
Dynamic Resource Scheduling in Cloud Radio
Access Network with Mobile Cloud Computing

Xinhou Wang1, Kezhi Wang2, Song Wu*1, Sheng Di3, Kun Yang2, Hai Jin*1
1Services Computing Technology and System Lab, Cluster and Grid Computing Lab

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
2University of Essex, UK 3Argonne National Laboratory, USA

E-mails: 1{xwang, wusong, hjin}@hust.edu.cn 2{kezhi.wang, kunyang}@essex.ac.uk 3sdi1@anl.gov

Abstract—Nowadays, by integrating the cloud radio access
network (C-RAN) with the mobile cloud computing (MCC) tech-
nology, mobile service provider (MSP) can efficiently handle the
increasing mobile traffic and enhance the capabilities of mobile
users’ devices to provide better quality of service (QoS). But
the power consumption has become skyrocketing for MSP as
it gravely affects the profit of MSP. Previous work often studied
the power consumption in C-RAN and MCC separately while less
work had considered the integration of C-RAN with MCC. In this
paper, we present a unifying framework for optimizing the power-
performance tradeoff of MSP by jointly scheduling network
resources in C-RAN and computation resources in MCC to
minimize the power consumption of MSP while still guaranteeing
the QoS for mobile users. Our objective is to maximize the profit
of MSP. To achieve this objective, we first formulate the resource
scheduling issue as a stochastic problem and then propose a
Resource onlIne sCHeduling (RICH) algorithm using Lyapunov
optimization technique to approach a time average profit that is
close to the optimum with a diminishing gap (1/V) for MSP while
still maintaining strong system stability and low congestion to
guarantee the QoS for mobile users. With extensive simulations,
we demonstrate that the profit of RICH algorithm is 3.3× (18.4×)
higher than that of active (random) algorithm.

I. INTRODUCTION

Nowadays, the existing cellular network is facing the pres-

sure to increase the capacity so as to meet the increasing

number of smart devices and the corresponding mobile traffic

demand [3]. With the increasing requests from user equip-
ments (UEs), mobile service providers (MSPs) need to build

more base station (BS) sites. However, in an intensifying com-

petitive marketplace and rapid technological changes, MSPs

are challenged with deployment of traditional BS as the cost

(capital expenditures (CAPEX) and operational expenditures
(OPEX)) is high, while the return (revenue gained by the

increasing requests) is not high enough [6].

To address this challenge, cloud radio access network (C-

RAN) has been proposed and soon received significant atten-

tion in both academia and industry [6], [12]. Unlike typical

*The Corresponding Authors are Song Wu and Hai Jin. The research was
supported by National Science Foundation of China under grant 61232008,
National 863 Hi-Tech Research and Development Program under grant
2015AA01A203 and 2014AA01A302, Chinese Universities Scientific Fund
under grant 2013TS094 and also supported partially by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research Program,
under Contract DE-AC02-06CH11357.

RANs where the baseband units (BBUs) and the radio units

are situated together, C-RAN is a cloud computing based,

centralized, clean and collaborative RAN [6]. C-RAN divides

the traditional BS into three parts, namely, serval remote radio
heads (RRHs), BBU pool, and the fronthaul link connecting

RRH to the BBU pool which is a high-bandwidth, high-speed,

low latency fiber transport link. However, more and more

resource-hungry applications such as multimedia applications

and gaming appear in our daily life, which gives resource-

constrained and battery-limited UEs much pressure [4]. Mobile
cloud computing (MCC) is envisioned as a promising approach

to address such a challenge [8].

By integrating the C-RAN with the MCC technology, MSP

can not only handle the increasing mobile traffic by using C-

RAN technology, but also enhance the capabilities of mobile

devices with the powerful mobile cloud platforms. Although

some excellent works have been done to study both C-RAN

[1], [12] and MCC [2], [10], these two important areas

have traditionally been addressed separately in the literature.

The research of integration of C-RAN with MCC is rarely

less. Fortunately, some works [14], [15] have shown that the

combination of MCC and C-RAN can provide better quality
of service (QoS) for mobile users. Therefore, it is necessary

to consider these two technologies together.

Considering a typical mobile system which consists of C-

RAN and mobile clouds in Fig. 1. In C-RAN, each RRH serves

and receives requests from a couple of UEs that are close to

this RRH. Mobile UEs are charged for each received requests.

