
Towards Exploiting CPU Elasticity via Efficient Thread
Oversubscription

Hang Huang1, Jia Rao2, Song Wu1, Hai Jin1, Hong Jiang2, Hao Che2, and Xiaofeng Wu2
1National Engineering Research Center for Big Data Technology and System

Services Computing Technology and System Lab, Cluster and Grid Computing Lab
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

2The University of Texas at Arlington, USA
Email: {huanghang, wusong, hjin}@hust.edu.cn, {jia.rao, hong.jiang, hche, xiaofeng.wu}@uta.edu

ABSTRACT
Elasticity is an essential feature of cloud computing, which allows
users to dynamically add or remove resources in response to work-
load changes. However, building applications that truly exploit elas-
ticity is non-trivial. Traditional applications need to be modified to
efficiently utilize variable resources. This paper explores thread over-
subscription, i.e., provisioning more threads than the available cores,
to exploit CPU elasticity in the cloud. While maintaining sufficient
concurrency allows applications to utilize additional CPUs when
more are made available, it is widely believed that thread oversub-
scription introduces prohibitive overheads due to excessive context
switches, loss of locality, and contention on shared resources.

In this paper, we conduct a comprehensive study of the overhead
of thread oversubscription. We find that 1) the direct cost of con-
text switching (i.e., 1-2 𝜇𝑠 on modern processors) does not cause
noticeable performance slow down to most applications; 2) oversub-
scription can be both constructive and destructive to the performance
of CPU caches and TLB. We identify two previously under-studied
issues that are responsible for drastic slowdowns in many applica-
tions under oversubscription. First, the existing thread sleep and
wakeup process in the OS kernel is inefficient in handling over-
subscribed threads. Second, pervasive busy-waiting operations in
program code can waste CPU and starve critical threads. To this end,
we devise two OS mechanisms, virtual blocking and busy-waiting
detection, to enable efficient thread oversubscription without requir-
ing program code changes. Experimental results show that our ap-
proaches can achieve an efficiency close to that in under-subscribed
scenarios while preserving the capability to expand to many more
CPUs. The performance gain is up to 77% for blocking- and 19x for
busy-waiting-based applications compared to the vanilla Linux.

CCS CONCEPTS
• Computer systems organization → Multicore architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’21, June 21–25, 2021, Virtual Event, Sweden
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00
https://doi.org/10.1145/3431379.3460641

KEYWORDS
Elasticity; Over-threading; Container; Scheduling; Performance.

ACM Reference Format:
Hang Huang, Jia Rao, Song Wu, Hai Jin, Hong Jiang, Hao Che, and Xi-
aofeng Wu. 2021. Towards Exploiting CPU Elasticity via Efficient Thread
Oversubscription. In Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’21), June
21–25, 2021, Virtual Event, Sweden. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3431379.3460641

1 INTRODUCTION
Elasticity, commonly considered as one of the central attributes
of cloud computing, is the ability of a system to adapt to work-
load changes by provisioning and deprovisioning resources in an
automatic manner [18]. The goal of elastic resource allocation is
to match system capacity with users’ demand – resources should
be timely scaled up to handle traffic spikes and accurately scaled
down to allow users to pay only for what they need. Although exist-
ing virtualization techniques, such as virtual machines (VMs) and
containers, support on-the-fly resource reconfiguration, truly exploit-
ing resource elasticity remains a challenge. Traditional applications
that assume constant resource availability may not benefit from re-
source elasticity, and can perform poorly under variable resource
availability.

Among reconfigurable cloud resources, such as CPU, memory,
and storage spaces, CPU is most suitable for elastic resource manage-
ment. As CPU is mainly an execution vehicle with a small amount of
data storage (i.e., registers and caches), it can be quickly provisioned
or deprovisioned without loading or saving much of the application
state (context). In contrast, memory or storage needs to be reclaimed
before it can be re-allocated to other users. Therefore, popular vir-
tualization platforms, such as VMware [30], Xen [2], KVM [24],
and Docker [5], allow for realtime reconfiguration of the number of
allocated CPUs without restarting a VM or container.

However, developing applications that can effectively utilize a
varying number of CPU cores during its execution is non-trivial. On
the one hand, an application needs enough concurrency (i.e., number
of threads) to embrace increased hardware parallelism as the number
of CPUs scales up. Intuitively, an application should have at least
as many threads as the number of available CPUs to maintain high
CPU utilization. On the other hand, when CPUs scale down, main-
taining more threads than CPU cores, i.e., thread oversubscription,
is believed to incur large overhead due to excessive context switches,
loss of locality, and contentions for shared resources.

https://doi.org/10.1145/3431379.3460641
https://doi.org/10.1145/3431379.3460641

bl
ac

ks
ch

ol
es

ca
nn

ea
l

fe
rre

t

sw
ap

tio
ns

vi
ps

ba
rn

es fft
fm

m

ra
di

os
ity

ra
yt

ra
ce ep

bo
dy

tra
ck

fa
ce

si
m

x2
64

w
at

er

de
du

p

flu
id

an
im

at
e

fre
qm

in
e

st
re

am
cl
us

te
r

ch
ol

es
ky

lu
_c

b

oc
ea

n
ra

di
x

vo
lre

nd is cg m
g ft sp bt ua lu

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

 8T 32T

2.78 9.95 25.66

Figure 1: Performance of multithreaded programs with and without thread oversubscription

Existing efforts focused on dynamically adapting the number of
threads in response to shared resource contentions and changes in
system load. Thread adaptation has been implemented in user-level
thread management [7, 34], runtime systems [8, 20], and compil-
ers [25]. A common drawback of these approaches is that applica-
tions need to be instrumented to enable dynamic threading at runtime.
Other approaches suspend and wake up threads from a thread pool
to adjust thread count. For example, OpenMP [10] separately deter-
mines the number of threads for each parallel region; the HotSpot
JVM [28] adjusts the number of active garbage collection (GC)
threads before each GC starts. However, dynamic threading requires
that workloads be dynamically distributed to threads since not all
threads are active at a time. This imposes restrictions on how a pro-
gram can be developed, e.g., using static or dynamic task-to-thread
assignment, in order to utilize dynamic threading.

In this paper, we explore thread oversubscription as a general ap-
proach to exploiting CPU elasticity. Users always launch an optimal
number of threads for an application regardless of the availability
of CPUs in the cloud. The optimal degree of concurrency is deter-
mined offline as the maximum number of threads an application
can use until it stops scaling. Provisioning sufficient concurrency
allows the application to fully exploit hardware-level parallelism as
CPUs scale. The key challenge is how to efficiently execute over-
subscribed threads when application concurrency does not match
hardware parallelism. Ideally, application performance with thread
oversubscription should be close to that without oversubscription,
incentivizing users to provision enough concurrency for elasticity.
However, applications may suffer significant performance degrada-
tion when oversubscribing threads. Figure 1 shows how different
multi-threaded programs perform with and without thread oversub-
scription. The benchmarks were from PARSEC [3], NPB [33], and
SPLASH2 [36], and tested with two settings – 1) 8 threads on 8
cores, an exact one-to-one thread-to-core mapping; 2) 32 threads on
8 cores, an oversubscription ratio of 4.

As shown in the figure, the benchmarks can be classified into three
groups. The first and second groups from the left include benchmarks
that do not suffer or even benefit from thread oversubscription. In
contrast, benchmarks from the third group suffer as much as 25x
performance slowdown with oversubscription. The results suggest
that thread oversubscription is already a viable approach to exploit-
ing CPU elasticity for certain applications despite concerns about
the potential overhead. However, thread oversubscription is still
inefficient for a large number of applications. While these bench-
marks are conventional parallel benchmarks, they involve various
synchronization patterns and exhibit different levels of inter-thread

coupling. Thus, the results shed light on how modern cloud work-
loads, which are commonly loosely-coupled, scale-out applications,
such as key-value caches, databases, and machine learning analytics,
would behave under thread oversubscription.

