Hardware-Supported Remote Persistence for Distributed
Persistent Memory

Zhuohui Duan, Haodi Lu, Haikun Liu, Xiaofei Liao, Hai Jin, Yu Zhang, Song Wu
National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computing Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
{zhduan, haodilu,hkliu,xfliao, hjin,zhyu,wusong}@hust.edu.cn

Abstract

The advent of Persistent Memory (PM) necessitates an evolu-
tion of Remote Direct Memory Access (RDMA) technologies
for supporting remote data persistence. Previous software-
based solutions require remote CPU intervention and post-
pone the visibility of remote persistence. In this paper, we
design several hardware-supported RDMA primitives to flush
data from the volatile cache of RDMA Network Interface
Cards (RNICs) to the PM. We also propose durable RPCs
based on the proposed RDMA F1lush primitives to support
remote data persistence and fast failure recovery. We emulate
the performance of RDMA Flush primitives through other
RDMA primitives, and compare our proposals with several
state-of-the-art RPCs in a real testbed equipped with PM and
InfiniBand networks. Experimental results show that our pro-
posals can improve the throughput of RPCs by up to 90%),
and reduce the 99th percentile latency by up to 49%. The
experimental studies also provide instructive guidelines for
designing RDMA-based distributed PM systems.

CCS Concepts: » Networks — Network protocol design.

Keywords: RDMA, PM, RPC, Data Persistence

ACM Reference Format:

Zhuohui Duan, Haodi Lu, Haikun Liu, Xijaofei Liao, Hai Jin, Yu
Zhang, Song Wu. 2021. Hardware-Supported Remote Persistence
for Distributed Persistent Memory. In The International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC ’21), November 14—19, 2021, St. Louis, MO, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3458817.34
76194

Zhuohui Duan and Haodi Lu contributed equally to this work. Haikun Liu is
the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11...$15.00
https://doi.org/10.1145/3458817.3476194

1 Introduction

Persistent Memory (PM) technologies, such as Phase Change
Memory (PCM) [34] and 3D XPoint [23] promise high mem-
ory density, low cost per bit, DRAM-like performance , and
disk-like durability. Particularly, the byte-addressability and
non-volatility features of PM enable durable and recoverable
data structures in main memory, and thus have fundamen-
tally changed the way that system software and applications
manage persistent data. On the other hand, Remote Direct
Memory Access (RDMA) technologies can offer extremely
low network latency and high bandwidth, and enable low-
latency remote memory accesses over networks by bypassing
the operating system kernel and eliminating memory copying
across buffers (zero-copy). They have been widely utilized
to improve networking performance in HPC and data center
environments [15] [16] [19] [39]. Recently, the emergence
of PMs has inspired a number of studies on RDMA-based
distributed PM systems, file systems [24] [25] [45], and data
center applications [4] [7] [41].

Some previous studies [37] [38] [45] have demonstrated
significant performance benefit from PM and RDMA. How-
ever, existing RDMA Network Interface Cards (RNICs) have
not considered the durability feature of PM. In an RDMA-
based distributed PM system, it is costly to guarantee remote
data persistence and consistency regardless of a system crash
or a power failure. There has been very little understanding
on durable RDMA updates to the remote PM. For standard
RDMA protocols, an RDMA write operation completes
once the client has received a Work Completion (WC) ac-
knowledgement from the server. However, this acknowledge-
ment does not necessarily imply that the data buffered in
the volatile cache of the server’s RNIC has been persisted
in the PM. Without a validation of remote data persistence,
distributed applications may incur data consistency and con-
currency problems. For example, the client may release the
current write lock before the data is persisted in the remote
PM, and thus other clients may read the stale data. Moreover,
the invisibility of remote data persistence may cause data
corruption in case of a system crash or a power failure.

There have been very few studies on the characteristics
of RDMA and its implications on designing durable, cor-
rect, and efficient RDMA operations for PM systems. A few
proposals verify the remote data persistence and correctness

https://doi.org/10.1145/3458817.3476194
https://doi.org/10.1145/3458817.3476194
https://doi.org/10.1145/3458817.3476194

SC 21, November 14-19, 2021, St. Louis, MO, USA

using an RDMA read-after-write mechanism [24, 35], i.e., an
RDMA read follows an RDMA write to verify the data in-
tegrity. However, the effectiveness of these schemes is largely
influenced by some hardware features such as Data Direct
I/0 (DDIO) [6]. DDIO allows the RNIC to directly place
the received data in the server’s on-chip cache, making the
verification of remote data persistence fail repetitively. Some
other approaches such as Orion [51] involve the receiver’s
CPU in data persisting, and thus offset the performance ben-
efit of one-sided RDMA communication. Moreover, many
RDMA-based Remote Procedure Calls (RPCs) [5] [39] nat-
urally guarantee remote data persistence via a set of RDMA
operations. However, those RPCs require the remote server’s
CPU to process the incoming data, and thus increase CPU
load of the remote server, and also postpone the visibility of
remote data persistence.

In this paper, we first make a comparative study of pre-
vious RDMA-based RPC designs and their impacts on the
efficiency of durable RDMA operations. Based on the lessons
learnt, we design a set of RNIC hardware-supported RDMA
primitives to flush data from the volatile cache of RNICs to
the PM. We then implement several durable RPCs based on
the proposed RDMA Flush primitives to support remote
data persistence and fast failure recovery. Since our durable
RPCs decouple the data persisting from the RPC processing,
the remote data persistence is visible to applications much
earlier than traditional RPCs. This offers vast opportunities to
improve the performance of applications by overlapping the
RDMA transmission and the RPC processing. We also show
that it is potential to recover incomplete RPCs at the server
side in case of a system crash or a power failure, without
resenting data from the client. Moreover, for special hardware
features such as DDIO [6], and typical RDMA transmission
optimizations such as data batching, we discuss their impacts
on remote data persistence and then present our solutions.