The RRHs are connected to the BBU pool via a fronthaul

network which consumes power to transmit requests. All the

BBUs are aggregated together to form a BBU pool, in which a

Despatcher is used to despatch requests across several mobile

clouds. Each mobile cloud has multiple servers which consume

power to process requests from different UEs.

It has been widely acknowledged that electricity cost of

power consumption becomes skyrocketing for MSP [6]. For

example, China Mobile has to spend more than one billion

dollars for the electricity cost every year [6]. Hence, a facing

problem of MSP is to minimize the power consumption of

the whole system. Moreover, due to the mobility of mobile

UEs, the arrival of requests from mobile UEs are always

unpredictable [9], which may lead to fluctuating revenues for

Fig. 1: The overview of mobile system with C-RAN and MCC

MSP over time.

Therefore, with the presence of unpredictable requests from

mobile users and the skyrocketing electricity cost of power

consumption, the objective of the mobile system is to max-

imize the profit of MSP. We need to optimize such a trade-

off between performance and power to minimize the power

consumption of MSP while still guaranteeing the QoS for

mobile users, the mobile system needs to tackle the following

scheduling challenges: (1) how to schedule each fronthaul link

by turning to an ON state for transmitting requests into the

BBU pool and an OFF state to decline users’ requests for

fronthaul power conservation; (2) how to despatch the received

requests from different users to its corresponding servers in

different mobile clouds; (3) how to schedule each server by

switching to a running state for processing requests or an idle

state for server power conservation.

To address the above-mentioned challenges, in this paper,

we apply the Lyapunov optimization technique [11] to de-

sign a Resource onlIne sCHeduling algorithm (RICH) which

schedules the fronthaul links, BBU Despatcher and servers

independently and concurrently, solely based on the current

system state. Therefore, it is attractive for large-scale mobile

system and is feasible for online implementation. Our main

contributions can be summarized as follows:

• We present a unifying optimization framework for max-

imizing the profit of MSP who manages both network

system (C-RAN) and computing system (MCC).

• We design the RICH algorithm for joint optimization

of fronthaul links scheduling, requests despatching and

servers scheduling, which can efficiently handle the un-

predictable and time-varying mobile user requests. These

requests can be unpredictable and time-varying due to the

mobility of mobile users.

• With extensive simulations, we demonstrate that our

algorithm can approach a time average profit that is close

to the optimum with a diminishing gap (1/V) for MSP

while still maintaining strong system stability and low

congestion to guarantee the QoS for mobile users.

II. POWER-PERFORMANCE MODEL

A. System Architecture

The mobile system architecture includes two parts, i.e., C-

RAN and mobile clouds. In our system, there are M RRHs

distributed in different geographic small cells everywhere.

Each RRH i serves and receives requests from a set of UEs

that are close this RRH. Such a set of UEs is denoted as a

representative user [13]. Accordingly, the mobile system has

M users U � {1, 2, · · · ,M}. In this paper, we consider a

discrete time-slotted system where the time slot length varies

from hundreds of milliseconds to several minutes [17]. In

every time slot t (= 0, 1, 2, · · ·), all UEs in Ui can send their

requests to the RRH i. The system aggregates all requests

received from all UEs by RRH i as Ai(t) and the time

average rate of such an arrival process can be denoted as

λi = E{Ai(t)}.

Similar to previous work in mobile networking [14], we

consider a quasi-static scenario where the UEs remain un-

changed during a time slot. Hence, we can assume that UEs

served by one RRH will not influence UEs served by another

RRH and each variable Ai(t) is independent and identically

distributed (i.i.d.) over time slots. Without loss of generality,

we also assume Ai(t) ≤ Amax
i , where Amax

i is the maximum

request of the wireless network between UEs and the RRH

i due to the bandwidth capacity. Since UEs have its own

mobility [9] and the requests are dynamic and unpredictable,

we do not assume any a priori knowledge of the statistics of

Ai(t), ∀i ∈ U , ∀t.
The RRHs are connected to the BBU pool via a fronthaul

network which consumes power to transmit requests. Inspired

by [5], we simply assume the i-th fronthaul constraint as the

maximum requests in one time slot, i.e., Ci ≤ Cmax
i .

