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SUMMARY

Performance isolation has long been a challenging problem for disk resource allocation in virtualized envi-
ronments. While there have been many researches working on I/O performance isolation and disk utilization,
none of them addresses the I/O performance isolation and disk utilization as a whole. To this end, we inves-
tigate the impact of current disk I/O performance isolation schemes on disk I/O utilization. Interestingly,
our studies report that current isolation schemes bring unnecessary disk idle and reduce the overall disk I/O
performance because of ignoring the disk states and characteristics of requests. Accordingly, we propose an
adaptive proportional-share I/O scheduling framework, named iShare, in virtualized environments. iShare
not only ensures I/O performance isolation through proportionally allocating time slices according to the
weights of virtual machines but also preserves high disk efficiency by detecting disk states and adaptively
adjusting the time slice size based on characteristics of requests. We implement a prototype of iShare on the
Xen platform. The experimental results show that iShare ensures I/O performance isolation while improving
disk I/O efficiency, compared with Blkio (i.e., the default I/O performance isolation method in Xen), iShare
increases disk I/O bandwidth by 58% and slightly improves the I/O performance isolation for the sequential
write applications. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Virtualization technology has become a prominent tool in cloud environments: it enables multi-
ple virtual machines (VMs) to run on one single physical machine. For example, Amazon web [1]
services rely on the Xen virtualization hypervisor [2] to provide the VM-based infrastructure as a
service solution, which enables users to lease or customize their own environments and run their
own applications. More and more Big Data applications are running in cloud environments for
efficient and flexible resource management. However, Big Data applications are likely to cause mas-
sive I/O operations. This probably brings fierce disk I/O resource contention among VMs because
the hypervisor can not provide I/O performance isolation among VMs [3, 4]. And the contention
leads to unpredictable I/O completion time, thus affecting service of quality (QoS) of VMs in vir-
tualized cloud. Therefore, disk resource allocation is required to enable I/O performance isolation
among VMs.
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Current works propose proportional sharing of storage resource in the hypervisor based on the
performance requirements of VMs to ensure I/O performance isolation [5–9]. For example, Blkio [5]
proportionally assigns I/O time slices to VMs according to the weights of VMs. Although these
schemes ensure I/O performance isolation among VMs, they waste the disk resource because of
reserving and limiting the disk I/O resource of VMs. The actual disk I/O resource requirement
of a VM is smaller than reserved resource when the VM does not have any backlogged request.
The waste of disk I/O resource greatly reduces the I/O performance of VMs in virtualized cloud.
Consequently, both the industry and academia have recently paid serious attention to the impact
of I/O performance isolation on disk I/O efficiency [10, 11]. For instance, Tencent Company ( the
leading internet company in China) observes that the existing I/O performance isolation scheme
reduces disk I/O bandwidth by 40%–50% in cases with write requests, according to feedbacks of its
businesses in its virtualized data center.

To further study the relationship between disk I/O performance isolation and utilization, a series
of I/O-intensive experiments is conducted in different I/O scheduling methods (i.e., CFQ and Blkio)
and disk states (i.e., level of disk contention). We discover two typical disk states in the virtualized
data center. The overloaded state denotes I/O load capacity if virtual disk is overloaded. The under-
loaded state denotes I/O load capacity if virtual disk is not overloaded. By comparing bandwidths in
different I/O scheduling methods, we find that ensuring I/O performance isolation does not impact
the disk I/O performance in the overloaded state, but reduces disk bandwidth in the underloaded
state. Even if the current served VM has no backlogged request, the disk can not serve other VMs
during the current served VM’s time slice. This leads to the disk idle. When service time of pend-
ing requests is short and arrival time intervals of future requests are long, the disk idle reduces I/O
bandwidth of the disk. Actually, I/O intensive applications do not often lead to overloaded state. For
example, the I/O access of the MapReduce [12] application neither exceeds the I/O load capabilities
of device nor results in the backlogged requests in the block layer because of the overlapping CPU
computation, which is beyond the scope of this paper.

Accordingly, we present an adaptive proportional-share I/O scheduling in hypervisor, named
iShare, to support I/O performance isolation among VMs while enhancing the disk I/O performance.
iShare can automatically detect the levels of disk contention and then use different I/O schedul-
ing methods. When iShare perceives the overloaded state, it proportionally allocates dedicated time
slices to VMs based on their weights to guarantee I/O performance isolation. Furthermore, once
iShare detects the disk’s underloaded state, it leverages a dynamic isolation (DyIso) algorithm to
adaptively adjust the time slice size of VMs. The DyIso algorithm estimates the service time and
arrival interval of requests of VMs to make the decision on maintaining the proportional time slice
allocation. By doing this, iShare avoids the unnecessary disk idle and therefore ensures disk I/O effi-
ciency. We implement a prototype of iShare on the Xen platform and evaluate the I/O performance
of VMs and disk efficiency. Our experimental results show that iShare can guarantee I/O perfor-
mance isolation among VMs while reserving the high disk I/O bandwidth. In contrast to Blkio ( the
default I/O performance isolation method in Xen), iShare not only improves the total bandwidth by
58% but also enhances I/O performance of VMs running sequential write applications.