This paper presents a systematic study of the overhead and ineffi-
ciencies of thread oversubscription. The key findings are:

• The direct cost of oversubscription – thread context switching
(CS) (mainly due to user-kernel mode transition) is inevitable
and incurs a relatively constant overhead of 1.5 𝜇s, regard-
less of the number of threads or inter-thread synchronization.
Therefore, as long as applications do not perform context
switching (either voluntarily due to synchronization or invol-
untarily due to CPU scheduling) too frequently, the overhead
is negligible. Most applications meet this criteria and do not
suffer noticeable slowdown from oversubscription (i.e., the
first two groups in Figure 1).

• The indirect cost of oversubscription, including the loss of
locality and contention on shared resources, does not neces-
sarily cause slowdowns. Assume a strong scaling scenario
wherein the problem size is fixed and users alter the thread
count, oversubscription does not affect the working set size
but changes the pattern of data access, which can be destruc-
tive or constructive. Although oversubscription affects the
sequentiality of cache access and weakens the effectiveness
of the hardware prefetcher, it helps improve the effectiveness
of TLB. Our empirical study suggests that for most access pat-
terns the constructive effect outweighs the destructive effect.
Furthermore, oversubscription does not increase contention
because the number of active threads participating in shared
resource contention is determined by the number of cores
rather than the total thread count.

• Two previously understudied issues are responsible for the
large performance slowdowns in programs with tightly cou-
pled threads. First, the existing mechanisms for thread sleep
and wakeup in blocking synchronization are inefficient un-
der oversubscription. Second, spinning or polling employed
in busy-waiting synchronization can lead to cascading per-
formance loss and a significant waste of CPU cycles under
oversubscription.

Based on these findings, we believe that thread oversubscription
can be made practical in exploiting CPU elasticity. To this end, we
develop two OS mechanisms to support efficient thread oversub-
scription. Virtual blocking (Section 3.1) is a new mechanism for
blocking synchronization that eliminates the high overhead of thread

sleep/wakeup. It relies on CPU runqueue operations to emulate the
effect of blocking without actually putting threads to sleep. Busy-
waiting detection (Section 3.2) is a software-based, general method
for eliminating futile spinning. It is effective for any type of spin im-
plementations, whether in the user space, the OS kernel, or in a VM,
container, or in a native Linux environment. Experimental results on
micro-benchmarks and realistic workloads show that our approaches
can greatly improve the efficiency of thread oversubscription to a
level similar to that of undersubscription.

2 ASSUMPTIONS, BACKGROUND, AND
MOTIVATION

In this section, we briefly review the assumptions we make on thread
oversubscription, describe how oversubscribed threads are scheduled
on a single core, and study the overhead of oversubscription. Without
loss of generality, we focus our discussions on a Linux environment
and Intel platform.

2.1 Assumptions
We assume that users are responsible for determining an appropri-
ate number of threads for their applications, beyond which adding
additional threads does not yield further speedup if more cores are
provisioned. The users vary the number of threads for a fixed prob-
lem size (i.e., strong scaling) until the best performance is attained.
Applications always run with the optimal number of threads, re-
gardless of the availability of CPU cores. We consider threads are
oversubscribed whenever the core count drops below the thread
count due to dynamic resource management. To quantify the effi-
ciency of thread oversubscription, we compare its performance with
the case without oversubscription. For example, we measure the
performance of an application running with 32 threads on 8 cores
(oversubscription) and that of the same application running with 8
threads on 8 cores (baseline). If the two are close in performance,
we consider oversubscription preferable as it allows for scaling as
more cores become available. The applications considered in this
work are shared-memory, multithreaded programs.

2.2 Scheduling Oversubscribed Threads
When threads are oversubscribed, it is certain that multiple threads
from the same application reside on the same core. Therefore, it
is important to understand how threads are scheduled in order to
quantify the frequency of context switches. Modern OSes employ
fair-sharing algorithms to schedule threads on the same core. Each
thread is assigned a time slice during which a thread has dedicated
access to the core. To improve responsiveness, modern OSes allow
a thread to be preempted by a high-priority thread before finishing
its time slice. An OS usually treats interactive threads, i.e., those
frequently block and consume little CPU, as high priority threads.
To prevent excessive context switching, OS imposes a minimum
time slice before a thread can be preempted.

Context switches occur when threads are involuntarily or volun-
tarily descheduled. The completion of a time slice or the preemption
by another thread forces the current running thread off the CPU.
Therefore, involuntary descheduling happens on two occasions. For

1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

Number of Threads

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

(a) Pure computation

1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

Number of Threads

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

(b) Comp. with synchronization

Figure 2: Measuring the direct cost of context switching

compute-bound workloads, threads are switched each time a regu-
lar time slice expires. For I/O-bound or blocking workloads, con-
text switches occur no more often than the minimum time slice. In
Linux’s default completely fair scheduler (CFS), the regular time
slice is 3𝑚𝑠, and the minimum time slice is 750 𝜇𝑠. Voluntary switch-
ing happens when a thread yields CPU or blocks on an event (e.g.,
blocking on synchronization or waiting for I/O completion).

2.3 The Overhead of Context Switching
The direct cost of context switching. While oversubscribing threads
on a single core causes more context switches, its influence on appli-
cation performance depends on the cost of each context switch and
its frequency. We first measure the direct cost of a context switch,
which includes the time spent on user-kernel mode switches (due
to system calls or interrupts), CPU runqueue operations, and the
load and save of thread contexts. We write a micro-benchmark that
iterates for a fixed number of times. At each iteration, the benchmark
performs some arbitrary computation. We started with one thread
and increased the thread count across different runs. The iterations
were evenly assigned to each thread emulating a strong scaling sce-
nario in which the total problem size is fixed. We configure threads to
yield CPU to trigger a context switch after they finish the minimum
time slice (750 𝜇𝑠) in Linux. The benchmark is designed to have no
data access.

Figure 2 (a) plots the execution times of this benchmark with
different numbers of threads. Performance is normalized to that with
a single thread. Since the benchmark does not have any memory
access, the performance difference is due to the direct cost of context
switches. We calculate the cost per context switch by dividing the
difference of the overall execution time by the number of context
switches. Results show that the per context switch cost is relatively
stable at 1.5 𝜇𝑠 on our Intel-based platform (see Section 4 for details
on the hardware configuration). Since for compute-bound workloads,
each thread is guaranteed a minimum time slice (750 𝜇𝑠), and there
is one context switch per 750 𝜇𝑠, the overall cost to the benchmark
execution time is only 0.2%, and it does not increase with the number
of threads. Note that our benchmark is different from the one used
in [26], which measured the cost of process context switching by
having two processes communicate via two pipes. First, process
context switches are much more expensive due to address space
switching. Second, pipe communication triggered context switches
require threads to sleep when switched out. As will be discussed later,
the thread sleep/wakeup process is a major source of inefficiency in
thread oversubscription.

0 200 400 600 800 1000
0

5

10

15

20

25

N
u
m

b
e
r

o
f
p
ro

g
ra

m
s

Interval between synchronizations(µs)

Figure 3: The interval between synchronizations in the PAR-
SEC, SPLASH2, and NPB benchmarks

For workloads that block (voluntary switch), e.g., threads blocked
waiting for a lock, the frequency of context switching depends on
the interval between synchronization, which is not controlled by the
CPU scheduler. The frequency of synchronization increases with
the number of threads because the work that should be done before
each synchronization is less with more threads. Figure 3 shows the
interval between two synchronizations in the PARSEC, SPLASH2,
and NPB benchmarks. All benchmarks are configured with their
respective optimal number of threads (i.e., 16 or 32 threads) on our
platform. Since not all (only failed) synchronizations lead to con-
text switches, the frequency of context switching is no higher than
synchronization frequency. Figure 3 suggests that most applications
perform context switches no more often than every 1000 𝜇𝑠, resulting
in a CS overhead of 0.15% compared to the corresponding sequential
program. The most frequent context switch could occur in facesim
which has a synchronization interval of 160 𝜇𝑠. Nevertheless, the CS
overhead is still less than 1%.
The indirect cost of context switching. Besides the time to per-
form a switch (direct cost), there are other performance penalties
(indirect cost) associated with context switching. Compared with
solving a problem sequentially (one thread), dividing the problem
among multiple threads (concurrency) with no real parallelism (over-
subscribed threads time-share the same core) has many implications
on cache performance and shared resource contention. One concern
about over-threading on multicore processors is that a large num-
ber of threads would lead to high contention on locks or shared
cachelines. We show that this is not an issue for thread oversub-
scription, in which the number of actively running threads is at most
the number of cores. We modify the micro-benchmark to update a
variable shared by all threads at each iteration by atomic instruc-
tion __sync_fetch_and_add. This change would incur heavy
cache coherence traffic on multiple cores. However, as shown in
Figure 2 (b), oversubscription does not add additional overhead or
indirect cost to the benchmark because of synchronization.