In mobile cloud, N clouds C � {1, 2, · · · , N} are geo-

graphically located all over the country. Each mobile cloud

j, ∀j ∈ C has large number of servers which process the

requests transmitted from the Despatcher. We assume that

each cloud launches a server i to process requests from Ui.

We summarize the key notations in Table I.
TABLE I: Key Notations

Notation Description
U all representative users Ui

C all mobile clouds Ci

M number of users

N number of clouds

Ai(t) arrival requests for RRH i at time slot t
λi time average rate of Ai(t)
ai(t) fronthaul scheduling policy

Ri(t) requests transmitted by fronthaul link i at time slot t
Dij(t) requests despatched from user i to mobile cloud j
Xi(t) queue backlog of buffer queue for users i
bij(t) server scheduling policy in mobile clouds

Qij(t) queue backlog of each server i in each mobile cloud j

pf
i time average power consumption of fronthaul link i

ps
j time average power consumption of cloud j

V control parameter in Lyapunov technique

αi non-negative normalized parameter for Ui

β non-negative normalized parameter for fronthaul link

γ non-negative normalized parameter for mobile cloud

ω normalized power consumption of a idle server

B. Dynamic Scheduling

Under the architecture of mobile system above, the system

aims to maximize the profit of MSP by scheduling fronthaul

links Despatcher in the BBU pool and servers in the mobile

clouds.

Fronthaul Scheduling: In every time slot t, the mobile

system needs to determine a subset of requests of each user

Ri(t), that can be transmitted into the BBU pool through the

fronthaul links: 0 ≤ Ri(t) ≤ Ai(t). The fronthual scheduling

policy is to schedule each fronthaul link by tuning to an ON

(OFF) state for transmitting (declining) requests from the RRH

i to the BBU pool. Such fronthaul scheduling policies ai(t)
are denoted as the l0-norm of Ri(t) (i.e., ai(t) = ||Ri(t)||0),

which can be indicated by the following function:

ai(t) = ||Ri(t)||0 =

{
1 fronthaul link i is ON, Ri(t) > 0

0 fronthaul link i is OFF, Ri(t) = 0
The transferred requests Ri(t) need to satisfy this constraint:

Ri(t) ≤ ai(t)C
max
i , where Cmax

i refers to as the capacity

limitation of fronthaul link i.
BBU-based Requests Despatching: The Despatcher in the

BBU pool will despatch received requests to the correspond-

ing server hosted in clouds. We assume that the amount

of admitted requests Ri(t) are queued in a buffer queue

for each user i in the BBU pool before despatching to the

corresponding queue for each server in the mobile clouds. Let

Xi(t) denotes the backlog of this buffer queue i at time slot t
with Xi(0) = 0, ∀i ∈ U . Also let Dij(t) denotes the requests

despatched from user i to cloud j. Then the queueing dynamics
[11] can be characterized by:

Xi(t+ 1) = max{Xi(t)−
N∑
j=1

Dij(t), 0}+Ri(t) (1)

Intuitively, the despatching decisions Dij(t) must satisfy∑N
j=1 Dij(t) ≤ Xi(t).
Cloud Server Scheduling: The last scheduling policy is to

schedule each server by switching the server to an idle state to

keep the requests waiting in this server’s queue, or resuming

the server to a running state to process requests that are waiting

in this server’ queue 1. The following indicator function shows

such a server scheduling policy:

bij(t) =

{
1 if server i on cloud j is running.

0 if server i on cloud j is idle.

We first assume that each server from cloud j can process

Bj requests in one time slot and we can assume there exist a

maximum level Bmax for all servers in all clouds, i.e., Bj ≤
Bmax. Then, let Qij(t) denotes as the queue backlog of server

i on cloud j which means the total number of requests that

are waiting in the queue at the beginning of time slot t with

Qij(0) = 0. Also, we can quantify bij(t)Bj as the service rate

of the queue and Dij(t) as the arrival rate. By doing so, we

have the following queuing dynamics [11]:

Qij(t+ 1) = max {Qij(t)− bij(t)Bj , 0}+Dij(t) (2)

C. Power-Performance Tradeoff

After designing the scheduling policies above, we then

derive the system throughput and the power consumption in-

curred by fronthaul links and servers. Intuitively, the through-

1Similar to [17], we only switch the server between running and idle
state, rather than frequently turning ON/OFF servers per time slot, which
would incur considerable overhead [7] (e.g., startup time). This overhead can
be longer than the time slot used in this paper.

put and power consumption are contradictory to each other.