The rest of this paper is organized as follows. In Section 2, we give a brief introduction to Blkio.
Section 3 analyzes the impact of I/O performance isolation on disk I/O efficiency. The design of
iShare and related algorithms are discussed in Section 4. Section 5 shows the extensive performance
evaluation. Section 6 briefly summarizes the related work. Finally, Section 7 concludes the paper.

2. BACKGROUND

Linux kernel implements a control group (cgroups) [13] mechanism to limit and isolate resource
usage (e.g., CPU, memory, and disk I/On) of process groups. The cgroups mechanism provides a
unified interface to resource management in traditional and in virtualized environments. Therefore,
the cgroup mechanism is widely applied in virtualized data centers. Block I/O (Blkio) is a subsystem
of the cgroups mechanism. It controls access of processes to I/O on block devices. Blkio offers two
policies: I/O throttling and proportional weight division.
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The I/O throttling policy sets an upper limit for the number of I/O operations performed by a
specific device. Because of the changing resource requirement of application, setting a constant
limitation is hard and results in poor I/O performance. Thus, this policy is not widely applied.

The proportional weight division policy allocates disk I/O resource based on the weights of
process groups to ensure I/O performance isolation among groups. This policy is implemented in
Completely Fair Queuing scheduler (CFQ) and assigns groups dedicated time slices based on the
proportion of weights. Thus, each group has a set percentage of all I/O operations reserved. Com-
pared with the I/O throttling policy, the proportional weight division policy is more practical for
ensuring I/O resource isolation. In virtualized environments, Blkio based on CFQ ensures I/O per-
formance isolation among VMs by mapping a VM to a process group and setting different weights
for VMs.

3. I/O PERFORMANCE ISOLATION VERSUS DISK I/O EFFICIENCY

The hypervisor strongly relies on the I/O performance isolation schemes in order to meet QoS
requirements of VMs. For instance, Xen and KVM [14] rely on an I/O performance isolation scheme
(i.e.,Blkio) to proportionally assign the I/O time slices to VMs according to the weights of VMs.
With the growing number of VMs hosted by the same physical machine, improving disk I/O effi-
ciency is important. Virtualized data centers are therefore increasingly concentrating on an issue:
how does the I/O performance isolation scheme impact the disk I/O efficiency while ensuring QoS
of VMs? In this section, we first give a big picture on this issue and then provide further analysis. We
carry out a series of experiments on Xen platform without and with the I/O performance isolation
scheme: default CFQ‡ and Blkio,§ respectively.

3.1. Experimental setup

We conduct our experiment using one physical node, equipped with four quad-core 2.13GH´Xeon
processor, 4GB of memory and one dedicated SAS disk of 146GB (RAID5), running CentOS6.4
with kernel 3.0.57. All results are obtained using Xen version 4.0.4. Two guest VMs (named VM1
and VM2, respectively,) are deployed within the physical node. The guest VM is configured with two
virtual CPUs, 1GB memory and 30GB virtual disk, running CentOS6.4 with Linux kernel 2.6.32.

Disk states are classified into overloaded state and underloaded state in a virtualized data cen-
ter. In the overloaded state, the I/O resource requirements of VMs are larger than the physical disk
I/O resource. On the contrary, the I/O resource requirements of VMs are smaller than the physical
disk I/O resource in the underloaded state. Our experiments cover both states: VMs running in the
overloaded scenarios and in the underloaded scenarios. In each scenario, we do six typical experi-
ments with I/O-intensive workloads. Both VMs run the same workload, and the weight ratio is set to
2:1 under Blkio. Table I describes these workloads generated by fio [15]. These workloads use syn-
chronous I/O ways and bypass I/O buffers of VMs’ operating systems to access data. 30% requests
are 4KB , 40% requests are 8KB , and the rest are 16KB .

3.2. Macroscopic analysis

Table II shows the bandwidths of VMs and the total disk bandwidth in the overloaded scenarios
and underloaded scenarios, respectively. By comparing the total disk bandwidth under Blkio with
that under the default CFQ in these scenarios, we illustrate the disk overhead¶, which is caused by
ensuring I/O performance isolation under Blkio, as shown in Table II.

‡CFQ is a default disk I/O scheduler in the block device driver of Xen.
§Blkio is CFQ based on the blkio, which uses proportional weight division policy in this section and the rest of paper.
¶In Table II, the symbol “+” means that Blkio brings disk I/O overheads and reduces disk I/O performance. The symbol
“-” means that Blkio decreases disk I/O overheads and improves disk I/O performance.
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Table I. The description of the workloads generated by fio.

Scenario Workload Description

overload O-SR sequential read 32 files, with total size of 4GB
O-SW 32 threads sequential write 32 files, with total size of 4GB
O-RR 32 threads random read 32 files, with total size of 4GB
O-RW 32 threads random write 32 files, with total size of 4GB
O-RRW 32 threads mixed random read and write 32 files, with total size of 4GB
O-SRW 32 threads mixed sequential read and write 32 files, with total size of 4GB

underload U-SR sequential read 1 file, with size of 2GB
U-SW 32 threads sequential write 1 file, with size of 2GB
U-RR 32 threads random read 1 file, with size of 2GB
U-RW 32 threads random write 1 file, with size of 2GB
U-RRW 32 threads mixed random read and write 1 file, with size of 2GB
U-SRW 32 threads mixed sequential read and write 1 file, with size of 2GB

Table II. The bandwidths of virtual machines and total disk I/O bandwidth in overloaded scenario and in
underloaded scenario (KB/s).

