clusters
separately. Figure 4 presents the average execution time of
lu, is, and ep when running on virtual clusters with BS, HS
and CVS, respectively.

From Figure 4(a) and 4(b), we can easily observe that
our CVS approach has the best performance for lu and is
in scenarios with different ratios of VCPU-to-PCPU, and
the performance of HS are between these of CVS and BS.
Specifically, the performance of CVS and HS become bet-
ter with increasing ratio of VCPU-to-PCPU, while the per-
formance gain of BS over CREDIT is not obvious at all.
The reasons behind these figures are as follows. First, as
the ratio of VCPU-to-PCPU increasing, the probability of
co-scheduling VCPUs of virtual cluster using BS approach
becomes lower and lower. Therefore, the performance gain
over CREDIT is not clear in such situation. Second, HS
outperforms BS and CREDIT because it can co-schedule
the VCPUs of SMP VM that runs tightly-coupled parallel
application. However, it is still worse than our CVS ap-
proach due to the fact that involved VMMs with HS neglect
the synchronization requirements among VMs when making
scheduling decision.

From Figure 4(c), we observe that these four approaches
have almost the same performance and scalability for ep as
the ratio of VCPU-to-PCPU changing, which is due to the
same reasons for Figure 3(c) in Section 4.2.

5. CONCLUSIONS AND FUTUREWORK
This paper targets the challenge of how to schedule virtual

clusters hosting tightly-coupled parallel applications and mit-
igate performance degradation in overcommitted cloud envi-
ronment. We introduce a communication-driven VM schedul-

127

(a) lu (b) is (c) ep

Figure 3: Performance comparison of approaches (CREDIT, BS, HS, and CVS) with fixed ratio of VCPU to
PCPU when running benchmarks on 2, 4, 8, 16, and 32 nodes (VMs).

(a) lu (b) is (c) ep

Figure 4: Performance comparison of approaches (CREDIT, BS, HS, and CVS) when running benchmarks
with different ratios of VCPU-to-PCPU.

ing (CVS) approach of virtual clusters. This approach is
simple to apply in practice. Meanwhile, it allows partici-
pating VMMs to act autonomously, thus retaining the in-
dependence of VMMs. For tightly-coupled parallel appli-
cation, our CVS approach improves the application perfor-
mance significantly in comparison to the state-of-the-art ap-
proaches.

Unrestricted simultaneous scheduling of all VCPUs for
SMP VM through sending IPIs may cause excessive numbers
of preemptions while repeatedly interrupting other VMs,
which results in serious performance degradation [6, 7]. To
mitigate this problem with unexpected preemptions, we will
devise a VM preemption mechanism to enhance our CVS
approach. The prerequisite of all co-scheduling algorithms
is to know the type of workload running in VMs. That
is, the scheduler must understand whether the workload is
parallel application or not. Actually, there are at least two
alternative ways to do so. The first one is to adopt the infer-
ence techniques using gray-box knowledge. The other is to
obtain the type information of workload directly from end
users, similar to the work in [3, 8]. In this paper we adopt
the latter for simplicity. In the future, we will evaluate the
former one for comparison.

6. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful

comments and suggestions. This work was supported in
part by National Science Foundation of China under grant
61232008, National 863 Hi-Tech Research and Development
Program under grant 2013AA01A213 and 2013AA01A208,
Guangzhou Science and Technology Program under grant
2012Y2-00040, Chinese Universities Scientific Fund under
grant 2013TS094, Research Fund for the Doctoral Program
of MOE under grant 20110142130005.

7. REFERENCES
[1] Thomas J Hacker and Kanak Mahadik. Magellan Final

Report. U.S. Department of Energy (DOE), 2011.

[2] Orathai Sukwong and Hyong S Kim. Is co-scheduling
too expensive for smp vms? In Proc. EuroSys, pages
257–272. ACM, 2011.

[3] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda
Lu. The hybrid scheduling framework for virtual
machine systems. In Proc. VEE, pages 111–120. ACM,
2009.

[4] Chuliang Weng, Qian Liu, Lei Yu, and Minglu Li.
Dynamic adaptive scheduling for virtual machines. In
Proc. HPDC, pages 239–250, 2011.

[5] Vijayaraghavan Soundararajan and Jennifer M
Anderson. The impact of management operations on
the virtualized datacenter. In ACM SIGARCH
Computer Architecture News, volume 38, pages
326–337. ACM, 2010.

[6] Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heeseung
Jo, and Joonwon Lee. Task-aware virtual machine
scheduling for i/o performance. In Proc. VEE, pages
101–110. ACM, 2009.

[7] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon
Lee, and Seungryoul Maeng. Demand-based
coordinated scheduling for smp vms. In Proc. ASPLOS,
pages 369–380. ACM, 2013.

[8] Cong Xu, Sahan Gamage, Pawan N Rao, Ardalan
Kangarlou, Ramana Rao Kompella, and Dongyan Xu.
vslicer: latency-aware virtual machine scheduling via
differentiated-frequency cpu slicing. In Proc. HPDC,
pages 3–14. ACM, 2012.

128