The effect of context switching on cache performance is more
intricate. We modified the micro-benchmark so that each thread
traverses a sub-array between context switches. The total size of
all sub-arrays is fixed (strong scaling). By varying the total array
size, we alter the working set size of the program. Each element in
the array is a double number (8 byte), and thus 8 elements take one
cache line. Figure 4 shows the indirect cost of context switches for
two threads with four access patterns. The indirect cost is calculated
as 𝑡o𝑣𝑒𝑟−𝑡s𝑒𝑟𝑖𝑎𝑙

o𝑓 𝐶𝑆
, where 𝑡o𝑣𝑒𝑟 and 𝑡s𝑒𝑟𝑖𝑎𝑙 are the execution times with

two threads and one thread, respectively. All threads were pinned to

Figure 4: The indirect cost of context switches

the same core. A negative cost indicates that thread oversubscription
helps improve performance. The four access patterns are: 1) se-
quential read (seq-r), 2) sequential read-modify-write (seq-rmw), 3)
random read (rnd-r), and 4) random read-modify-write (rnd-rmw).

As shown in Figure 4, running two threads, each sequentially
accessing the arrays, incurred increasing indirect cost of context
switching as the working set size increased. The performance penalty
started to climb at a total array size of 512KB, at which each thread’s
working set size (256KB) can barely fit in the L2 cache. The main
reason for the penalty is the loss of sequentiality when accessing
array elements from two threads. The hardware prefetcher is more
effective for a single thread as its access pattern is more predictable.
The trend of seq-rmw is similar to that of seq-r. With an array of
128MB, the indirect cost of context switch is around 1 𝑚𝑠, more
than 600x of the direct cost. At the size of 128MB, without any
computation on the data, each thread needs 17.5 ms to access their
sub-arrays before context switching. Therefore, the overhead due to
the indirect cost is less than 6% (= 1𝑚𝑠

17.5𝑚𝑠).
In contrast, thread oversubscription could improve the effective-

ness of TLB for random access. Figure 4 shows that randomly read-
ing the array from two threads led to a clearly negative cost starting
at 256KB. Between size 1MB and 4MB, the cost climbed to posi-
tive. After that running with two threads consistently outperformed
that with one thread. It is important to review the array’s memory
allocation to understand the performance trend. The array was allo-
cated by the parent thread and partitioned into two sub-arrays for
the two threads. This is a common way for memory allocation in
multi-threaded programs. The single-threaded program randomly
accesses the entire array while each thread in the two-thread pro-
gram takes turns to randomly access half of the array. The number
of address translations needed to access the array is 𝑎𝑟𝑟𝑎𝑦_𝑠𝑖𝑧𝑒

𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 . The
default page size is 4KB. When the number of address translations
in the array is larger than the number of entries in TLB, each ran-
dom access to the entire array would almost certainly need a new
page address, which causes a high TLB miss rate. By dividing the
array into two, address translations for each sub-array may fit in the
TLB. While randomly traversing a sub-array will initially cause TLB
misses, all subsequent accesses would be TLB hits since the TLB
can hold all page addresses the sub-array needs. On the other hand,
when the per-thread sub-array size is larger than the size of the L2
data cache but smaller than the L3 size, i.e., total array size between

Z

Z

Z

ê

Figure 5: The process of thread sleep/wakeup with futex

512KB and 64MB, random access by a single thread leads to higher
L2 performance. Since the sub-array (half of the total array) cannot
fit in the L2 cache, switching between threads certainly results in all
L2 misses and a flush of the L2 cache.

Our testbed has two Intel processors (Xeon E5-2695) equipped
with a two-level TLB. The first level data TLB has 64 entries and
the second level has 1536 entries. Therefore, the two-level TLBs
can address 256KB (4KB × 64) and 6MB (4KB × 1536) of data,
respectively. As shown in Figure 4, at array size 256KB and 512KB,
the benefit of fitting sub-array addresses in the first level TLB out-
weighed the effect of the L2 data cache. Between array size 1MB and
4MB, neither the sub-array nor the total array can fit in the first-level
TLB, but both can fit in the second-level TLB. Thus, oversubsciption
does not help TLB performance but suffers more L2 misses. In this
region, running with fewer threads would be more favorable. Beyond
4MB, only the sub-arrays can fit in the second-level TLB, running
with more threads becomes more favorable. For read-modify-write,
the L2 cache is not an important factor as dirty cache lines need to
be written back to the L3 cache or memory. Note that the benefit of
TLB performance gain is an order of magnitude higher than that of
the L2 cache. Therefore, it is always more favorable to oversubscribe
threads for RMW workloads with random access.

Realistic workloads are a combination of sequential and random
accesses, and contain a mix of reads and writes. Contrary to what
was believed previously, the results suggest that thread oversub-
scription should benefit caching performance in most cases with a
worst-case performance penalty of 6%.

2.4 Inefficiencies in Managing Oversubscribed
Threads

In this section, we show that mechanisms designed for managing
threads on multiple cores are inefficient for managing oversubscribed
threads on a single core. The inefficiencies are unique to parallel
programs with inter-thread synchronization. In what follows, we
examine the mechanisms for blocking and busy-waiting synchro-
nization, and identify the root causes that are responsible for the
large performance slowdowns.
Blocking synchronization, such as mutex, semaphore, and condi-
tion variable, puts a caller thread into sleep if it fails to acquire a

lock or does not meet a certain condition. The thread is later wo-
ken up when the lock becomes available or the condition is met.
Another mechanism for blocking synchronization is event-based
asynchronous I/O, such as Linux epoll. Threads sleep on a list of
file descriptors and wake up when events are posted on the files.
Compared with busy-waiting synchronization, which continuously
tests a lock or a condition, blocking does not waste CPU cycles.

As thread sleep/wakeup needs to be handled by the OS kernel,
blocking synchronization is more expensive, requiring trapping into
the kernel and thread state transitions. Without loss of generality, we
use the design of futex to illustrate how Linux handles thread sleep
and wakeup (as shown in Figure 5). Fast userspace mutex (futex)
is a low-level interface in the OS kernel for implementing blocking
synchronization. The futex itself is a variable at the user level. Suc-
cessful synchronization, e.g., lock acquisition, returns directly from
the user space. Unsuccessful synchronization traps into the kernel
and goes through the steps depicted in Figure 5.

As shown in Figure 5, upon failing to acquire the lock, the waiter
thread invokes futex_wait and starts the sleep process. It first
acquires the lock that protects the futex_hash_bucket queue,
where it will be sleeping. The waiter is then removed from the CPU
runqueue, enqueued on the sleep queue, and its runtime state is
changed from “runnable” to “sleep” (TASK_INTERRUPTIBLE).
When the user-level lock is released, the lock holder acquires the
lock on the hash bucket and moves one or more waiters from the
sleep queue to a temporary wakeup queue wake_q, from where
the waiter(s) awaken. This design is to prevent holding the bucket
lock for too long as thread wakeup can take long. The lock holder is
responsible for awakening the waiters one at a time, which includes
selecting a core for this waiter and enqueuing it to the new runqueue.