We present a unifying optimization framework for profit

maximization of MSP.

1) Time Average Throughput: In the mobile system, the

overall system throughput in terms of the total number of

processing requests is one of the most significant performance

metrics. Specially, we define the time average throughput ri
for each UE set Ui as ri = limt→∞ 1

t

∑t−1
τ=0 E{Ri(τ)}.

Together with ri, we define the time average trans-

mission capacity ai for each fronthaul link i as ai =
limt→∞ 1

t

∑t−1
τ=0 E{ai(τ)}, which is the frequency to turn

fronthual link i to ON state. Similarly, we define the time

average consumed capacity bij for each server i in cloud j as

bij = limt→∞ 1
t

∑t−1
τ=0 E{bij(τ)}, which is the frequency to

run server i in mobile cloud j.

2) Time Average Power Consumption: We analyze two

power consumption models in this part including the power

consumption of the fronthaul and the power consumption of

servers in mobile clouds.

For the power of fronthaul, it consumes a constant power

once it opens (i.e., ON state) [5]. Without loss of generality,

we consider a normalized power consumption P f (μ) = μ ∈
{0, 1}, where μ = 0 (= 1) represents the OFF (ON) state of

a fronthaul link. Based on this fronthaul power model, for a

fronthaul link i ∈ U , its normalized power consumption in

time slot t is given as P f
i (t) = P f

i (ai(t)) = ai(t).
Accordingly, the time average of normalized power con-

sumption pfi of each fronthaul link ∀i ∈ U in C-RAN can be

defined as pfi = limt→∞ 1
t

∑t−1
τ=0 E{P f

i (τ)}. Then,
∑M

i=1 p
f
i

is the overall time average power consumption of all fronthaul

links.

For the power of server, it has been widely studied [17]

that the amount of power consumed by a server is primarily

associated with its current CPU running speed μ. In this paper,

we employ a very basic power consumption model [17] of

servers as P s(μ) = ωμv+(1−ω). Without loss of generality,

a normalized speed 0 ≤ μ ≤ 1 and its corresponding

normalized power consumption P s(μ) are considered in this

paper. Intuitively, the server stays idle when μ = 0 and

running with maximum CPU speed μ = 1. The parameter

v is empirically determined as v ≥ 1 in practical [17]. With

another parameter 0 ≤ ω ≤ 1, the term 1 − ω represents the

normalized power consumption of an idle server.

Based on the above power consumption model, the normal-

ized load and power consumption for cloud j are given as

follows,

μj(t) =
M∑
i=1

bij(t)/M,

P s
j (t) = ω(μj(t))

v + (1− ω).
Accordingly, the time average of normalized power con-

sumption of each cloud j in the mobile system can be defined

as psj = limt→∞ 1
t

∑t−1
τ=0 E{P s

j (τ)}. Then,
∑N

j=1 p
s
j is the

overall time average power consumption of all clouds.

3) Time Average Profit Maximization: Now, we define our

scheduling objective as the MSP’s time average profit which

includes the time average throughput revenue ēt =
∑M

i=1 αiri,

the time average fronthaul electricity cost ēf =
∑M

i=1 βp
f
i and

the time average server electricity cost ēs =
∑N

j=1 γp
s
j . The

parameters αi, β and γ are presented in Table I.

Given the above time average revenue brought by the

throughput and cost for both fronthaul and server power

consumption, we formulate the maximization of time average

profit as the following stochastic optimization problem:

P : max ēt − ēf − ēs,

s.t. 0 ≤ ri ≤ λi, ri ≤ aiC
max
i ,

ri ≤
∑N

j=1 bijBj .

III. ONLINE ALGORITHM

Since UEs always have their own mobility [9] and the

arrival requests are unpredictable, we cannot get the future

information about UEs’ requests. Our considerations on power

consumption and queue stability lead us to design a resource

online scheduling algorithm (i.e., RICH) based on the Lya-

punov optimization framework [11], which has been widely

used in power consumption optimization problem [17].