CFQ Blkio

Scenario Workload VM1 VM2 Total VM1 VM2 Total Overhead

overload O-SR 22829 20109 42938 28403 14232 42635 C0.71%
O-SW 80176 65061 145237 105783 52876 158659 �9.24%
O-RR 4925 4448 9373 6162 3113 9275 C1.05%
O-RW 6716 3446 10162 6766 3431 10197 �0.34%

O-RRW R:2790 R:2251 R:5041 R:3141 R:1576 R:4717 C6.39%
W:2798 W:2217 W:5015 W:3098 W:1598 W:4696

O-SRW R:8118 R:7146 R:15264 R:10282 R:5173 R:15455 �1.32%
W:8168 W:7135 W:15303 W:10367 W:5149 W:15516

underload U-SR 26765 28054 54819 58691 29975 88666 �61.7%
U-SW 73348 73409 146757 56063 27988 84051 C42.7%
U-RR 3676 6142 9818 6311 3147 9458 +3.7%
U-RW 4875 5833 10708 6858 3425 10283 C4.0%

U-RRW R: 1747 R: 1745 R: 3492 R: 1642 R: 815 R: 2457 C29.5%
W:1753 W:1723 W: 3476 W: 1637 W: 820 W: 2457

U-SRW R:42856 R: 42338 R: 85194 R:32953 R: 16558 R: 49511 C41.2%
W:42764 W: 43353 W: 85117 W: 32909 W:16558 W: 49467

3.2.1. Overloaded cases. Table II shows that the overheads brought by Blkio are small and tol-
erable in the overloaded scenarios. Moreover, the proportion of bandwidth between applications
reflects their weights. Hence, Blkio does not waste disk bandwidth while ensuring QoS of VMs in
overloaded state.

3.2.2. Underloaded cases. We observe that although Blkio ensures I/O performance isolation in the
underloaded scenarios with write operations, it reduces disk bandwidth and I/O performance of VMs
significantly. For instance, compared with default CFQ, Blkio reduces disk bandwidth by 42.7%
in the U-SW experiment and by 41.2% in the U-SRW experiment. In contrast, the disk bandwidth
under Blkio increases by 61.7% compared with that under default CFQ in the U-SR experiments.
Therefore, Blkio strongly affects disk bandwidth in underloaded scenarios, especially the ones with
write operations.

In order to provide deeper analysis of the aforementioned phenomenon in underloaded scenarios,
we trace latencies of VMs’ requests in the U-SW and in the U-SR experiment, as shown in Figure 1.
First, compared with latencies of read requests, the latencies of write requests are very small and
the fluctuations of their latencies are stable. Second, Blkio reduces the average latency of requests
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Figure 1. Latency of sequential reads and writes under Completely Fair Queuing and Blkio.

and smoothes out the fluctuations of latencies in the U-SR experiment. By contrast, Blkio increases
the average latency of requests in the U-SW experiment.

3.3. Microscopic analysis

Through the aforementioned experiments, we observe that the current I/O performance isolation
scheme (e.g., Blkio) strongly impacts disk bandwidth in underloaded scenarios compared with
overloaded scenarios. Furthermore, this scheme leads to significant degradations in the total disk
bandwidth and I/O performance of VMs in the underloaded scenarios with write operations. The
key reason for this phenomenon is that in virtualized environments with disk I/O underloaded, the
I/O performance isolation scheme introduces a waiting time, even if pending requests from VMs
exist in the hypervisor. Later in the section, we will discuss this issue in more detail.

3.3.1. Underloaded cases—the introduction of the waiting time. Blkio, as well as other I/O isolation
schemes, allocates a fixed time slice to each VM based on the weights of VMs to reduce I/O con-
tention among VMs and guarantee the I/O performance isolation. But unlike the disk I/O overloaded
scenarios, physical I/O resource can meet the I/O resource requirements of VMs in underloaded
scenarios. So VMs do not have backlogged requests when the disk I/O is underloaded. But Blkio
waits for the next request from the current served VM, ignoring pending requests from other VMs
till the VM’s time slice is over, when preparing to dispatch requests. As a result, Blkio leads to wait-
ing time in the underloaded scenarios. For example, as shown in Figure 2, at t2, the request a1 from
VM1 is completed and no pending request is from VM1. Because the time slice of VM1 is not over,
Blkio continues to wait for the next request from VM1 until the expiration of its time slice, instead
of serving the request b1 from VM2. After the time slice of VM1 is expired at t5, Blkio serves pend-
ing requests from VM2 (b1, b2, b3). Therefore, the state of disk is idle from t2 to t3 and from t4 to
t5, although block layer has pending requests from VM2.

The aim of I/O performance isolation is to meet I/O resource requirements of VMs. However,
physical I/O resource can meet the I/O resource requirements of VMs in the underloaded scenarios.
Thus, ensuring I/O performance isolation is not necessary in these scenarios. Instead, because VMs
do not have backlogged requests in underloaded scenarios, I/O performance isolation brings the
waiting time and the disk idle, which may waste disk bandwidth and lower the I/O performance of
VMs (Figure 2).