The sleep and wakeup process can be quite expensive when
threads are oversubscribed for the following reasons:
Complex wakeup process. While thread sleep is not on the critical
path, the wake up process can significantly delay program execution.
The wake up operation (step 6 in Figure 5) first selects the most
idle core and inserts the awakening thread to its runqueue. This
operation requires locking the runqueue of the new core. After that,
the kernel checks if the waking thread should preempt the current
running thread on the newly selected CPU. When there are many
more threads than cores and a large number of threads are awak-
ening, runqueue locking and the possible preemption of a recently
awakened thread not only cause serialization but also incur cascad-
ing performance degradation. Moving waiters from the bucket queue
to the temporary wake_q queue adds additional serialization.
Fluctuating load and unnecessary migrations. Thread sleep and
wakeup involve state transitions between “runnable” and “sleep”.
Runnable threads are calculated as active load on a CPU. Linux
performs thread migration to balance load across cores if signif-
icant imbalance is detected. When a large number of threads do
blocking synchronization, frequently switching between “runnable”
and “sleep”, the load on each core can fluctuate wildly, triggering
excessive, unnecessary migrations.
Busy-waiting synchronization. Compared with blocking synchro-
nization, busy-waiting synchronization (spinning) provides fast lock
acquisition at the cost of wasting CPU cycles on spinning. The
wasted CPU time is not crucial to program performance if each
thread runs on a dedicated core because the core would otherwise be

Figure 6: Various spin implementations

idle. However, when threads are oversubscribed and spinning threads
are placed with other threads doing useful work, spinning can burn
the CPU time that can be used for useful work. Oversubscription also
exacerbates the lock-holder preemption (LHP) problem. A waiter
thread may exhaust its time slice doing spinning before becoming
the lock holder who will soon be preempted.

An intuitive solution is to stop spinning threads whenever exces-
sive spinning is detected. Towards this goal, software and hardware-
based approaches have been developed. Software approaches [12, 21,
31] employ the spin-then-block strategy that stops spinning if a pre-
defined threshold on spin time is reached. However, these approaches
require application source code change to enable the hybrid waiting
policy. Hardware approaches, such as Intel pause-loop-exiting (PLE)
and AMD pause filter (PF), detect common patterns in spin loops
from hardware events and stop threads which are identified as spin-
ning. Specifically, PLE and PF detect the execution of the PAUSE
or NOP instructions, a building block of many spin implementations.
For example, in Figure 6, the code on the left (pthreads spin-lock)
includes the NOP instruction in the spin loop. Unfortunately, both
PLE and PF are designed for virtualized environments and can only
detect spinning in virtual CPUs (vCPUs). Furthermore, there are a
variety of spin implementations that do not include special hardware
instructions. As shown in Figure 6, the spin loop in the lu benchmark
(from the NPB benchmark suite) is simply a busy loop continuously
testing a variable. For this spin implementation, neither PLE nor PF
is effective.
Summary Our analysis has shown that thread oversubscription
should introduce no noticeable performance slowdown to realis-
tic workloads. The direct and indirect costs of context switching are
negligible or even beneficial to most programs without inter-thread
synchronization. The large slowdowns we observe are due to the
inefficiencies that arise in the OS kernel when managing a large
number of threads on a single core.

3 DESIGN AND IMPLEMENTATION
In this section, we present two mechanisms to address the ineffi-
ciencies of thread oversubscription. Virtual blocking (VB) is a new
method for implementing blocking synchronization in the OS kernel.
It manipulates the scheduling of threads to emulate the effect of
sleep and wakeup, while preserving the properties of the original
blocking synchronization. VB is transparent to user-level locking and
requires no changes to users’ code. Busy-waiting detection (BWD)
is a software-based approach for detecting spin loops. It periodically
examines the last branch records (LBRs) and looks for patterns that
are common to various spin implementations. If spinning is detected,

�

�

�

�
ê

J

�
ê

Figure 7: Virtual blocking in futex

BWD instructs the CPU scheduler to immediately deschedule the
spinning thread to prevent wasting CPU cycles.

3.1 Virtual Blocking
The sleep and wakeup process in Linux requires threads to be moved
between sleep queues and the CPU run queue. Multiple queue lock-
ing and thread state transitions are needed during the process. In an
oversubscribed scenario, these operations become especially expen-
sive. When multiple threads wake up from the same core, not only
is lock contention more intense, but waking threads are also more
likely to be moved away from the core they ran before sleeping. The
essence of blocking is to exclude sleeping threads from running on
the CPU. Virtual blocking emulates the effect of sleeping by skip-
ping blocked threads in scheduling. As such, the sleep queues are
entirely removed, thereby eliminating much of the overhead during
thread wakeup. While VB is a general approach applicable to any
thread blocking mechanism, we present its design in the context of
futex and Linux CFS scheduler. We discuss how to implement VB
in event-based blocking mechanism epoll in Section 4.2.

VB adds a flag thread_state to each thread to indicate whether
the thread is blocked (1) or not (0). Blocked threads are skipped
during CPU scheduling until thread_state is cleared. Figure 7
shows how VB is integrated with futex. VB still preserves the futex_
hash_bucket queue in futex in order to preserve the order threads
is put to sleep as well as their wakeup order. However, threads are
never moved from futex_hash_bucket to the CPU run queue.
When a thread is awakened by futex_wake, its thread_state
is cleared and it is removed from the futex_hash_bucket
queue. The blocked thread is then moved to the end of the CPU
run queue. This design ensures that the blocked threads never get a
chance to run as long as there is at least one runnable thread whose
thread_state is 0, on the same CPU run queue. If all threads
on a core are blocked, which is not uncommon under thread over-
subscription, each thread takes turns to briefly run on CPU to check
if its flag has been cleared. After thread_state turns to 0, a
thread resumes normal scheduling and is “awakened” from virtual
blocking.

Since threads are not put into real sleep, an important change in
futex is needed. Instead of yielding CPU after a thread is enqueued to
the bucket queue, the thread is kept active and continuously checks
the value of thread_state. This is equivalent to spinning on the
flag and handing over to the CPU scheduler for managing sleeping.
Note that the change does not affect the semantics or the interface of
futex to userspace applications or libraries. For example, no changes

in pthreads are needed to use the new futex. Additionally, the spin-
ning on the flag in futex does not cause a waste of CPU cycles.
Recall that threads in virtual blocking are not scheduled if there are
other runnable (non-blocked) threads on a CPU, they are unable to
spend CPU time on spinning. In the case that all threads are blocked,
the spinning are not wasteful since no other useful work or runnable
threads can be scheduled.

While the bucket queue, from where a locking algorithm decides
to which thread the lock should be granted, preserves the original
order of sleep and wakeup, we further modify the CPU scheduler to
immediately schedule threads that are waking from virtual blocking,
in a similar way the traditional wake up process prioritizes those
waking from real sleep. We also devise a mechanism to disable VB if
threads are not oversubscribed. If the number of threads waiting on
the bucket queue is smaller than the number of cores, i.e., all waiting
threads are able to obtain a dedicated core when simultaneously
waking up, VB is turned off.
Implementation We implemented VB in the default Linux scheduler
CFS. To ensure that blocked threads are skipped in scheduling,
they are inserted to the tail of the red-black (RB) tree-based CFS
run queue. As the RB tree is sorted by threads’ virtual runtimes,
blocked threads are assigned an arbitrarily large virtual runtime.
Threads’ true virtual runtimes are restored when they wake up from
VB. Thread_state is an atomic variable in the task_struct
structure to avoid introducing additional locking in futex.

3.2 Busy-waiting Detection
As previously discussed, spinning synchronization can cause cas-
cading performance collapse among oversubscribed threads. BWD
seeks to detect futile spinning in an application and deschedule
the spinning threads so that CPU cycles can be spent on critical
threads. Similar to other existing spinning detection mechanisms,
BWD infers spinning threads from the host OS or hypervisor without
requiring to instrument application source code. Although there are
various kinds of busy-waiting implementations, they share a com-
mon feature – a spin loop is a small code segment that is repeated
for many times. Specifically, 1) spin loops are typically backward
conditional branches; 2) each iteration is quite short, taking only a
few cycles to execute; 3) during spinning, branching is predictable
with hundreds of thousands backward branching until moving onto
the next code segment.

While non-spinning code segments may behave similarly to a
spinning loop in some aspects, the combination of the three heuris-
tics can reliably identify busy-waiting. BWD employs the the last
branch records (LBRs) and hardware performance counters (PMCs)
as well as a high resolution timer to detect spinning. Figure 8 illus-
trates the architecture of BWD. We configure a high resolution timer
(hrtimer) [15] on each core to periodically check the LBRs and
PMCs. If the readings of LBRs and PMCs indicate spinning, the
interrupt handler of the timer forces the thread or vCPU currently run-
ning on the core to be descheduled. The LBRs record the from and
to virtual addresses of the recently completed branches. Branches
that are caused by function calls and returns are excluded from LBRs.
This is to capture spin implementations that involve nested function
calls (as shown in Figure 6). We further configure PMCs to record

R

Figure 8: Busy-waiting detection based on LBR

the number of TLB misses and L1 data cache misses. All the LBR
and PMC records are cleared for each monitoring period.