We emulate the performance of RDMA Flush primitives
through other existing RDMA primitives, and compare our
proposals with previous state-of-the-art RPCs in a real testbed
equipped with Intel Optane DC Persistent Memory Modules
and InfiniBand networks. Experimental results show that our
RPCs using RDMA Flush primitives can significantly im-
prove the throughput of RPCs by up to 90%, and reduce
the tail latency by up to 49%. The experimental studies also
provide substantial and instructive guidelines for designing
high-performance RDMA-based PM systems with remote
data persistence and consistency guarantees.

The remaining of this paper is organized as follows. Sec-
tion 2 presents the background and discusses data persistence
problems in RDMA-based PM systems. Section 3 analyzes
disadvantages of existing data persisting mechanisms and
presents our motivations. Section 4 describes our designs
of RDMA F1lush primitives and durable RPCs. Section 5
presents experimental results. Section 6 introduces related
work, and we conclude in Section 7.

Duan and Lu, et al.

2 Background

In this section, we introduce the background of distributed
PM systems and challenges of remote data persistence.

2.1 Persistent Memory

The advent of Intel Optane DC Persistent Memory Mod-
ules (DCPMM) [23] [32] has finally made NVM (or PM)
commercially available. They have many promising features,
such as DRAM-like performance, disk-like durability, byte-
addressability, high density, and low cost. This new mem-
ory technology could complement and maybe even replace
DRAM technologies in the future. NVMs can be directly
attached to the memory bus, and used as PM through load/s-
tore instructions. The latest OS kernels already support APP
Direct Mode or Memory Mode to use it. As PM can pro-
vide extremely large and durable memory space to enable
in-memory computing, it can significantly benefit many big
data applications.

For mission-critical enterprise applications, it is essential to
guarantee data durability and consistency when data is written
to PM. The SNIA PM programming model [29] requires
applications to explicitly flush data from volatile CPU cache
to PM via a set of machine instructions. For example, Intel’s
clflush-opt and clwb instructions are used to fence a number
of writes and force them to complete in order before handling
other writes. In a distributed PM system, it is also necessary
to guarantee data persistence and consistency when writing
data to the remote PM.

2.2 RDMA

RDMA is a technology that allows an application to directly
access memory in a remote machine across the network. It is
able to bypass the OS kernel and to eliminate memory copy-
ing among buffers [19, 28], and thus achieves low-latency
and high-throughput network transmission with low CPU
load. Generally, RDMA supports three transmission modes:
reliable connection (RC), unreliable connection (UC), and
unreliable datagram (UD). The RC mode guarantees loss-
less data transfer and in-order delivery of messages. UC and
UD modes achieve better performance than the RC mode by
relinquishing the reliability of data transmission. In the follow-
ing, the local server that sends RDMA requests is called the
sender, while the remote server that receives RDMA requests
is called the receiver. As reliability is essential to durable
RDMA write/send operations, we use reliable connections in
this paper if not specified.

RDMA supports both channel semantics and memory se-
mantics for remote memory accesses, i.e., two-sided opera-
tions using RDMA send/recv verbs, and one-sided opera-
tions using RDMA read/write verbs. Two-sided RDMA
operations are usually used in a classic I/O channel. They
should interrupt the receiver’s CPU for processing RDMA
messages. In contrast, one-sided operations do not need to

Hardware-Supported Remote Persistence for Distributed Persistent Memory

Volatile Domain

—>Volatile Data Path ———> RDMA UC/UD ACK ——> RDMA RC ACK

7777//) Non-Volatile Domain

UC/UD ACK
1
SRAM SRAM 1/0 PM
- Pipeline

RDMA)

DY DY
Network| 2222z DMA
RNIC RNIC
RC ACK T
Sender Receiver

Figure 1. The data path of an RDMA write

involve the receiver’s CPUs. The receiver’s RNIC exploits a
Direct Memory Access (DMA) mechanism to process RDMA
read/write operations. In addition, RDMA write with im-
mediate data (RDMA write-imm) is a more complicated
primitive that can perform an RDMA write to the receiver’s
memory accompanying with a 32-bit immediate (IMM) value.
It notifies the write completion to the receiver’s CPU which
then performs other operations with the IMM. These RDMA
verbs and communication modes provide a large design space
to choose an efficient solution for a given application, and
different choices may have a significant impact on the appli-
cation performance.

2.3 DDIO Technologies

Recently, modern processor vendors such as Intel announce
an innovative technology called DDIO [6]. It allows incoming
RDMA writes to be placed directly in the CPU’s L3 cache,
rather than Integrated Memory Controller (IMC) buffers.
DDIO can avoid writing data to main memory and then read-
ing it to the CPU cache for further processing, and thus can
significantly improve the system I/O performance. However,
DDIO complicates remote data persisting in distributed PM
systems. To ensure data persistence, the remote host’s CPU
needs to flush the incoming data from the LLC to the persist
domain. Clearly, DDIO prolongs the data path of a remote
write, and thus hampers remote data persistence in RDMA-
based distributed PM systems.