3.3.2. Underloaded cases—the waiting time impacts disk I/O efficiency. We further analyze how
the waiting time affects the disk I/O efficiency. As shown in Figure 4(b), if the service time of the
request b1 is smaller than that of the request a2 or if a2 from VM1 arrives after the end of the time
slice of VM1, the waiting time for a2 is unnecessary and results in a low disk I/O utilization. Instead,
if the service time of b1 is larger than that of a2, the waiting time for a2 reduces the disk seek
time between VM1 and VM2 and thus improves disk I/O utilization. Consequently, in virtualized
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Figure 2. I/O scheduling with the I/O performance isolation scheme.

environments with disk I/O underloaded, the disk I/O overhead introduced by the I/O performance
isolation is stated as:

O.Ri ; Rj / D

²
Twait.Ri /C Tservice.Ri / � Tservice.Rj /I TA.Ri / 6 TE.VMn/

Twait.Ri /I TA.Ri / > TE.VMn/
(1)

where Ri is the next request from the current served VM (VMn), Rj is the pending request from
other VMs, Twait.Ri / is the waiting time for Ri , Tservice is service time of request in the device,
TA.Ri / is the arrival time of Ri , and TE.VMn/ is the end of time slice of VMn.

Based on (1), the impact of the waiting time on disk I/O performance is due to characteristics
of requests, including the service time and the arrival time. For instance, because of spatial locality
among VMs, the service time of read requests from the same VM is smaller than that of pending
read request from other VMs. The introduction of waiting time can exploit this locality to batch
requests from the current served VMs and reduce the disk seek time across VMs. Hence, as shown in
Figure 1(a), compared with default CFQ, Blkio reduces the latencies of read requests and stabilizes
their fluctuations. Instead, as shown in Figure 1(b), because of the impact of disk cache, latencies of
write requests from different VMs are very small and almost the same CFQ. Therefore, the waiting
time that Blkio brings increases the latency of write requests. Additionally, when the arrival time of
next request is too long (i.e., larger than the remaining time slice), the introduction of waiting time
also reduces disk I/O utilization.

3.3.3. Summary. The existing I/O performance isolation scheme (i.e., Blkio) cannot dynamically
adjust time slice according to the disk state (i.e., underload and overload) and the characteristics of
requests. This brings the unnecessary disk idle, thus wasting disk I/O resource in underloaded sce-
narios when service time of pending request is not greater than that of next request from the current
served VM or arrival time intervals of next requests are long. Therefore, we need to dynamically
adjust time slice among VMs according to disk state and characteristics of requests to enhance the
disk I/O utilization and guarantee the I/O performance isolation.

4. ISHARE: EFFICIENT I/O SCHEDULING SYSTEM

We present an adaptive proportional-share I/O scheduling in hypervisor, named iShare, to improve
disk I/O efficiency while ensuring I/O performance isolation among VMs. Similar to the state-
of-the-art I/O performance isolation schemes (e.g., Blkio), iShare allocates time slices to VMs in
proportion to their weights. However, different from them, iShare distinguishes disk state and then
dynamically adjusts time slices of VMs, being aware of characteristics of requests, to obtain a good
tradeoff between I/O performance isolation and disk I/O efficiency. As discussed in Section 3, the
disk I/O overhead is due to the service time and the arrival time of requests in the underloaded state.
iShare therefore embraces a dynamic isolation (DyIso) algorithm, which captures these characteris-
tics of requests and accordingly adjusts proportional time slice allocation to avoid the unnecessary
disk idle and ensure the high I/O throughput. In this section, we first introduce the DyIso algorithm
and then detail the implementation of iShare.
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4.1. DyIso algorithm

The aim of the DyIso algorithm is to avoid the unnecessary disk idle. Therefore, according to the
analysis in Section 3, the DyIso algorithm decides whether to end the time slice of the current served
VM when the block layer does not have any pending requests from the VM.

First, the DyIso algorithm introduces two characteristic parameters for each VM to predict service
time and access interval of requests, respectively. One characteristic parameter (i.e., await) is the
recent average completion time interval between requests from the same VM, for estimating service
time of requests. The other characteristic parameter (i.e., thinkt) is the recent average arrival time
interval between requests from the same VM, for predicting the access interval of VM. Because
the impact of the latest interval on the predication is greater than that of historical ones, we adopt
a time-weighted average method to compute the two characteristic parameters. After completing a
request (Ri ), the await of VMn (i.e., VMn:awaiti ) is updated as follows:

VMn:awaiti D .totalwi C c/=Swi I
totalwi D a � totalwi�1 C b � .Ri :endtime �Ri�1:endtime/I
Swi D a � Swi�1 C bI

(2)

where totalwi is the weighted sum of historical completion time interval and the latest completion
one. Swi is the weighted number of completion time interval. When a new request (Rj ) from VMn

arrives, the thinkt of VMn (i.e., VMn:thinktj ) is updated as follows:

VMn:thinktj D .totaltj C c/=Sti I
totaltj D a � totaltj�1 C b � .Rj :arrivetime �Rj�1:arrivetime/I
Stj D a � Stj�1 C bI

(3)

where totalti is the weighted sum of historical arrival time interval and the latest arrival one. Sti is
the weighted number of arrival time interval. In (2) and (3), a, b, and c are the weight parameters.
And weight of the latest time interval (i.e., a) is much greater than that of historical one (i.e., b).|| So
the DyIso algorithm can capture these changes once the characteristics of requests are changed.