BWD identifies spinning if during the last timer interval 1) all
branches recorded in LBRs (16 entries on our platform) were iden-
tical, backward branches, and 2) there were no TLB misses or L1
data cache misses. The timer interval is carefully set to 100 𝜇𝑠, the
minimum interval that does not impose noticeable overhead. BWD
requires that all the 16 entries be filled during an interval in order to
identify a code segment as a spin loop. Recall that each iteration of
a spin loop, which triggers a conditional branching, only takes a few
cycles. It is almost certain that spin loops can fill all the 16 entries
during the 100 𝜇𝑠 interval. In comparison, non-spinning loops can
be, on average, at most 100𝜇𝑠

16 = 6.25𝜇𝑠 long to fill all the entries.
BWD further requires that there be no TLB misses or L1 data cache
misses since the from and to addresses in spin loops are always
cached in TLB and the data accesses in a tight spin loop should not
miss any data caches.

On our Intel platform with the broadwell architecture, TLB has
only 1600 entries, and L1 data cache is 32KB. We profiled all 32
benchmarks in PARSEC, NPB, and SPLASH-2, and found that on
average 1) these programs retire 3000 instructions per microsecond;
2) every 45 instructions cause 1 L1 miss; 3) every 890 instructions
cause 1 TLB miss. Therefore, they on average cause 6667 L1 misses
and 337 TLB misses per BWD accounting period (i.e., 100𝜇s). Based
on the profiling, we believe that the combination of the three heuris-
tics is a reliable metric for spin detection. Once busy-waiting is
detected, BWD deschedules the spinning thread and sets a skip
flag on the thread. This ensures that the spinning thread will not be
scheduled until other threads on the same core are scheduled at least
once, which helps schedule critical threads sooner to avoid future
spinning.

We implemented VB and BWD in Linux kernel version 5.1.12.
VB and BWD added 217 and 104 lines of code to the OS kernel
respectively, and required no changes in user-space libraries or ap-
plications.

4 EVALUATION
4.1 Experimental Settings
Hardware. Our experiments were performed on a Dell T630 server,
which was equipped with dual 18-core Intel Xeon 2.10 GHz pro-
cessors with hyper-threading enabled, 128GB memory, and a 1TB
SATA hard drive.
Software.We used Ubuntu 16.04 64bit and Linux kernel version
5.1.12 as the host OS. Docker 18.06.1 was used as the containers

fluidanimate freqminestreamcluster lu_cb ocean radix is cg mg ft sp bt ua
0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

 8T(vanilla-8c) 32T(vanilla-8c) 32T(optimized-8c)

 8T(vanilla-8ht) 32T(vanilla-8ht) 32T(optimized-8ht)

Figure 9: The performance improvement due to virtual blocking in parallel applications with blocking synchronization in 8 cores or
8 hyper-threads of 4 cores

1 2 4 8 16 32
0.5

1.0

1.5

2.0

2.5

Number of Threads

S
p
e
e
d
u
p

 pthread_mutex

 pthread_cond

 pthread_barrier

(a) Varying threads on a single core

1 2 4 8 16 32
0

1

2

3

4

5

6

Number of Cores

S
p
e
e
d
u
p

 pthread_mutex pthread_cond

 pthread_barrier

(b) 32 threads on varying cores

Figure 10: The effect of virtual blocking on pthreads primitives

technology and KVM was the virtual machine technology. Exper-
iments were conducted on the POSIX Threads (pthreads) with the
GNU C Library (glibc) 2.27 and OpenMP with GCC 7.4.0.
Benchmarks and methodology. We first created two micro-bench
marks to evaluate the effectiveness of virtual blocking and busy-
waiting detection. Then, we showed the performance of VB and
BWD with the PARSEC 3.0 [3], SPLASH-2 [36], NAS parallel
benchmarks [33], and Memcached under thread oversubscription.
In all tests, the baseline performance was obtained in vanilla Linux
with a one-to-one thread-to-core mapping. For example, 8T (vanilla)
indicates 8 threads running on 8 cores. To measure the efficiency
of oversubscription, we increased the thread count without adding
more cores. On our platform, most applications can scale to 32 cores.
If not otherwise stated, the maximum number of cores was 8 and the
maximum number of thread was 32. Therefore, 32T (vanilla) indi-
cates an oversubscription ratio of 4. The results with our proposed
optimizations are labeled as 32T (optimized). Each result was the
average of 10 benchmark runs.

4.2 Blocking Synchronization
Micro-benchmarks. We first evaluated the effectiveness of VB
with a micro-benchmark, in which multiple threads repeatedly call
pthreads blocking synchronization primitives for ten thousand times.
Threads are synchronized with each other with mutex, barrier, and
condition variable. Figure 10 shows how VB can improve the perfor-
mance of blocking synchronization. Results are normalized to the
performance of the vanilla Linux. Figure 10 (a) shows the results on
a single core, in which the inefficiency of oversubscription mainly
comes from the locking on the sleep queue and CPU run queue.
It suggests that VB is most effective for group synchronizations,

Table 1: The runtime statistics under thread oversubsciption

App CPU utilization(%) #In-node Migr #Cross-nodes Migr
8T 32T Opt 8T 32T Opt 8T 32T Opt

flu 734 701 782 45 98384 58 8 48835 26
freq 759 741 780 76 509 312 4 192 142
str 725 542 775 20183 672379 197 122 63250 211
lu_cb 567 552 581 52 7672 93 4 3203 18
ocean 677 664 763 127 107913 90 24 31809 44
radix 694 724 725 37 369 159 4 252 16
is 757 764 764 2 537 29 4 238 19
cg 667 674 797 444 55580 21 116 20582 24
mg 677 682 787 9 25256 16 4 3311 17
ft 754 758 793 3 2702 35 8 1534 32
sp 796 728 799 18 55844 48 4 24582 50
bt 786 771 799 24 22225 38 12 11123 50
ua 776 622 799 83 516791 60 24 78537 84

i.e., barrier and condition variable, in which multiple threads may
simultaneously awake. The elimination of the wake up overhead in
VB led to 1.52x and 2.34x speedup over Linux for barrier and condi-
tion variable, respectively. As shown in Figure 10 (b), the benefits
of VB for group synchronization increased when 32 threads were
running on multiple cores. The speedups rised up to 3x and 5x. In
contrast, one-to-one synchronization, e.g., mutex, does not benefit
much from VB. Since only one waiter thread is woken up when
mutex is released, the original wake up process in Linux does not
cause much inefficiency.
Conventional parallel applications using Pthreads. Next, we show
how much benefit VB can bring to realistic benchmarks in over-
subscribed scenarios. Compared to the micro-benchmark, whose
execution time is dominated by synchronization, blocking synchro-
nization only accounts for a small portion of runtime in real-world
applications. We tested 27 benchmarks from PARSEC, SPLASH-2,
and NPB. The selected benchmarks covered the three groups shown
in Figure 1 that are not affected by, benefited from, or suffered from
oversubscription. The unselected benchmarks (i.e., dedup, cholesky,
radiosity) either cannot scale up to more than 8 threads or have a
short and unstable execution time.