2.4 Challenges of Remote Data Persisting

Figure 1 shows a typical data path of RDMA write in an
RDMA-based PM system. In the RDMA RC mode, once the
data is received by the receiver’s RNIC, it returns a work
completion (WC) event to the sender. In the RDMA UC/UD
modes, once the sender’s RNIC has sent out the data, it no-
tifies the completion of RDMA operations to applications.
Assume T4 represents the time when applications receive
the WC event of RDMA write operations, and T represents
the time when the received data has been physically written
from the receiver’s RNIC buffer to the PM. If T, is earlier
than Tp, a system crash or a power failure may lead to a data
inconsistent problem.

Overall, the volatile cache of RNICs is the root cause of
data persistence problems in distributed PM systems. The

SC 21, November 14-19, 2021, St. Louis, MO, USA

Table 1. RDMA based RPC systems

RPC Implementations RC UC/UD DDIO

. Jakiro [40], ScaleRPC [5],
RDMA Write L5 [11], FaRM [8] Herd [18] [14]

» TaE
RDMA Send DaRPC [39], Mojim [34], | ¢ oo 1197 | FileMR [52]

Hotpot [38], NVFS [15]

RDMA Write with Imm LITE [46], Orion [51]

invisibility of data persistence leads to a risk of data corrup-
tion. As a result, the SNIA PM programming model advo-
cates an RDMA read-after-write mechanism [35] to guaran-
tee data persistence. Specifically, the sender reads the last
byte of the data from the PM to check its correctness once
the RDMA write operation completes. Although the RDMA
read-after-write mechanism is easy to implement, it has been
questioned [13] since some hardware features of the remote
server may affect its effectiveness. For example, the DDIO
technology allows the receiver’s RNIC directly place the in-
coming data in the volatile L3 cache. The sender is not able
to perceive whether and when the data is written to the PM.
In this case, the RDMA read-after-write mechanism becomes
ineffective because the data read by the sender is actually in
the L3 cache. Overall, because the RDMA transmission is de-
coupled with the data persisting in current RDMA networks,
it is often costly to guarantee data persistence and consistency
through a software approach solely.

3 Motivations

In an RDMA-enabled PM system, the sender should be aware
of the time when the data is persisted in the remote PM. This
is particularly essential to concurrency control for distributed
shared PM systems. To guarantee remote data persistence
and consistency, it is necessary to support durable RDMA
writes for RDMA networks. Unfortunately, so far there is no
commercially available RNIC hardware that supports durable
RDMA writes and failure atomicity.

Although most existing RPC systems are designed to facil-
itate RDMA programming for Distributed Shared Memory
(DSM), they actually support durable RDMA writes. To study
previous durable RDMA write mechanisms in existing RPC
systems, we classify existing RDMA-based DSM systems
according to different RDMA primitives and transmission
modes, as shown in Table 1. Since RDMA RC mode en-
sures reliable data transmission, it has a potential to achieve
durable RDMA writes without involving the remote server’s
CPUgs. In contrast, RDMA UC/UD modes must interrupt the
remote server’s CPUs to verify the data persistence. More
importantly, since the DDIO technology complicates data
persisting in the remote PM, we discuss its impact on remote
data persistence particularly.

Many previous studies use RPCs to optimize RDMA trans-
mission. An RPC often uses a set of RDMA primitives to
perform a complicated task with fewer RTTs. Most RPCs
require the remote server’s CPU to process the written data.

SC 21, November 14-19, 2021, St. Louis, MO, USA

RECEIVER _7 _if‘_d _PS;(.\W:"‘_e. - _7_.\ J_D)_7_ _S_\GIE“_(UDl ?}, {nt_e
SENDER “Gend™ ~~ Wiite Write(UC) Send(UD) WriteWrite ~
(a) DaRPC (b) FaRM (c) Herd (d) FassT (e) LS
Read Poll WriteIMM WritelIMM
SENDER {fite ™ Read write ;_ Nrite WritelMM ~ WritelMM
Warm-up | Process Metadata
(f) RFP (g) ScaleRPC (h) Octopus (i) LITE

Figure 2. Data transmission modes in different RPC systems

The sender has to wait for a completion event from the re-
mote CPU. Although the primary goal of RPC designs is not
to guarantee data persistence, they naturally support durable
RDMA writes. In the following, we elaborate several typical
RDMA-based RPC designs to illustrate how they guarantee
remote data persistence. Figure 2 illustrates the transmission
modes and RDMA primitives used in different RPC systems.

Figure 2(a) shows a typical RPC design in DaRPC [39].
At first, the sender uses an RDMA send primitive to send a
message (including data and metadata) to the receiver. The re-
ceiver’s RNIC receives the message and stores it in a message
buffer. It notifies the receiver’s CPU to parse data and meta-
data in the message, and then the data is copied to the target
memory space according to the metadata. At last, the receiver
uses an RDMA send primitive to notify the completion of
this RPC to the sender.

Figure 2(b), Figure 2(c), and Figure 2(d) show abstractions
of RPCs in FaRM [8], Herd [18], and FaSST [19], respec-
tively. The data transmission model of these RPCs is similar to
DaRPC. The only difference is that they use different RDMA
primitives to transfer data and acknowledgement (ACK) mes-
sages. Specifically, FaRM, Herd, and FaSST use RC-based
RDMA write, UC-based RDMA write, and UD-based
RDMA send, respectively. The receivers exploit RDMA
recv primitives or a polling mechanism to store the received
data in the persistent domain. If a sender receives a comple-
tion event of the RPC, it can confirm that the data has been
persisted in the remote server.