Then, the DyIso algorithm decides whether to end this VMs remaining time slice based on the
two aforementioned characteristic parameters. The algorithm is as follows:

where VMn is current served VM. VMj are the other VMs. max_seektime is the maximal disk
head seek time. VMn:slice_rest is the rest of VM’s time slice. VM:pending_requests is the number
of pending requests from VM.

When there is no pending request from the current served VM in the block layer and the VMs
time slice is not over, the DyIso algorithm works (Line 8). If the current served VMs time slice is not
over and the VMn:thinkt is greater than its VMn:slice_rest, the DyIso algorithm ends the VMs time
slice and then serves pending requests from other VMs (Line 9-10). Otherwise, the DyIso algorithm
considers the disk I/O overhead of serving other VMs and that of serving the current served VM. If
the await of a VM with pending requests (VMj :awat) is not greater than that of the current served
VM (VMn:awat) and is smaller than max_seektime (Line 11-14), it means that the service time of
pending requests from other VMs is smaller than the sum of the arrival time interval and service
time of the next request from the current served VM. And the prediction is reliable. So the DyIso
algorithm also ends the time slice of the current served VM and serves the VM with smaller await
(Line 15). Otherwise, the DyIso algorithm still maintains the time slice allocation to reduce disk
seek overheads between VMs.

4.2. Implementation of iShare

We design and implement iShare based on DyIso algorithm in the block device driver of Xen. iShare
maintains a request queue for each VM in the block layer and allocates a dedicated time slice to
the VM. Then, to distinguish underloaded and overloaded states, iShare dynamically divides VMs

||According to experiences in the experiments, when a, b, and c is set to 7/8, 32, and 1024, respectively, the await and
the thinkt accurately estimate the recent average completion time interval and the recent average arrive time interval
between requests from the same VM.
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Algorithm 1: Dynamic Isolation algorithm
/*VMn is current served VM; VMj are other VMs;max_seektime: maximal disk head seek
time */
Input: VMn:thinkt; VMn:awat; VMj :awat;
VMn:slice_rest: the rest of VM’s time slice;
VM.pending_requests is the number of pending requests from VM
output: VMn:slice_rest
/*decide whether to wait for next requests from VMn*/
if VMn:pending_request DD 0 && VMn:slice_rest > 0 then

if VMn:thinkti > VMi :slice_rest then
VMn:slice_rest D 0;

else
foreach j in the number of other VMs do

if VMn:awaiti > VMj :await && VMj :pending_requests > 0 &&
VMj :await < max_seek time then

VMn:slice_rest D 0;break;
end

end
end

end

into two classes — backlogged VMs and non-backlogged VMs. If the number of pending requests
in VM’s request queue is greater than 0, the VM is a backlogged VM. Otherwise, the VM is a
non-backlogged VM. When all VMs are backlogged VMs, the disk state is the overloaded state.
Thus, the total I/O resource requirements of VMs are greater than physical I/O resource. iShare
strictly assigns VMs time slices in proportion to the weights of VMs and serves VMs in order of
their weights, in order to ensure I/O performance isolation. Once the VMs become non-backlogged
VMs, the disk state is the underloaded state. Thus, the physical I/O resource can meet the I/O
resource requirements of VMs. In this situation, the reserved time slice of the VM wastes the disk
I/O resource because of the characteristics of requests, as discussed in Section 3. So iShare triggers
the DyIso algorithm to adjust the reserved time slices of these non-backlogged VMs and relaxes I/O
performance isolation when serving these VMs.

Besides, to ensure a suitable decision, iShare triggers the await update of DyIso algorithm when
a request is completed. And the thinkt updates when a request arrives. The DyIso algorithm uses a
link between VMs’ await values to compare their await values and then decides whether to keep the
time slice. If the algorithm decides to end the time slice of the current served VM, iShare selects a
backlogged VM and dispatches pending request from the backlogged VM. The await of the back-
logged VM is not greater than that of the current served VM. Moreover, the position of backlogged
VM should close to disk head, and the VM is not served in this round. Therefore, iShare can pro-
vide I/O performance isolation while improving disk I/O efficiency, although being aware of access
characteristics of VMs.

It is important to note that iShare can be implemented in other virtualized platforms (e.g.,, KVM
and Linux-VServer [16]). The DyIso algorithm uses hypervisor-independent parameters, including
the completion time and arrival time of requests. Also, the DyIso algorithm is implemented as a sep-
arate algorithm at the block layer of the hypervisor. Accordingly, iShare is also applied in traditional
shared storage environments without virtualization technology.

4.3. Example to demonstrate how iShare works

As shown in Figure 3, we take an example to illustrate how iShare works. Two VMs are deployed
in a physical machine and their weight ratio is 2:1. Our analyses begin at t1. We assume that
the two VMs have the same await and the thinkt of VM1 is equal to the rest time slice of VM1
(VM1.slice_rest) at t1.
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Figure 3. I/O scheduling with iShare.