The benchmarks were run in containers configured with two set-
tings: 8 cores or 8 hyperthreads on 4 cores. Due to space limit,
Figure 9 only shows the results of application that are suffered from
oversubcription. For applications that are not affected by or benefited
from oversubscription, VB performed similarly to the vanilla Linux
and introduced no more than 0.5% overhead. While experiments
with and without hyperthreading achieved different performance,
the trend was similar across all benchmarks. Thus, we focus our

2 4 8 16 32
0

50

100

150

200

E
x
e
c
u
ti
o
n
 t
im

e
(s

)

Number of Cores

 #core-T(vanilla)

 8T(vanilla)

 32T(vanilla)

 32T(pinned)

 32T(optimized)

(a) ep

2 4 8 16 32
0

100

200

300

E
x
e
c
u
ti
o
n
 t
im

e
(s

)
Number of Cores

 #core-T(vanilla)

 8T(vanilla)

 32T(vanilla)

 32T(pinned)

 32T(optimized)

(b) facesim

2 4 8 16 32
0

150

300

450

E
x
e
c
u
ti
o
n
 t
im

e
(s

)

Number of Cores

 #core-T(vanilla)

 8T(vanilla)

 32T(vanilla)

 32T(pinned)

 32T(optimized)

(c) streamcluster

2 4 8 16 32
0

25

50

75

100

E
x
e
c
u
ti
o
n
 t
im

e
(s

)

Number of Cores

 #core-T(vanilla)

 8T(vanilla)

 32T(vanilla)

 32T(pinned)

 32T(optimized)

(d) ocean

2 4 8 16 32
0

100

200

300

E
x
e
c
u
ti
o
n
 t
im

e
(s

)

Number of Cores

 #core-T(vanilla)

 8T(vanilla)

 32T(vanilla)

 32T(pinned)

 32T(optimized)

(e) cg

Figure 11: The benefit of VB and oversubscription in five different kinds of applications

discussions on results with hyperthreading disabled. As shown in
Figure 9, thread oversubscription introduced 5.5% to 56.7% perfor-
mance slowdown under vanilla Linux. Table 1 shows that the culprits
were the loss of CPU utilization and excessive thread migrations
across cores. The low CPU utilization in vanilla Linux was due to
the expensive wake up process, during which programs make no
progress. In comparison, VB helped attain performance close to the
baseline without oversubscription (i.e., 8 threads on 8 cores), except
for fluidanimate. While fluidanimate under VB still outperformed
that with the vanilla Linux, it suffered 17% degradation compared to
the baseline. The reason is that the number of locks in fluidanimate
scales with the thread count, thereby inevitably inflicting higher
overhead with more threads. Notably, VB outperformed the baseline
in freqmine, ocean, cg, and mg with an oversubscription ratio of 4,
suggesting that VB could be an effective approach for improving
the efficiency of blocking synchronization in non-oversubscribed
scenarios. Table 1 confirms that VB greatly improved CPU utiliza-
tion and reduced the number of thread migrations. It is worth noting
that VB even helped reduce the number of migrations compared to
1-1 thread to core mapping case, e.g., in cg and streamcluster. In
VB, “blocked” threads are skipped in either scheduling or migration
while threads can still be migrated due to transient load imbalance
in under-subscribed systems.
Runtime adaptation We then dynamically varied the number of
available cores and evaluated how oversubscribed threads exploit
CPU elasticity. We chose five benchmarks with distinct character-
istics and allocated 8 cores at startup, while varying the number of
cores from 2 to 32 at runtime. Since Table 1 suggests one of VB’s
benefits is to throttle thread migrations, we also evaluated how VB
is compared to CPU pinning. The baseline was 8 threads. Ep did
not suffer much from oversubscription and benefited greatly from it.
Compared to provisioning 8 threads, ep with 32 threads can better
utilize 32 cores, achieving a 51% performance gain. Streamclus-
ter, ocean, and cg always suffered from oversubscription in vanilla
Linux. With VB, running 32 threads was never worse than running 8
threads, and always better than with pinning method. facesim is a
bit different. In some cases, it benefited from oversubscription even
in vanilla Linux. VB was able to further improve its performance
by as much as 34%, while pinning threads to cores can hurt perfor-
mance as tasks are not evenly distributed among threads. There are
two fundamental limitations of pinning: 1) it is unable to deal with
varying CPU count and needs to re-pin threads when CPU count
changes. In most applications we tested, programs crashed when
CPU count decreased. 2) pinning turns off all migrations even real

4 8 16
0

200000

400000

600000

800000

Number of cores

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

 4T(vanilla)

 16T(vanilla)

 16T(optimized)

(a) Throughput

4 8 16
0

1000

2000

3000

Number of cores

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

µ
s
)

 4T(vanilla) 16T(vanilla)

 16T(optimized)

(b) Average latency

4 8 16
0

5000

10000

15000

20000

25000

Number of cores

T
a

il
la

te
n

c
y
 (

µ
s
)

 4T(vanilla) 16T(vanilla)

 16T(optimized)

(c) 95𝑡ℎ Percentile Tail latency

4 8 16
0

10000

20000

30000

40000

Number of cores

T
a

il
la

te
n

c
y
 (

µ
s
)

 4T(vanilla) 16T(vanilla)

 16T(optimized)

(d) 99𝑡ℎ Percentile Tail latency

Figure 12: The benefit of VB and oversubscription in a mem-
cached server

load imbalance occurs while VB only prevents migration due to fre-
quent sleep and wakeups. These results suggest that VB eliminates
the inefficiencies of blocking synchronization and users are always
encouraged to over-provision threads to exploit CPU elasticity.
Cloud workloads using event-based asynchronous I/O. Compared
to conventional parallel programs, cloud workloads usually employ
loosely-coupled threads and event-based notification mechanisms for
thread coordination. Memcached is a widely used high-performance,
distributed memory caching system. It employs the libevent library,
which is based on epoll, to synchronize worker threads. Initially,
memcached worker threads call epoll_wait and block to wait
for incoming requests. Workers are awakened upon the arrival of
client requests. Besides epoll, memcached also relies on pthreads
mutex to protect the hash table it uses for key-value pairs lookup
from concurrent updates. Similar to the changes made in futex, we
implemented VB in epoll by removing the sleep queue and emulating
sleeping via schedule skipping. Since memcached uses both epoll
and futex, VB was enabled for both blocking mechanisms.

We used mutilate to stress test the performance of the memcached
server. The baseline had 4 worker threads while the oversubscribed

al
oc

k-
ls cl

h

m
al
th

m
cs

pa
rti

tio
ne

d

pt
hr

ea
d

tic
ke

t
tta

s
cn

a
aq

s
0

15

30

45

60

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

 8T(vanilla) 32T(vanilla)

 32T(optimized)

(a) Container

al
oc

k-
ls cl

h

m
al
th

m
cs

pa
rti

tio
ne

d

pt
hr

ea
d

tic
ke

t
tta

s
cn

a
aq

s
0

20

40

60

80

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

 8T(vanilla) 32T (vanilla)

 32T(PLE) 32T(optimized)

(b) KVM

Figure 13: The applicability of BWD to various spinlocks

8t 16t 32t 8t 16t 32t
0

100

200

300

400

500

E
x
e
c
u
ti
o
n
 T

im
e
(s

)

 vanilla PLE

 optimized

2359 2848 2250 2243 2827 2830

Container VM

∅ ∅ ∅

(a) lu

8t 16t 32t 8t 16t 32t
0

70

140

210

280

350

∅∅

E
x
e
c
u
ti
o
n
 T

im
e
(s

)

 vanilla PLE

 optimized

Container VM

∅

(b) volrend

Figure 14: The effectiveness of BWD in user-customized spin-
ning

scenarios had 16 threads. We evaluated three core settings: 4, 8, and
16 cores and with 16 workers the oversubscription ratio was 4, 2,
and 1, respectively. The client requests had a 10:1 GET-SET ratio
with 128-byte key size and 2048-byte value size. Figure 12 shows
the benefit of VB in improving the average, the 95𝑡ℎ percentile,
99𝑡ℎ percentile tail latencies ,and the throughput of the memcached
server. As shown in the figure, thread oversubscription in the vanilla
Linux did not inflict as much slowdown to memcached as did to
many conventional parallel programs. Oversubscription incurred
6% increase in average latency and 5.6% drop in throughput. The
results and experiments with other workloads in the Cloudsuite
benchmarks (not shown due to the space limit), such as web serving,
confirmed our findings that context switching does not drastically
slowdown applications with relatively independent threads. However,
as in many cloud workloads, memcached still employs traditional
synchronization primitives based on futex and oversubscription led
to 8x increase in the 95𝑡ℎ and 99𝑡ℎ percentile tail latency, as shown
in Figure 12 (c and d). In contrast, VB effectively reduced the tail
latency by 92% and 60%, respectively. Furthermore, VB was able to
achieve close to the best performance as the number of core scaled.