A. Problem Transformation Using Lyapunov Optimization

1) Characterizing the Stability-Profit Tradeoff: Let Q(t) =
(Qij(t)) and X(t) = (Xi(t)) denote the matrixes of the

actual queues maintained by servers and the buffer queues

for UEs sets in the BBU pool. After that, we can use

Θ(t) = [Q(t);X(t)] to denote the combined matrix of all

queues and define a Lyapunov function L(Θ(t)) as follows:

L(Θ(t)) =
1

2
{
∑
i∈U

X2
i (t) +

∑
i∈U

∑
j∈C

Q2
ij(t)}. (3)

This function represents a scalar metric of congestion [11]

for the mobile cloud. Intuitively, a small value of L(Θ)
suggests that all the queue backlogs are small, i.e., the corre-

sponding mobile system has strong stability.

Based on Eq. 3, we need to push the Lyapunov function

towards a lower congestion state by defining the conditional

1-slot Lyapunov drift [11] as follows:

Δ(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (4)

Under the Lyapunov optimization, the scheduling policies

ai(t), Dij(t) and bij(t) should be chosen to minimize the

infimum bound on the following drift-minus-profit [11]:

Δ(Θ(t))− V E{
∑
i∈U

αiRi(t)

−β
∑
i∈U

P f
i (t)− γ

∑
j∈C

P s
j (t)|Θ(t)} (5)

The parameter V ≥ 0 represents a design knob that is used

to balance the tradeoff between the profit maximization and
the drift. For example, a large value of V implies that the

mobile system prefers to achieve more profit rather than keep

the system queue backlogs at a low level.

2) Bounding the Drift-Minus-Profit: To derive the infimum

bound of the drift-minus-profit given in Eq. 5, the following

Lemma is needed.

Lemma 1. For any time slot t, given any scheduling policies,
the drift-minus-profit (Eq. 5) can be deterministically bounded
as follows:

Δ(Θ(t))− V E{
M∑
i=1

αiRi(t)

−β
M∑
i=1

P f
i (t)− γ

N∑
j=1

P s
j (t)|Θ(t)} ≤ B

−
M∑
i=1

E{Ri(t)(V αi −Xi(t))− V βai(t)|Θ(t)} (6)

−
M∑
i=1

N∑
j=1

E{Dij(t)Bj(Xi(t)−Qij(t))|Θ(t)} (7)

−
N∑
j=1

E{Bj

M∑
i=1

Qij(t)bij(t)− V γP s
j (t)|Θ(t)} (8)

where B = 1
2 [MN(Bmax)2 +

3
∑M

i=1(max{Amax
i , Cmax

i })2]. Proof (see Lemma 4.6
in [11]).

B. Optimal Resource Online Scheduling Algorithm (RICH)

In this subsection, we design an optimal resource online

scheduling algorithm, RICH, to minimize the infimum bound

in Lemma 1 by equivalently maximizing the terms (6)(7)(8)

on the right-hand-side in each time slot t.
1) Fronthaul Scheduling: The fronthaul scheduling policies

ai(t) can be decided by maximizing the term (6) in Lemma 1.

Recall that different UEs set served by different RRHs cannot

influence each other in our system (see Sec. II). Therefore,

the fronthaul scheduling policies ai(t) for different Ui are

independent which means that the maximization of (6) can

be decomposed to compute the following sub-problem (SP1)

concurrently.

SP1 : max
Ri(t),ai(t)

Ri(t)(V αi −Xi(t))− V βai(t)

s.t. 0 ≤ Ri(t) ≤ Ai(t), ai(t) = ||Ri(t)||0,
Ri(t) ≤ ai(t)C

max
i .

The non-convex l0-norm problem V βai(t) = V β||Ri(t)||0
can be solved by applying the l1-norm relaxation [16] tech-

nique. We have the following relaxed Problem (SP2)

SP2 : max
Ri(t)

Ri(t)(V αi − V β −Xi(t))

s.t. 0 ≤ Ri(t) ≤ Ai(t), Ri(t) ≤ Cmax
i .