From t1 to t3, the request a1 from VM1 is served. VM2s thinkt is updated on b1s arrival at t2 and
it is smaller than VM2.slice_rest. At t3, VM1 becomes a non-backlogged VM, because the request
a1 is completed and the request queue of VM1 is empty within time slice of VM1. So the iShare use
DyIso algorithm to handle requests. Because the thinkt of VM1 is equal to VM1.slice_rest, iShare
updates the await of VM1 and ends the service of VM1 when the a1 is completed.

From t3 to t5, b2 from VM2 is served. At t4, VM1.thinkt is updated since the arrival of a2. At
t5, b1 is completed and VM2.await is updated. Because VM2.thinkt (updated at t2) is smaller than
VM2.slice_rest, iShare compares VM2.await with VM1.await. Processing a1 takes shorter time than
b1, so VM1.await is smaller. iShare switches to VM1.

From t5 to t8, iShare serves a2 from VM1. Even if b2 of VM2 arrive at t6, the time slice of VM1
doesnt end because VM1.await is smaller than VM2.await. At t7, the request queue of VM1 has a
backlogged request a4 within reserved time slice of VM1. So iShare does not end the time slice of
VM1 to ensure I/O performance isolation. At t8, because the time slice of VM1 is expired, iShare
switches to serve pending requests from VM2.

5. PERFORMANCE EVALUATION

We implement a prototype of iShare in Xen-4.0.4 with Linux kernel 3.0.57. In this section, we
evaluate our solution with various workloads including disk I/O overloaded, disk I/O underloaded,
and the changing disk I/O load. The experimental setup is the same as described in Section 3.

5.1. Evaluation with disk I/O overload

We evaluate the performance of VMs and disk under iShare against that under Blkio. To do so, we
still use two VMs in the overloaded scenarios, as described in Section 3.1. The proportion of weight
in iShare is set to 2:1 for VM1 and VM2. Tables III and IV show the bandwidths of VMs and disk in
the overloaded states under iShare, CFQ and Blkio. We illustrate the disk overhead.** By comparison
between the performance of iShare and that of CFQ in Table III, we find that the overheads brought
by iShare are small and tolerable in the overloaded scenarios. Moreover, the proportion of bandwidth
between applications reflects their weights. By comparison between the performance of iShare and
that of Blkio in Table IV, we find that both iShare and Blkio ensure the I/O performance isolation
and achieve almost the same total disk bandwidth in the overloaded scenarios. This is because when
the VMs are in overloaded scenario, both VMs have backlogged requests. iShare proportionally
allocates time slices like Blkio. Accordingly, we can draw the conclusion: iShare has no additional
costs (no adverse effects) and can ensure both high bandwidth and I/O performance isolation among
VM in the overloaded scenario as Blkio.

**In Tables III and IV, the symbol “+” means that iShare reduces disk I/O overheads and improves disk I/O performance.
The symbol “-” means that iShare brings disk I/O overheads and decreases disk I/O performance.
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Table III. The bandwidths of virtual machines and total disk I/O bandwidth under iShare and CFQ (KB/s).

iShare CFQ

Scenario Workload VM1 VM2 Total VM1 VM2 Total Overhead

overload O-SR 28614 14461 43075 22829 20109 42938 C0.32%
O-SW 102847 51483 154330 80176 65061 145237 C6.26%
O-RR 6136 3120 9256 4925 4448 9373 �1.25%
O-RW 6517 3623 10140 6766 3431 10197 �0.22%

O-RRW R:3084 R:1657 R:4741 R:2790 R:2251 R:5041 �6.44%
W:3043 W:1624 W:4667 W:2798 W:2217 W:5015

O-SRW R:10148 R:5274 R:15422 R:8118 R:7146 R:15264 C0.88%
W:10158 W:5256 W:15414 W:8168 W:7135 W:15303

underload U-SR 61773 31849 93622 26765 28054 54819 C70.78%
U-SW 66539 66590 133129 73348 73409 146757 �9.29%
U-RR 6603 3284 9887 3676 6142 9818 C0.70%
U-RW 5524 5517 11041 4875 5833 10708 C3.11%

U-RRW R: 1446 R: 1492 R: 2938 R: 1747 R: 1745 R: 3492 �15.96%
W:1447 W:1471 W: 2918 W: 1753 W: 1723 W: 3476

U-SRW R:35261 R: 35505 R: 70766 R:42856 R: 42338 R: 85194 �16.73%
W:35392 W: 35643 W: 71055 W: 42764 W:43353 W: 85117

Table IV. The bandwidths of virtual machines and total disk I/O bandwidth under iShare and Blkio (KB/s).

iShare Blkio

Scenario Workload VM1 VM2 Total VM1 VM2 Total Overhead

overload O-SR 28614 14461 43075 28403 14232 42635 C1.03%
O-SW 102847 51483 154330 105783 52876 158659 �2.73%
O-RR 6136 3120 9256 6162 3113 9275 -0.21%
O-RW 6517 3623 10140 6766 3431 10197 �0.56%