4.3 Busy-waiting Synchronization
Micro-benchmarks. Spinning can cause devastating performance
slowdown in oversubscribed scenarios because critical threads may
be deprived of CPU cycles. To stress test our proposed busy-waiting
detection, we designed a micro-benchmark with a multi-stage pipeline,
with each stage assigned to a separate thread. Each thread spins on
the completion of the previous stage before starting its own stage. As

Table 2: The true positive (TP) rate of BWD

Spinlocks Alock-ls CLH Malth MCS Partitioned
of Tries 55991 55859 55740 55718 55763
of TPs 55860 55795 55676 55665 55686
Sensitivity(%) 99.76 99.88 99.86 99.9 99.86
Spinlocks Pthread Ticket TTAS CNA AQS
of Tries 55777 55769 55738 55785 55702
of TPs 55699 55690 55664 55724 55635
Sensitivity(%) 99.86 99.85 99.86 99.89 99.88

Table 3: The false positive (FP) rate of BWD

App # of Tries # of FPs Specificity(%) FP overhead(%)
is 613136 3742 99.38 0.9
ep 3538136 2965 99.92 0
cg 4893039 27209 99.44 0
mg 1326357 3520 99.73 0.99
ft 3857623 572 99.99 0.26
sp 15075600 508 99.99 0.19
bt 10640650 9856 99.91 0
ua 12332790 2734 99.98 0.0043

such, the slowdown of one stage could cause cascading delays to the
downstream stages. We studied 10 different spinlocks studied in [21].
Without oversubscription, threads ran on dedicated cores. We ran the
micro-benchmarks in both containers and KVM virtual machines.
While there are no spin detection mechanisms for containers 1 or
native Linux, pause loop exiting (PLE) is able to detect spin loops im-
plemented with the NOP instruction in VMs. The micro-benchmark
was run on 8 cores with 8 threads or 32 threads. Figure 13 (a) and 13
(b) show that BWD can accurately identify busy-waiting in all spin
algorithms and timely stop futile spinning. Across all benchmarks,
BWD with 32 threads was able to achieve comparable performance
to vanilla Linux with 8 threads. In contrast, PLE was not effective
for any of the spin algorithms and performed similarly to the vanilla
Linux.
User-customized spinning. In addition to the commonly used spin-
locks, many applications implement customized busy-waiting algo-
rithms. These algorithms are not only used as a means of synchro-
nization but also as a building block of other functions, sometimes
simply as a delay loop. Only spinning used as synchronization,
which introduces inter-dependency among threads, is detrimental to
performance under oversubscription. Figure 14 shows two examples
of such programs, lu from NPB and volrend from SPLASH-2. We
varied the number of threads from 8 to 32 and placed them on 8
cores. We made two observations. First, BWD was able to effec-
tively bring the performance under oversubscription close to that
without oversubscription, in both container and VM tests. PLE was
not effective for user-customized spinning. Note that PLE is not
applicable to the container case. Second, BWD inflicted some slow-
down compared to the baseline and the slowdown worsened as the
oversubscription ratio increased. The overhead is due to two reasons:
1) BWD may have false positives and mistakenly stop looping used
in non-synchronization functions; 2) BWD detects spinning at fixed
intervals (every 100 𝜇𝑠). As the number of threads increases, the
aggregate amount of spinning would increase. Nevertheless, BWD

1Threads in containers are treated as ordinary threads in the host OS.

is significantly more efficient than the vanilla Linux and contains
oversubscription overhead to an acceptable level.
True and false positive rates. To test BWD’s true positive rate (sen-
sitivity), we wrote a micro-benchmark with two threads placed on
single core. Thread#1 continuously holds a spinlock while thread#2
repeatedly tries to acquire the spinlock. BWD’s sensitivity is calcu-
lated as the number of detected spin loops divided by the number of
lock acquisitions specified by the code. As shown in Table 2, BWD
achieved close to 100% true positive rates for 10 different spinlocks.
To test BWD’s false positive rate (specificity), we chose 8 blocking-
based benchmarks without any user or kernel-level spinning. Since
the benchmarks contains no spinning, any detected spinning is a
false positive. Table 3 shows that BWD’s false positive rate was at
most 0.61% across the 8 benchmarks. False positives occur when
BWD encounters tight repeating loops with little data access. How-
ever, such loops are rare and BWD’s mis-detection does not cause
noticeable slowdowns, and the overall timer overhead is less than
3%.

4.4 Comparison with SHFLLOCKS
SHFLLOCKS [21] is a recently proposed lock design that decouples
lock acquisition from a lock policy enforcement. It allows threads
in the waiter queue to implement various locking policies and opti-
mizations. An important feature of SHFLLOCKS is to allow waiter
threads to adjust their lock policies, i.e., NUMA-awareness and ef-
ficient parking/wakeup strategies. SHFLLOCKS manages both the
active and passive waiters in the same queue to decrease memory
footprint, and enables lock stealing and shuffling to efficiently wake
up waiters. This design improves fairness and throughput under over-
subscription. We performed a comparison between SHFLLOCKS and
our approach as well as the two spin-then-park algorithms evaluated
in [21]. i.e., Mutexee Locks (Mutexee)[14], MCS-TP lock (MCS-
TP)[17]. We replaced the pthreads primitives in slected benchmarks
with the algorithms in the SHFLLOCKS library. Note that our ap-
proach requires no changes to application code and is compatible
with pthreads.

Figure 15 shows the performance of five benchmarks with an
oversubscription ratio of 4, i.e., 32 threads on 8 cores. The results
indicate that spin-then-park algorithms still suffered drastic slow-
downs when threads are oversubscribed while our approaches, VB
and BWD, are up to 5.4x more efficient. The culprit was that these
spin-then-park algorithms still rely on the futex interface for sleep-
ing in the OS kernel, which may cause severe slowdowns under
oversubscription. SHFLLOCKS performed even worse in this case.
In an oversubscribed scenario, simultaneously waking up a large
number of threads causes unnecessary migrations across cores. Not
only does SHFLLOCKS have no optimizations for bulk wakeups but
its NUMA-awareness may hurt performance as it always wakes up
threads from the same socket, causing load flucturations.

4.5 Limitation and Discussion
We have shown that oversubscription is a practical approach to
exploiting CPU elasticity in the cloud. Many applications, mostly

freqmine streamcluster lu_cb ocean radix
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e
s

 pthread

 mutexee

 mcstp

 shfllock

 optimized

Figure 15: The performance due to shfllock, our approach, and
other locks

embarrassingly-parallel workloads without much inter-thread syn-
chronization, already run efficiently under oversubscription. We iden-
tified two issues that cause drastic slowdowns to synchronization-
heavy applications when threads are oversubscribed: inefficient
sleep/wakeup and wasteful spinning. We developed VB and BWD
to effectively address these issues. Our results showed that VB and
BWD together can effectively bring performance under oversub-
scription close to that without oversubscription. Nevertheless, there
are limitations in our approach. We target applications that can scale
with a fixed problem size (strong scaling) and our approach may
not work well for workloads that have more work to do with more
threads. Fluidanimate is one such application. The number of mu-
tex locks in fluidanimate increases as more threads are provisioned,
thereby suffering inevitable slowdown when oversubscribed.

5 RELATED WORK
Elastic computing has been studied to provide on-demand scalability
as well as reducing the cost of leasing cloud resources [29]. How-
ever, most existing work on CPU elasticity focused on dynamically
adjusting the number of CPUs allocated to virtual instances, such as
VMs [11, 23] and containers [32]. It remains a challenge to adjust
thread-level concurrency to utilize variable CPUs.
Adjusting thread-level concurrency Some recent work designed
automatic parallelization techniques to manage the number of active
threads based on different strategies [13, 19, 20, 34]. The optimal
number of threads is determined either by system load [20], thread
progress [8], synchronization overhead [25], or considerations on lo-
cality [13]. Arachne [34] is a userspace threading approach that used
kernel threads as the proxy for dynamic core allocation. tScale [7]
is a user-level lock-contention aware scheduler that manages thread
count based on lock contention. However, these approaches require
extensive changes to application source code or libraries to enable
dynamic threading. In contrast, we focus on improving the efficiency
of managing oversubscribed threads in the OS kernel.
Contention- and locality-aware lock design The inefficiencies we
identified in thread oversubscription are due to synchronization.
There has been work studying the efficiency and scalability of par-
allel program under contention [4, 6, 16, 35]. Gls [1] dynamically
adapted locking algorithms under varying contention by monitor-
ing the contention level. Kashyap et al. [22] introduced scalable
NUMA-aware blocking primitives to handle both under- or over-
subscribed scenario. Spinlocks are considered more harmful under
high contention [37]. Li et al. [27] proposed a hardware thread spin-
ning detection mechanism by tracking changes in CPU registers.
Chakraborty et al. [9] detected spinning by checking the number of

unique stores executed in N committed instructions. Our findings
suggest that L1 TLB misses and data cache misses together with
branch addresses are reliable methods for busy-waiting detection.
Results show that this method is effective for various spin implemen-
tations.