As shown in Figure 2(e), L5 [11] uses two RDMA writes
to transfer data and a valid message, respectively. The receiver
polls the message buffer for incoming RDMA writes, and
then returns the processing result using an RDMA write
primitive. Figure 2(f) illustrates the communication mode
of RFP [40]. The sender uses an RDMA write to transfer
data, and then uses an RDMA read to collect the result pro-
cessed by the receiver. Figure 2(g) shows the work flow of
ScaleRPC [5]. The data transfer includes two phases: warmup
and process. In the former phase, the sender uses an RDMA
write to only send the local address of the data to the re-
ceiver’s message buffer. The receiver polls the message buffer
and uses an RDMA read to fetch the requested data from
the sender. Once the computation is completed, the receiver
notifies the sender of a completion event using an RDMA
write. Subsequently, ScaleRPC begins the process phase,

Duan and Lu, et al.

and the data transmission model is the same as FaRM (Fig-
ure 2(b)). Figure 2(h) and Figure 2(i) show the RPC designs in
Octopus [25] and LITE [46], respectively. They both use the
RDMA write-IMM primitive to notify the receiver’s CPU
for further data processing. Their data transmission models
are similar to FaRM, except different RDMA primitives used.
Unlike Octopus, LITE implements RPCs in the kernel, and
thus data access permissions should be spread to the kernel.

From the above description, we can find that these RPCs
all guarantee data persistence naturally. When the RPC is
completed, the sender can validate that the data has been per-
sisted by the receiver. However, the costly RPC processing,
RDMA networking, and PCle operations are on the critical
path of client applications. They often significantly increase
the end-to-end latency compared with a single RDMA primi-
tive. Moreover, the DDIO technology also prolongs the data
path of remote data persisting at the receiver side.

To evaluate the impact of different RDMA-based RPC de-
signs on the performance of durable RDMA writes, we design
a set of RDMA F1lush primitives and use them to implement
new RPCs for durable RDMA writes. We compare our RPC
design with previous RPCs in a real testbed using Intel Optane
DCPMMs and InfiniBand networks. Compared with previous
works using software-emulated NVMs, our evaluation can re-
flect the impact of different durable RDMA write mechanisms
on application performance more accurately.

4 Durable RDMA Operations

Current RNIC hardware and firmware do not provide enough
support for remote data persistence. To embrace the new PM,
it is essential to design new RDMA primitives and more
efficient RPCs to utilize PM in a distributed environment.
Moreover, since previous RPC systems tightly couple the
data persisting with the processing of RPCs, they should be
also redesigned to allow the remote data persistence visible
to the sender earlier.

4.1 RDMA Flush Primitives

To reduce the end-to-end latency of durable RDMA oper-
ations, we design new RDMA Flush primitives and data
persisting models. We classify the proposed RDMA Flush
primitives into two categories: sender-initiated and receiver-
initiated. Sender-initiated RDMA Flush primitives are is-
sued by the sender to verify the remote data persistence, while
receiver-initiated Flush primitives are issued by the receiver
to notify the completion of data persisting to the sender.

4.1.1 Sender-initiated RDMA Flush Primitives. Sender-
initiated RDMA Flush primitives are designed according to
the hardware features of RDMA and PM. One-sided RDMA
communication mode bypasses OS kernels, and does not in-
volve the remote server’s CPUs. Also, future smart RNICs
have a potential to directly flush data from their volatile
cache to PM. Thus, it is possible to achieve durable RDMA

Hardware-Supported Remote Persistence for Distributed Persistent Memory

Addressing & DMA DMA RFlush
(RNIC) (RNIC) (CPU Polling)
RECEIVER ~~~ "3 "4 "\ "~ B e T Tt ettt LT TupupUp Uph N
SENDER Send SFiush Write WFlush ~ Send or Write
(a) SFlush (b) WFlush (c) RFlush

Figure 3. RDMA Flush primitives

writes/sends without the involvement of remote CPUs. Sender-
initiated RDMA primitives can be used only in the RC mode,
because these RDMA primitives have to wait for ACKs from
the remote RNIC.

We design two RDMA Flush primitives (i.e., SFlush
and WF lush) for RDMA send and RDMA write opera-
tions, respectively. These RDMA F1lush primitives can flush
data from volatile cache (SRAM) to the PM by the RNIC
hardware. Once the data has been stored in the PM, an ACK
of the RDMA Flush is issued by the receiver’s RNIC to
notify the completion of data persisting to the sender. Both
SFlush and WF1lush do not involve the receiver’s CPUs.

A SFlush should be accompanied with an RDMA send
primitive. Because RDMA send primitives rely on the re-
ceiver’s CPU to obtain the destination memory address and
perform DMA operations, the CPU intervention increases
software overhead. We believe future smart RNICs can do the
same job itself with our proposed SF1lush primitive. When
the receiver’s RNIC receives a SF1ush primitive, it should
first parse the received data packet to get the remote memory
address, and then performs the DMA operation to persist the
data, as shown in Figure 3(a). In this way, we can shorten
the latency that the data persistence is visible to the sender.
Similarly, a WE' 1ush should be accompanied with an RDMA
write primitive, as shown in Figure 3(b). It is aware of
the target address of the received data because the RDMA
write primitive contains the remote memory address.