The Problem (SP2) is a simple linear programming prob-

lem and we can derive the optimal value of Ri(t) as:

Ri(t) =

{
min{Ai(t), C

max
i }, Xi(t) < V αi − V β,

0, else
(9)

then we can have the fronthaul scheduling policies as:

ai(t) = ||Ri(t)||0 =

{
1, Xi(t) < V αi − V β,

0, else
(10)

2) BBU-based Requests Despatching: The BBU-based

despatching policies Dij(t) can be decided by maximizing

the term (7) in Lemma 1. Similar to the fronthaul scheduling

policies, the requests despatching policies Dij(t) of different

Ui are also independent which means that the maximization of

(7) can be decomposed to compute the following sub-problem

(SP3) concurrently.

SP3 : max
Dij(t)

∑N
j=1 Dij(t)(Xi(t)−Qij(t))

s.t. 0 ≤ ∑N
j=1 Dij(t) ≤ Xi(t).

The above Problem (SP3) is a weighted linear program-

ming problem. The optimal despatching strategy for each Ui

tends to despatch as many buffered requests as possible to the

server with the least backlog:

Dij(t) =

{
Xi(t) j = ji and Xi(t) > Qiji(t)

0 otherwise
(11)

where ji = arg min∀j∈CQij(t) means the shortest queue

among all the N queues on N clouds for Ui.
3) Cloud Server Scheduling: The running or idle state of

each server on cloud j can be scheduled by maximizing the

term (8) in Lemma 1. Recall that the power consumption

model is based on the individual server in Sec. II-C2, therefore

the indicator function bij(t) is independent among different

clouds. The maximization of term (8) can be decomposed into

the following sub-problem (SP4):

SP4 : max
bij(t)

Bj

∑M
i=1 Qij(t)bij(t)− V γP s

j (t)

s.t. bij(t) ∈ {0, 1}.
In Problem (SP4), we find that the scheduling policy bij(t)

in cloud j is weighted by BjQij(t) while the growth of power

consumption caused by running each server is the same (recall

the model of P s
j (t) = ω(

∑M
i=1 bij(t)/M)v + (1− ω) in Sec.

II-C2). Hence, we can re-rank all servers hosted on cloud j
according to their queue backlog in a decreasing order and

search from the server with the most backlog to the server

with the least backlog. If the growth of Bj

∑M
i=1 Qij(t)bij(t)

exceeds the growth of power consumption (i.e., V γP s
j (t))

caused by running a server i, then we need to schedule server i
to the running state. Once the growth of Bj

∑M
i=1 Qij(t)bij(t)

is smaller than the growth of V γP s
j (t) for server i, we need

to schedule server i and the other servers to the idle state.
Specifically, our algorithm is described in Alg. 1. For a giv-

en time slot t, the fronthaul scheduling policies ai(t) with Eq.

10 cost O(M), and the despatching policies Dij(t) with Eq. 11

cost O(MN). While for the cloud server scheduling policies

bij(t), it costs O(MlogM) to sort M queue backlogs for each

cloud. Thus the time complexity of Alg. 1 is O(MNlogM).

Algorithm 1 RICH Algorithm
1: At the beginning of each time slot t, the MSP gets the queue backlogs

Xi(t) and Qij(t).
2: Determine the fronthaul scheduling policies ai(t) with Eq. 10, BBU-

based requests despatching policies Dij(t) with Eq. 11 and the cloud
server scheduling policies bij(t) with the solution in Sec. III-B3.

3: Update the queues Xi(t) and Qij(t) according to Eq. 1 and Eq. 2,
respectively.

C. Optimality Analysis
Theorem 1. Assume that all the queues are initialized to 0.
Assume that all arrivals in a time slot Ai(t) i.i.d. and are upper
bounded by finite constants so that Ai(t) ≤ Amax

i , ∀i ∈ U , ∀t.
Then, implementing the RICH every time slot with any V ≥ 0
yields the following performance bounds:

(1) The worst case queue backlog for Ui buffered in the
BBU pool Xi(t) is upper bounded by a finite constant over
time slot as follows,

Xi(t) ≤ V αi +min{Amax
i , Cmax

i } (12)

Similarly, the worst case queue backlogs for Ui on any cloud
j is upper bounded over time slot as follows,

Qij(t) ≤ V αi + 2min{Amax
i , Cmax

i } (13)

(2) The time average profit achieved by the Alg. 1 is within
B/V of the optimal value:

lim
t→∞ inf{

M∑
i=1

αiri − β
M∑
i=1

pfi − γ
N∑
j=1

psj} ≥ η∗ − B

V
, (14)

where η∗ =
∑M

i=1 αir
∗
i − β

∑M
i=1 p

f∗
i − γ

∑N
j=1 p

s∗
j , and r∗i ,

pf∗i and ps∗j are the optimal values of Problem (P). Proof (see
Theorem 4.8 in [11]).