6 CONCLUSIONS
In this paper, we demonstrated that thread oversubscription can be
made a practical approach to exploiting CPU elasticity. Contrary to
traditional beliefs, provisioning more threads on a few cores does
not necessarily lead to high overhead or dramatic performance slow-
down. Through a systematic study of the direct and indirect costs of
oversubscription as well as OS-level inefficiencies, we identified the
culprits and addressed them via two new mechanisms, virtual block-
ing and busy-waiting detection. Results show that oversubscribed
threads can be efficiently managed in the OS, incentivizing cloud
users to provision more threads for future expandability.

7 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful feedback. This
work is supported by National Key Research and Development Pro-
gram under grant 2018YFB1003600, National Science Foundation
of China under grants No.62032008 and 61872155. The correspond-
ing authors are Song Wu and Jia Rao.

REFERENCES
[1] Jelena Antić, Georgios Chatzopoulos, Rachid Guerraoui, and Vasileios Trigo-

nakis. 2016. Locking made easy. In Proceedings of the International Middleware
Conference (Middleware). 1–14.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. ACM SIGOPS operating systems review 37, 5, 164–177.

[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques (PACT). 72–81.

[4] Hans-J Boehm. 2007. Reordering constraints for pthread-style locks. In Proceed-
ings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP). 173–182.

[5] Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (2015), 71–79.

[6] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
2012. Non-scalable locks are dangerous. In Proceedings of the Linux Symposium.
119–130.

[7] Miao Cai, Shenming Liu, and Hao Huang. 2017. tScale: a contention-aware
multithreaded framework for multicore multiprocessor systems. In Proceedings
of the International Conference on Parallel and Distributed Systems (ICPADS).
334–343.

[8] Gaurav Chadha, Scott Mahlke, and Satish Narayanasamy. 2012. When less is
more (LIMO): controlled parallelism for improved efficiency. In Proceedings
of the International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES). 141–150.

[9] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. 2011. Support-
ing overcommitted virtual machines through hardware spin detection. IEEE
Transactions on Parallel and Distributed Systems (TPDS) 23, 2 (2011), 353–366.

[10] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. IEEE Computational Science and Engineering
5, 1 (1998), 46–55.

[11] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. 2011. Elastic vm for
cloud resources provisioning optimization. In Proceedings of the International
Conference on Advances in Computing and Communications (ICACC). 431–445.

[12] Dave Dice. 2017. Malthusian locks. In Proceedings of the European Conference
on Computer Systems (Eurosys). 314–327.

[13] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie
Drach. 2016. Scalable task parallelism for numa: A uniform abstraction for coor-
dinated scheduling and memory management. In Proceedings of the International
Conference on Parallel Architectures and Compilation (PACT). 125–137.

[14] Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trigonakis. 2016.
Unlocking energy. In Proceedings of the USENIX Annual Technical Conference
(ATC). 393–406.

[15] Thomas Gleixner and Douglas Niehaus. 2006. Hrtimers and beyond: Transforming
the linux time subsystems. In Proceedings of the Linux Symposium, Vol. 1. 333–
346.

[16] Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. 2016. Multicore Locks:
The Case Is Not Closed Yet. In Proceedings of the USENIX Annual Technical
Conference (ATC). 649–662.

[17] Bijun He, William N. Scherer, and Michael L. Scott. 2005. Preemption adaptivity
in time-published queue-based spin locks. In Proceedings of the International
Conference on High-Performance Computing (HIPC). 7–18.

[18] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. 2013. Elasticity
in Cloud Computing: What It Is, and What It Is Not. In Proceedings of the
International Conference on Autonomic Computing (ICAC). 23–27.

[19] Jialu Huang, Prakash Prabhu, Thomas B. Jablin, Soumyadeep Ghosh, Sotiris
Apostolakis, Jae W. Lee, and David I. August. 2016. Speculatively exploiting
cross-invocation parallelism. In Proceedings of the International Conference on
Parallel Architectures and Compilation (PACT). 207–221.

[20] Ryan Johnson, Radu Stoica, Anastasia Ailamaki, and Todd Mowry. 2010. Decou-
pling contention management from scheduling. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 117–128.

[21] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Changwoo Min, and Taesoo
Kim. 2019. Scalable and practical locking with shuffling. In Proceedings of the
Symposium on Operating Systems Principles (SOSP). 586–599.

[22] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Scalable NUMA-
aware blocking synchronization primitives. In Proceedings of the USENIX Annual
Technical Conference (ATC). 603–615.

[23] Ozgur Kilic, Spoorti Doddamani, Aprameya Bhat, Hardik Bagdi, and Kartik
Gopalan. 2018. Overcoming Virtualization Overheads for Large-vCPU Virtual
Machines. In Proceedings of the IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS). 369–380.

[24] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. Kvm:
the Linux virtual machine monitor. In Proceedings of the Linux Symposium, Vol. 1.
225–230.

[25] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan Clark.
2010. Thread tailor: dynamically weaving threads together for efficient, adaptive
parallel applications. In Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), Vol. 38. 270–279.

[26] Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the Cost of Context
Switch. In Proceedings of the 2007 Workshop on Experimental Computer Science
(ExpCS). Article 2.

[27] Tong Li, Alvin R. Lebeck, and Daniel J. Sorin. 2006. Spin detection hardware for
improved management of multithreaded systems. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 17, 6 (2006), 508–521.

[28] Tim Lindholm and Frank Yellin. 1997. Inside the Java virtual machine. Unix
Review 15, 1 (1997), 7.

[29] Qixiao Liu and Zhibin Yu. 2018. The elasticity and plasticity in semi-containerized
co-locating cloud workload: A view from Alibaba trace. In Proceedings of the
ACM Symposium on Cloud Computing (SoCC). 347–360.

[30] Jack Lo. 2005. VMware and CPU virtualization technology. World Wide Web
Wlectronic Publication (2005).

[31] Victor Luchangco, Dan Nussbaum, and Nir Shavit. 2006. A hierarchical CLH
queue lock. In Proceedings of the European Conference on Parallel Processing
(Euro-Par). 801–810.

[32] Jose Monsalve, Aaron Landwehr, and Michela Taufer. 2015. Dynamic cpu re-
source allocation in containerized cloud environments. In Proceedings of IEEE
International Conference on Cluster Computing (CLUSTER). 535–536.

[33] NPB. 2019. NAS Parallel Benchmarks. https://www.nas.nasa.gov/.
[34] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.

Arachne: core-aware thread management. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI). 145–160.

[35] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. 2010. An-
alyzing lock contention in multithreaded applications. In Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), Vol. 45. 269–280.

[36] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 programs: Characterization and methodolog-
ical considerations. In Proceedings of the Annual International Symposium on
Computer Architecture (ISCA). 24–36.

[37] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang Ma. 2010.
Ad Hoc Synchronization Considered Harmful. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 163–176.

https://www.nas.nasa.gov/

	Abstract
	1 Introduction
	2 Assumptions, Background, and Motivation
	2.1 Assumptions
	2.2 Scheduling Oversubscribed Threads
	2.3 The Overhead of Context Switching
	2.4 Inefficiencies in Managing Oversubscribed Threads

	3 Design and Implementation
	3.1 Virtual Blocking
	3.2 Busy-waiting Detection

	4 Evaluation
	4.1 Experimental Settings
	4.2 Blocking Synchronization
	4.3 Busy-waiting Synchronization
	4.4 Comparison with SHFLLOCKS
	4.5 Limitation and Discussion

	5 Related work
	6 Conclusions
	7 Acknowledgements
	References