4.1.2 Receiver-initiated RDMA Flush Primitive. Unlike
sender-initiated RDMA F 1ush primitives, the receiver-initiated
RDMA Flush primitive (i.e., RF Lush) should flush the re-
ceived data to PM by the receiver’s RNIC itself, without any
involvement of the receiver’s CPU. However, since current
RNIC hardware does not support active data flushing, we rely
on the receiver’s CPU to emulate RDMA RF 1ush primitives.
Figure 3(c) demonstrates durable RDMA send/write opera-
tions using RF 1ush. The receiver’s CPU polls the message
buffer for incoming RDMA send/write operations, and
issues an RDMA RF lush primitive to flush data to the PM.
Once the data has been persisted, the receiver’s CPU notifies
the completion of data persisting to the sender immediately.
Although RF1ush leads to a moderate CPU load, it can be
used in all RDMA connection modes, such as UC/UD.

4.1.3 Emulation of RDMA Flush Primitives. Since RDMA
Flush primitive is not supported by current RNIC hardware,
we use other existing RDMA primitives to emulate the per-
formance of RDMA Flush primitives. Because a WF lush

SC 21, November 14-19, 2021, St. Louis, MO, USA

RPC Process RPC Process RPC Process Send
Send Writ ;
RECEIVER /f\ wene //\ At Bf!!?:\K,,,p,r,wme
SENDER Send'Sfiush ~~ ~ WriteWFlush SendorWrite

(a) SFlush-based RPC (b) WFlush-based RPC (c) RFlush-based RPC
Figure 4. Durable RPCs based on RDMA Flush primitives

follows an RDMA write, we emulate RDMA WF 1ush primi-
tives by reading the last byte of the data via an RDMA read
primitive, which forces the receiver’s RNIC to flush the data to
the PM via DMA immediately. For RDMA send primitives,
the RDMA SF1lush primitive should consult the receiver’s
RNIC to get the destination address of the data. To emulate
the RDMA SFlush, we first wait for a while to simulate
the time spent in looking up the destination address, and then
perform an RDMA read operation to force the data flushing.
Since the address lookup is performed by RNIC hardware,
we use a function sleep(0) to simulate the latency (about 7 us)
of addressing conservatively. For receiver-initiated RDMA
RFlush primitive, we rely on the receiver’s CPU to emulate
its functionality. The CPU detects incoming RDMA requests
via busy polling. Once the data is flushed to the PM, it notifies
the completion of data persisting to the sender immediately.

4.2 Durable RPCs for Failure Recovery

Failure recovery is important for mission-critical enterprise
applications. In an RDMA-based RPC system, a failure at the
server side may occur during the execution of the RPC. We
exploit redo logging to achieve fast recovery of incomplete
RPCs, without re-sending the data from the client.

We design durable RPCs using the aforementioned RDMA
Flush primitives, as shown in Figure 4. Unlike previous
RPC designs, our durable RPCs can guarantee that the re-
ceived data is stored in the receiver’s PM when the sender has
received the ACK of RDMA F1lush primitives. At this time,
if the receiver suffers a system crash or a power failure, we
can recover the incomplete RPCs using the redo log stored
in the PM. Once the receiver is recovered from a failure, the
RPC can be re-executed with the operation log, without re-
sending the data from the client. However, if the received
data has not yet persisted to the remote PM, the data in the
RNIC’s volatile cache would be lost upon a system crash or a
power failure. In this case, the RDMA connection should be
re-established and the data should be re-sent to the receiver.
This process is usually costly.

Figure 5 shows how durable RPCs are processed at the
receiver side. When the receiver’s RNIC receives RDMA
requests, the data packets are cached in the volatile RNIC
buffer (SRAM). We maintain a ring buffer in the PM to store
the redo log. For each RDMA connection, the corresponding
connection information is recorded in the log header. A log
entry contains the RPC operator and the data. To guarantee
failure atomicity, the data is always persisted before the RPC
operator in the logging buffer. Because the size of the RPC

SC 21, November 14-19, 2021, St. Louis, MO, USA

4 Persistent N

|:| Data |:| Metadata i

Memory
RNIC PR
© /1
RPC
@ Buffer
Redo Log Application
Memory
=

Figure 5. Failure recovery mechanism using durable RPCs

operator is very small, it can be persisted with an atomic write.

Once an RPC is successfully processed, the corresponding
log entry is removed from the ring buffer. For an RDMA
WE lush-based RPC, the RNIC performs a DMA operation
(D) to store the data and the RPC operator in the log, and
then notifies the completion of remote data persisting to the
sender. At this time, a thread is created to handle the RPC
requests. Meanwhile, the sender can initiate another RPC
request earlier without waiting for the completion event of the
former RPC, because our design guarantees that the durable
RPC can be processed eventually with the redo log even when

a system failure occurs. For an RDMA SFlush-based RPC,

the data packet should be first stored in the message buffer for
further processing (@) because the RDMA send primitive
does not contain the remote memory address. With the RDMA
SFlush primitive, we can immediately flush the data in the
message buffer to the redo log via another DMA (B)).

Since our durable RPC design decouples the data persisting
from the RPC processing via RDMA Flush primitives, the
remote data persistence is visible to the sender much earlier
than traditional RPCs. With the redo logging mechanism, the
sender can issue other RPC requests without waiting for the

completion event of the RPC that is still being processed.