O-RRW R:3084 R:1657 R:4741 R:3141 R:1576 R:4717 �0.05%
W:3043 W:1624 W:4667 W:3098 W:1598 W:4696

O-SRW R:10148 R:5274 R:15422 R:10282 R:5173 R:15455 �0.04%
W:10158 W:5256 W:15414 W:10367 W:5149 W:15516

underload U-SR 61773 31849 93622 58691 29975 88666 C5.59%
U-SW 66539 66590 133129 56063 27988 84051 C58.39%
U-RR 6603 3284 9887 6311 3147 9458 C4.54%
U-RW 5524 5517 11041 6858 3425 10283 C7.37%

U-RRW R: 1446 R: 1492 R: 2938 R: 1642 R: 815 R: 2457 C19.17%
W:1447 W:1471 W: 2918 W: 1637 W: 820 W: 2457

U-SRW R:35261 R: 35505 R: 70766 R:32953 R: 16558 R: 49511 +43.29%
W:35392 W: 35643 W: 71055 W: 32909 W:16558 W: 49467

5.2. Evaluation with disk I/O underload

Then, we still use two VMs in the underloaded scenarios, as described in Section 3.1 to evaluate
iShare. The weight ratio is still set to 2:1 for VM1 and VM2. Tables III and IV also present the VMs’
bandwidths and total disk bandwidth in the underloaded scenario under CFQ, iShare, and Blkio.

By comparison between the performance of iShare and that of CFQ in Table III, we find that
iShare can achieve performance isolation in U-SR and U-RR experiment. In the U-SR experiment,
iShare brings 71% total bandwidth improvement. We also find that for experiments with write oper-
ations, the total bandwidths under iShare are smaller than CFQ. For example, the total bandwidth
under iShare is 9% smaller than that of CFQ in the U-SW experiment, 16% in U-RRW experi-
ment, and 17% in the U-SRW experiment, respectively. This is because the seek time caused by the
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frequent time slice switch leads to disk idle. But iShare results in an improved total I/O bandwidth
compared with Blkio. This is because iShare can end the VMs’ time slices when disk idle, we dis-
cussed in Section 3 happens. When I/O-intensive applications with write operations run on VMs
in the underloaded scenario, the effect is remarkable. For instance, compared with Blkio, iShare
improves the total bandwidth by 58% in the U-SW experiment, 43% in the U-SRW experiment,
and 19% in the U-RRW experiment. The bandwidth proportion between VMs is close to 1:1 under
iShare. We observe that when VMs are running applications with write operations, time slice switch
between two VMs is frequent. The frequent switch prevents the waste of time slice and significantly
improves VM2’s bandwidth. MV1’s bandwidth decreases in the U-RW and U-RRW experiment com-
pared with that of Blkio. This is because random requests have longer seek time compared with
sequential requests. The frequent switch leads to decrease of bandwidth. Instead, iShare not only
enhances total bandwidth of the disk but also significantly improves the bandwidth of VM2, which
gets smaller time slice. In addition, for read applications in the underloaded scenario, iShare ensures
bandwidth proportion of VMs, as well as improves disk I/O bandwidth. For example, in the U-SR
experiment, iShare increases the total bandwidth by about 5% compared with Blkio. This is because
read-only applications tend to make the parameter await of VMs different and the switch is mainly a
result from VMn.thinkt > VMn.slice_rest. This makes the time slice switch for VMs with read oper-
ations not as frequent as that for VMs with write operations. So the bandwidth proportion between
VMs is still close to 2:1. Therefore, in the underloaded scenarios, iShare adjusts time slice according
to the characteristics of requests, thus achieving high disk utilization while ensuring QoS of VMs.

5.3. Evaluation with the changing disk I/O load

Moreover, to further evaluate the effectiveness of iShare, we use two VMs running I/O-intensive
applications with the changing disk I/O load to show that iShare can adaptively adjust time slice
allocation with the changing disk I/O load and characteristics of requests. We evaluate iShare against
CFQ and Blkio. The weight proportion is set to 2:1 for VM1 and VM2. The access patterns of
applications generated by fio are described in Table I. The applications’ access patterns are changed
every 100 s: O-SW from 0 to100 s, U-SR from 100 to 200 s, U-SR from 200 to 300 s, O-SR from
300 to 400 s, U-SW from 400 to 500 s, O-SW from 500 to 600 s, O-RW from 600 to 700 s.