IV. EVALUATION

In this section, we evaluate RICH in a mobile system

consists with C-RAN and MCC by conducting simulations. We

have M = 10 sets of UEs which include a subset of UEs (e.g.,

phones, tablets), each Ui has a server hosted in all N = 400
mobile clouds, different servers in different clouds can process

different number of requests Bj = 10, j = 1, 2, · · · , 10. We

assume that every request consumes the same resources (e.g.,

CPU cycles) [15]. Specifically, the requests from each Ui

arrive according to a random process of mean rate λi. For each

mobile user, we set Amax
i = 2λi as the maximum requests

limited by the bandwidth capacity of the wireless network

between mobile user i and the RRH i. We plot the mean arrival

rate for each mobile user and the capacity limitation of each

fronthaul link in Table II.
TABLE II: Arrival Rates of Different Mobile Users and Fronthaul Capacities

User i 1 2 3 4 5 6 7 8 9 10

λi(×102) 1 1 1.5 1.5 2 2 2.5 2.5 3 3

Cmax
i (×102) 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5

In our setting, each mobile user can offload requests to at

most 400 servers across clouds, with a maximum processing

capacity of 400×Bj = 4000. We choose a typical setting of

parameter v = 2 and ω = 0.5 [17] for the normalized server

power consumption. We set the parameter α as 1 for all users.

Finally, we choose an empirical value of parameter β = 0.6
and γ = 2. The following simulations are carried out for 105

time slots.

For comparison, we consider two other benchmark algo-

rithms, i.e., random and active. For random algorithm, at every

time slot, it randomly schedules the fronthaul links, despatches

the transmitted requests and schedules the cloud servers. On

the contrary, for active algorithm, it switches all fronthaul links

to the ON state and all servers in mobile clouds to the running

state at every time slot. While for the despatching policy, we

use the same policy used in our RICH.

A. Algorithm Optimality and System Stability

Fig. 2 plots the time average profit for different values

of the control parameter V compared to random and active
algorithms. We observe that: (1) As the value of V increas-

es, the time average profit improves and converges to the

×

Fig. 2: Time average profit
vs. different V under RICH,
random and active algo-
rithms

×

×

Fig. 3: Time average sys-
tem congestion vs. different
V under RICH, random and
active algorithms

Fig. 4: Number of active
fronthual links vs. differen-
t time slots under RICH
and random algorithms with
V = 100, 300 and 500

Fig. 5: Proportion of de-
clined requests vs. differ-
ent time slots under RICH
and random algorithms with
V = 100, 300 and 500

Fig. 6: Number of active
servers vs. different time s-
lots under RICH and ran-
dom algorithms with V =
100, 300 and 500

maximum level for larger values of V . This quantitatively

corroborates Theorem 1 in that RICH can approach to the

optimal profit with a diminishing gap (1/V) (captured by Eq.

14). However, such an improvement starts to diminish with

excessive increases of V , which can aggravate the congestion

of queues in the system (captured by Eq. 3). (2) While for

other algorithms, they can only achieve very less profit due

to the scheduling policies they use. For example, for active
algorithm, it opens all fronthaul links and servers in the mobile

clouds. By doing this, they can process many requests but

incur a large amount of power consumption so that the profit

is also very less. Specially, the profit of RICH algorithm is

3.3× (18.4×) higher than that of active (random) algorithm.

We then verify the mobile system stability here. We plot the

time average queue congestion [11] captured by Eq. 3 under

different control values of V in Fig. 3. As shown in Fig. 3, the

time average queue congestion increases with the growth of

V . Along with Fig. 2, this reflects the tradeoff between profit

maximization and system stability shown in Sec. II-C under

RICH.