Even when the following RPC requests would process the
same data, they will be queued in the logging buffer and
then processed in a FIFO order. The redo logging mechanism
not only guarantees failure atomicity during the processing
of RPC, but also provides the ordering guarantee of RPC
requests for data concurrency. On the other hand, the sender
may send too many requests even when the receiver is under
a high load. Thus, when the incomplete RDMA requests
accumulated at the receiver side become larger than a given
threshold, the receiver should notify the sender to slow down
the speed of data transmission. The sender can simply throttle
new RPC requests for a short while.

4.3 Remote Data Persisting for Batching

A number of RPC systems such as DaRPC [39], FaSST [19],
and ScaleRPC [5] perform a set of RDMA operations in
a batch to improve the network throughput. Our RDMA
Flush primitives are also applicable for batched RDMA
operations. Taking RDMA WF lush as an example, Figure 6
shows the batched RDMA writes combining with RDMA

Duan and Lu, et al.

N /AV/AN /AN /AN

WFlush WFlush WFlush WFlush
Write Write Write Write

(a) Batching-disabled (b) Batching-enabled
Figure 6. RDMA WF 1ush for batched data transmission

Read lelush | Ciflush
Write

~Writelmm, Write
SENDER wiiteimm, WFiush C&s Wit Wit T
Warm-up ' Process

(a) Octopus with RDMA WFlush (b) DDIO with Ciflush

Figure 7. Remote data persistence guarantee in Octopus and a
DDIO-enabled PM system

WE lush primitives. In a batching-disabled case, an RDMA
WE lush is usually accompanied with an RDMA write op-
eration to persist the data, as shown in Figure 6(a). When the
batching mechanism is enabled, the sender transfers a large
message accompanying with an RDMA WF1lush at a time,
as shown in Figure 6(b).

4.4 Case Studies of Using RDMA Flush Primitives

In this section, we illustrate how previous RDMA systems
and the DDIO setup can support remote data persistence by
using our RDMA F1lush primitives.

4.4.1 Remote Data Persisting for Existing RDMA Sys-
tems. A few previous proposals such as Tailwind [42], Oc-
topus [25], and Clover [45] store data to remote memory via
RDMA write primitives. Unfortunately, these systems do
not guarantee data persistence for RDMA write operations.

Taking Octopus [25] as an example, we illustrate how these
RDMA-enabled PM systems can exploit the RDMA WEF lush
primitive to guarantee remote data persistence effectively, as
shown in Figure 7(a). In Octopus, the sender first obtains the
destination memory address using a RPC implemented with
RDMA write-IMM. It then uses an RDMA write primi-
tive to write the data to the PM. To make the RPC in Octopus
durable, we can use an RDMA WF 1ush primitive following
the RDMA Write primitive. The RDMA WF 1ush primitive
guarantees that the received data is flushed to the PM when
the sender receives the ACK of the RDMA WF lush.

4.4.2 Remote Data Persistence with DDIO Technologies.
The DDIO technology changes the destination of RDMA data
path from the PM to the volatile on-chip cache. To guarantee
data persistence, the receiver’s CPUs should perform a clflush
instruction to flush the data from the L3 cache to the PM.
We take ScaleRPC [5] as an example to illustrate our re-
mote data persisting mechanism in a DDIO-enabled system.
Figure 7(b) illustrates the RPC in ScaleRPC. In the warmup
phase, the sender uses an RDMA write to send the local
address of the data to the receiver’s message buffer. The re-
ceiver parses the message and uses an RDMA read to fetch
the data from the sender. To guarantee data persistence if
the DDIO technology is enabled, the receiver has to actively

Hardware-Supported Remote Persistence for Distributed Persistent Memory

perform a clflush instruction to flush the data from the L3
cache to the PM. The receiver then uses an RDMA write
to notify the completion of data persisting to the sender. In
the following, ScaleRPC begins the process phase, and then
the sender uses RDMA write primitives to transfer data to
the receiver. Again, the receiver needs to flush data from the
L3 cache to the PM via a clflush instruction. Then, the sender
can validate the remote data persistence once it receives the
completion event of clflush via an RDMA write primitive.

We argue it is potential to support remote data persistence
for a given application while other applications can still take
advantage of DDIO technologies. For example, applications
can apply for non-cacheable memory regions at the remote
server side, and thus data mapped to the non-cacheable mem-
ory region is oblivious to the DDIO. Moreover, fine-grained
DDIO control can be achieved by configuring PCle root ports
or PCle transactions [30], and thus one application can be
configured to forego DDIO while other application can still
benefit from DDIO.

4.5 Discussion

SmartNICs. Although there is not commercially available
RNIC hardware that supports durable RDMA operations cur-
rently, we believe these functionalities would be enabled by
future smartNICs. They contains considerable programmable
elements such as ARM cores and lookup tables (LUTs),
which are used to offload some CPU-intensive operations.
To support RDMA Flush primitives in smartNICs, both the
firmware of smartNICs and the RDMA library should be mod-
ified. For the RDMA SF lush primitive, it is possible to use
an ARM core to infer the destination memory address directly,
without remote CPU intervention. For the RDMA RF1lush
primitive, lookup tables and on-chip memory in smartNICs
can be used to configure applications’ data persistence re-
quirements, and then the smartNIC itself can issue RDMA
RFlush primitives to flush data from the RNIC cache into
the PM. Moreover, smartNICs can be also programmed to
offload some RPC operations that are originally handled by
the receivers’ CPUs.