Figure 4 depicts the changes of bandwidths in VMs under CFQ, Blkio, and iShare. When access
pattern is O-SW and the disk is overloaded at the beginning of 100s, we find that both Blkio and
iShare can ensure the bandwidth proportion between VMs compared with CFQ. This is because
both Blkio and iShare strictly assign time slices in proportion to the weights of VMs. At 100 s,
the access pattern changes to U-SR. iShare not only ensures bandwidth proportion like Blkio but
also slightly improve the bandwidth, compared with Blkio. This means that when the disk state
changes from overloaded to underloaded, iShare triggers the DyIso algorithm, and the algorithm
functions well. From 200 to 300 s, the disk is still underloaded but the access pattern changes.
The I/O bandwidths of VMs and total disk I/O bandwidth under iShare are similar to that under
default CFQ. Blkio preserves the bandwidth proportion between VMs. But in underloaded scenar-
ios, physical I/O bandwidth can meet bandwidth requirements of both VMs, as shown in Figure 4(a);
high disk I/O efficiency is more important for improving I/O performance of VMs. iShare can
adaptively adjust time slice allocation with access pattern changes to improve I/O performance
of VMs. From 300 to 400 s, the disk works in an overloaded state. The I/O resource competition
among VMs is more serious, and physical I/O bandwidth cannot meet the I/O bandwidth require-
ments of VMs, as shown in Figure 4(a). So iShare strictly assigns time slices in proportion to the
weights of VMs like Blkio. From 400 to 500 s, the I/O bandwidth under iShare is similar to that
from 200 to 300 s under iShare. This means iShare’s bandwidth optimization is stable for the same
workload, even if the access pattern and disk state change over time. From 500 to 700 s, the disk is in
an overloaded state. iShare again focuses on I/O performance isolation and preserves the bandwidth
proportion between VMs, despite the change of access pattern. According to the aforementioned
results, we come to the conclusion that iShare can adaptively adjust time slice allocation with the
changing disk I/O load and characteristics of requests to ensure I/O performance isolation among
VMs and improve disk bandwidth.
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(a) CFQ (b) Blkio

(c) iShare

Figure 4. The changes of bandwidth of virtual machines under CFQ, Blkio, and iShare.

6. RELATED WORK

Ever since the advent of virtualization technology, a huge number of studies have been dedicated to
ensuring and improving I/O performance of VMs. On one hand, some studies focus on improving
disk I/O efficiency in virtualized environments. These studies exploit spatial locality of VM access
to achieve high disk I/O utilization [17, 18]. For example, Pregather [18] build a prediction model
based on the spatial locality among VMs and the sub-locality among applications to improve the
disk I/O utilization. However, they sacrifice the performance of VMs with low spatial locality and
thus can not ensure I/O performance of all VMs.

On the other hand, more works study I/O performance isolation among VMs to ensure I/O perfor-
mance of VMs [5–8, 19–23]. These studies proportionally allocate disk I/O resource to VMs based
on the weights of VMs. For example, With PARDA [21], each virtual disk can be assigned an I/O
share value, which determines the relative weight of the I/Os from its virtual disk as comparison
with others. VMs with higher I/O shares get higher IOPS and lower latency. mClock [8] provides
additional controls of reservation and limit to control VM latency. VIOS [7] controls the coarse-
grain allocation of disk time to different VMs with a CFQ and compensating round-robin scheduler.
IOFlow [24] provides the static rate limit and dynamic rate limit with VMs. But it needs users to
prechoose one of the limits and can not switch between the two limits with the changing access of
VMs. Note that all the aforementioned solutions ignore the disk I/O overheads introduced by ensur-
ing I/O performance isolation in underloaded scenarios. They can not adjust disk I/O resource with
the changing disk state and characteristics of requests, thus leading to disk I/O overheads. Besides,
[25] proposes an adaptive work-conserving scheduling to balance fairness among processes and
I/O efficiency. But they only focus on all processes with backlogged requests. In addition, although
some traditional disk resource schedulers can guarantee QoS and ensure high throughput in shared
storage [26, 27], they need to know the information of processes in advance. Therefore, they are not
applied in virtualized environments because of the transparent virtualization.
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The industry and the academia always argue whether I/O performance isolation lowers disk I/O
efficiency or not [11, 28]. For example, Lai [28] carries out a series of experiments to compare iso-
lation with sharing. The results show that an isolation strategy loses because isolation may prevent
the disk from performing any work because of the specified IOPs constraint of a VM. However, few
works have deeply analyzed the issue and discussed the relation between I/O performance isolation
and disk I/O efficiency [21, 29]. To the best of our knowledge, this is the first work to analyze the
overhead of the I/O performance isolation in detail and accordingly address this issue by dynami-
cally adjusting disk I/O resource based on the disk state and characteristics of requests for ensuring
I/O performance isolation among VMs while improving disk I/O efficiency.

7. CONCLUSION

In this paper, we investigate the I/O performance of VMs when applying I/O performance isolation
schemes in virtualized environments. Our studies reveal that the existing I/O performance isola-
tion schemes introduce an unnecessary disk idle and thus decrease disk I/O performance in some
underloaded scenarios. This degradation in the disk I/O utilization strongly depends on the service
time and the arrival time of requests. Accordingly, we propose an adaptive proportional-share I/O
scheduling in virtualized environments, called iShare, to ensure I/O performance isolation among
VMs while improving disk I/O efficiency. On one hand, iShare proportionally allocates the time
slices based on the weights of VMs to ensure I/O performance isolation among VMs. On the other
hand, iShare detects underloaded state and then takes a dynamic isolation (DyIso) algorithm to
adaptively adjusts disk resource among VMs, in order to preserve the high disk I/O throughput.
The DyIso algorithm predicts the service time and arrival time interval of requests from VMs and
decides whether to keep the proportional time slice allocation. We implement a prototype of iShare
in the block device driver of Xen and conduct experiments to verify its effectiveness. In the future
work, we are interested in using iShare in virtualized environments with network storage such as
SAN and NAS.
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