B. The Effectiveness of Scheduling Policies

We then evaluate the effectiveness of these three policies

here compared with random algorithm. We will evaluate the

active fronthaul links, the proportion of declined requests and

the active servers for RICH when V = 100, 300 and 500 over

time slots. From Fig. 4, we can see that the fronthaul links are

dynamically scheduled in our RICH and more fronthaul links

have been switched to ON state when V increases. When V is

excessive high, RICH schedules all fronthaul links to ON state

according to the fronthaul scheduling policies in Eq. 10. While

in Fig. 5, the mobile system declines less requests when the V
increase. But it still declines requests with a high paremeter V
due the capacity limitation of fronthaul links described in Sec.

II-A. From Fig. 6, we can see that more servers are scheduled

to running state when the time slots increase. That is because

the backlog of queue maintained by each server in mobile

clouds increase and more servers have be scheduled to running

state based on the solution described in Sec. III-B3.

V. CONCLUSION

In response to dynamic and unpredictable requests of mobile

users due to its mobility served by a mobile system with C-

RAN and MCC, we propose a unifying optimization frame-

work for maximizing the profit of MSP. Then we design a

RICH algorithm which jointly schedules resources both in C-

RAN and MCC. Our algorithm can approach a time average

profit that is close to the optimum with a gap (1/V) for MSP,

while still maintaining strong stability and low congestion to

guarantee the QoS for mobile users.

REFERENCES

[1] A. Checko, H. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. Berger,
and L. Dittmann. Cloud RAN for mobile networks: A technology
overview. IEEE Communications Surveys Tutorials, 17(1):405–426,
Firstquarter 2015.

[2] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen. Energy-efficiency
oriented traffic offloading in wireless networks: A brief survey and a
learning approach for heterogeneous cellular networks. IEEE Journal
on Selected Areas in Communications, 33(4):627–640, April 2015.

[3] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2012-2017, February 2013.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: Making smartphones last longer with
code offload. In Proc. of MobiSys, pages 49–62, 2010.

[5] B. Dai and W. Yu. Sparse beamforming and user-centric clustering for
downlink cloud radio access network. IEEE Access, 2:1326–1339, 2014.

[6] C. M. R. Institute. C-RAN white paper: The road towards green RAN.
[online]. Available: http://labs.chinamobile. com/cran, June 2014.

[7] H. Jin, X. Wang, S. Wu, S. Di, and X. Shi. Towards optimized fine-
grained pricing of IaaS cloud platform. IEEE Transactions on Cloud
Computing, 3(4):436–448, October 2015.

[8] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In Proc. of INFOCOM, pages 945–953, March
2012.

[9] W. Li, Y. Zhao, S. Lu, and D. Chen. Mechanisms and challenges on
mobility-augmented service provisioning for mobile cloud computing.
IEEE Communications Magazine, 53(3):89–97, March 2015.

[10] G. Nan, Z. Mao, M. Li, Y. Zhang, S. Gjessing, H. Wang, and M. Guizani.
Distributed resource allocation in cloud-based wireless multimedia social
networks. IEEE Network, 28(4):74–80, July 2014.

[11] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing System, Morgan & Claypool, 2010.

[12] X. Rao and V. Lau. Distributed fronthaul compression and joint signal
recovery in Cloud-RAN. IEEE Transactions on Signal Processing,
63(4):1056–1065, February 2015.

[13] S. Ren and M. van der Schaar. Dynamic scheduling and pricing in
wireless cloud computing. IEEE Transactions on Mobile Computing,
13(10):2283–2292, October 2014.

[14] K. Wang, K. Yang, and C. Magurawalage. Joint energy minimization
and resource allocation in C-RAN with mobile cloud. IEEE Transactions
on Cloud Computing, PP(99):1–1, 2016.

[15] K. Wang, K. Yang, X. Wang, and C. Magurawalage. Cost-effective
resource allocation in C-RAN with mobile cloud. In Proc. of ICC,
pages 1–6, May 2016.

[16] J. Zhao, T. Quek, and Z. Lei. Coordinated multipoint transmission
with limited backhaul data transfer. IEEE Transactions on Wireless
Communications, 12(6):2762–2775, June 2013.

[17] Z. Zhou, F. Liu, H. Jin, B. Li, B. Li, and H. Jiang. On arbitrating the
power-performance tradeoff in SaaS clouds. In Proc. of INFOCOM,
pages 872–880, April 2013.