Data Persistence with Multiple Replicas. In distributed
systems, data replication is widely used to improve system
availability and reliability. It can guarantee that an accurate
backup exists at all times in case of a permanent hardware
failure. However, although the RDMA reliable connection
guarantees reliable transmission, it can not guarantee the order
of RDMA Flush ACKSs from multiple distributed replicas.
In this scenario, a consensus mechanism is usually required
to make a tradeoff between data consistency and applica-
tion performance. A early work Hyperloop [22] designs new
RDMA primitives to offload data replication transactions in
storage systems to advance RNICs. However, it still relies on
the RDMA read-after-write mechanism to guarantee durable
RDMA writes. In this work, we mainly focus on remote data
persistence and transient failure recovery in a point-to-point

SC 21, November 14-19, 2021, St. Louis, MO, USA

connection. Our work offers foundational capabilities for data
replication protocols in distributed storage systems. We be-
lieve that the advent of smartNICs offers vast opportunities
to offload many CPU operations in data replication protocols,
significantly shortening the data path of replication.

Maintaining Cache Coherence. In the data server, since
the PM can be accessed by both RNICs and local CPUs con-
currently, the RNICs’ DMA operations may cause a cache
coherency problem. If the DDIO technology is enabled, the
received data is directly placed in the L3 cache, and the re-
ceiver’s CPU guarantees cache coherence. If the DDIO is
disabled, there are two optional solutions to guarantee data
consistency between the CPU cache and the PM. First, we can
rely on the CPU’s memory controller to guarantee the correct
snoops/invalidates/atomics in the caching system. Intel’s Op-
tane PM also supports directory-based or snoop-based cache
coherence protocols. Second, we can use a dedicated buffer
to store the received data for each communicating pair. The
receiver’s CPU then copies the data from the dedicated buffer
to the application’s memory. In this case, the data consis-
tency is also guaranteed by the receiver’s CPU. We note that
some HPC networking protocols achieve zero-copy using tag
matching [1] [26]. Our SF1ush-based RPC can also utilize
these technologies to improve performance. However, we still
use the buffering mechanism in our work because the redo
logging mechanism not only guarantees cache coherence, but
also guarantees failure atomicity in a PM system.

5 Evaluation

In this section, we make an extensive comparison between pre-
vious RDMA-based RPCs and our failure recoverable RPCs.
We evaluate the performance of these systems with micro-
benchmarks and real-world applications. The source code and
the experiments in this paper are available at Github [33].

5.1 Experimental Setup

We conduct our experiments using servers equipped with two-
socket Intel Xeon Gold 6230 2.10 GHz 20-core processors,
128 GB DRAM, 1 TB Intel Optane DC Persistent Memory,
and Mellanox ConnectX-4 40/56 GbE network controller. We
use Intel Optane DCPMM in App Direct mode and manage
it via Direct Access (DAX) [12]. We disable the DDIO by
default in our experiments.

RPC Systems for Comparison. We implement the RPC
communication models of L5 [11], RFP [40], FaSST [19],
Octopus [25], FaRM [8], ScaleRPC [5], and DaRPC [39], and
then compare our durable RPCs with them. We deploy each
RPC service in a single server, and use one client on another
server to evaluate the end-to-end latency of RPCs. Since the
maximum transmission unit of the RDMA UD connection in
FaSST is 4KB, we only show experimental results of FaSST
for objects smaller than 4KB. For ScaleRPC, we interleave
one warm-up phase with 100 process phases.

SC '21, November 14—-19, 2021, St. Louis, MO, USA

[s\ RFPZZ FasSTNN OctopusfEii] FaRME scaleRPC[[[[lll DarRPCE] S-RFlush-RPCE SFlush-RP

Throughput(KOPS)

1B 64KB
(a) Heavy load
Figure 8. The throughput of different RPCs in micro-benchmarks

For durable RPCs in this paper, we call the RDMA SF1lush-
based RPC as SFlush-RPC, the RDMA WF1lush-based RPC
as WFlush-RPC, the RDMA RF 1ush-based RPC using RDMA
send as S-RFlush-RPC, and the RDMA RFlush-based
RPC using RDMA write as W-RFlush-RPC for simplic-
ity. We only compare SFlush-RPC, S-RFlush-RPC with
DaRPC and FaSST because they all use RDMA send
primitives. In contrast, we compare WFlush-RPC and W-
RFlush-RPC with L5, RFP, Octopus, FaRM, ScaleRPC
because these RPCs all use RDMA write primitives.

Micro-benchmarks. We develop micro-benchmarks [33]
to evaluate previous RDMA-based RPCs and our durable
RPCs. In our experiments, if not specified otherwise, the
sender first generates 50K objects in a remote server, and
then reads/writes these objects for 300K times via different
RDMA-based RPCs. The default object size is 64 KB. The
data access pattern follows a zipfian distribution with a read-
/write ratio of 1:1. We use 32 B, 1 KB, and 64 KB objects
to evaluate the efficiency of our RPCs for typical message-
passing systems, K-V stores, and file systems, respectively.

Macro-benchmarks. We use real-world applications such
as compute-intensive PageRank [31] and latency-sensitive
YCSB [53] benchmarks to evaluate the performance of dif-
ferent RPCs. For the PageRank algorithm, we use different
graph datasets as follows. Word association-2011 [50] con-
tains 10K nodes and 72K edges. Enron [49] contains 69K
nodes and 276K edges. Dblp-2010 [48] contains 326K nodes
and 1615K edges. We store the graph data in a remote server’s
PM, and store the intermediate results of PageRank in the
main memory of the computation node locally. The graph data
are fetched via RPCs by the client node. For YCSB bench-
marks, we store 50K objects in a KV store system. The sizes
of keys and values are 8 Bytes and 4 KB, respectively. Clients
perform RPCs to access KV pairs in the remote PM, and
maintain KV indexes in the main memory of clients locally.
We perform KV operations 300K times in each test for differ-
ent workloads. Workload A has 50%-50% update-read ratio.
Workload B performs 95% reads and 5% updates (overwrites).
Workload C is read-only. Workload D performs 5% inserts
and 95% reads for the most recently inserted records. Work-
load E performs 95% scans (range queries) and 5% inserts.
Workload F performs 50% reads and 50% write-modify-reads.
The data access patterns of these workloads (except D) all
follow a zipfian distribution (99% skewness).

Duan and Lu, et al.

W-RFlush-RPC[{I7] WFlush-RPC

Throughput(KOPS

(b) Light load

5.2 Micro-benchmark Performance

Figure 8 shows the throughput of different RPCs in the micro-
benchmark when the requested object sizes are 32 B, 1 KB,
and 64 KB. Since real-world RPCs usually perform more
complex operations than just accessing data, we emulate the
execution of a real-world RPC at the receiver side by inject-
ing an additional latency of 100 us for data processing, like
DaRPC [39]. In this case, we deem that these RPCs lead to
heavy load at the receiver side. In contrast, we assume that
light-load RPCs only perform read/write operations.

For the light load case (Figure 8(b)), our durable RPCs
achieve moderate performance improvement compared with
other RPCs for small objects (32 B and 1 KB). For large
objects (64 KB), the throughput of WFlush-RPC and W-
RFlush-RPC is improved by 20%-90% compared with RPCs
implemented with RDMA write primitives, such as L5,
RFP, Octopus, FaRM, and ScaleRPC. Moreover, the through-
put of SFlush-RPC and S-RFlush-RPC is improved by 42%
compared with DaRPC which uses RDMA send primitives.
For the heavy load case (Figure 8(a)), our durable RPCs all
achieve the best performance than other RPCs. The through-
put of WFlush-RPC and W-RFlush-RPC is improved by 58%-
85% for all objects compared with other RPCs implemented
with RDMA write primitives. SFlush-RPC and S-RFlush-
RPC also improve the throughput by 43%-69% compared
with DaRPC. The performance improvement is mainly at-
tributed to decoupling the remote data persisting from costly
RPC processing. Once the sender is aware of the completion
of remote data persisting, it can issue other RPC requests
earlier even if it has not received the ACK of the prior RPC.
In this way, the RPC processing is partially overlapped with
the RDMA transmission.

Figure 9 shows the tail latency of RPCs when accessing
1 KB and 64 KB objects in the micro-benchmark. SFlush-
RPC and S-RFlush-RPC reduce the tail latency by about 10%
compared with DaRPC because the software overhead of
two-side RDMA operations is the dominant factor of high la-
tency. In contrast, compared with RPCs using RDMA write
primitives, W-RFIlush-RPC and WFlush-RPC reduce the 99th
percentile latency by about 49% and 24% for 1 KB and 64
KB objects, respectively. Overall, these experimental results
demonstrate that our durable RPCs can offer higher quality of
service than previous RPCs for latency-sensitive applications.

Hardware-Supported Remote Persistence for Distributed Persistent Memory

l:l L5 \\\| RFPZZ OctopusNN FarRME] ScaleRPCE DaRPC[[[[[[] S-RFlush-RPCAYY SFlush-RP

w
o

Ave. Latency(us)
=
o

o

(a) 1KB objects

SC 21, November 14-19, 2021, St. Louis, MO, USA

W-RFlush-RPC[] WFlush-RPC

o5th 99th Av
(b) 64KB objects

Figure 9. The tail and average latency of different RDMA-based RPCs

Octopus== FaRMI[[I ScaleRP:

7 1.5 N\ RFP E
- NN SFlush-RPCEEE] W-RFlush-RPC[]

0 i AN I\
wordassouaﬂon 2011 enron
Figure 10. The performance of PageRank using different RPCs

Lessons learnt: /) For small data packets, RPCs using ei-
ther one-sided or two-sided RDMA primitives achieve similar
application performance. However, for large data packets,
RPCs using one-sided RDMA primitives (such as write)
are much faster than RPCs using two-sided RDMA primitives
(such as send). 2) Our durable RPCs using RDMA Flush
primitives achieve notable performance improvement for both
one-sided and two-sided RDMA primitives compared with
previous RPCs. Because our durable RPCs are persistent and
recoverable, they allow the remote data persistence visible
to the sender much earlier than traditional RPCs. This offers
an opportunity to overlap the data transferring with the RPC
processing. 3) Our durable RPCs show similar performance
whether they use sender-initiated or receiver-initiated RDMA
Flush Primitives.

5.3 Macro-benchmark Performance

Figure 10 shows the execution time of PageRank using three
datasets for different RPC systems. Our RPCs always shows
the best performance for all cases. Particularly, S-RFlush-RPC
and SFlush-RPC can reduce the execution time by 8% and
30% compared with DaRPC, respectively. W-RFlush-RPC
and WFlush-RPC can reduce the execution time by 8%-38%
compared with other RPCs using RDMA write primitives.
As Pagerank is a computation-intensive application, the high
CPU load at the client side has a non-trivial impact on RDMA
transmission. However, our durable RPCs still achieves sub-
stantial performance improvement.

Figure 11 shows the average latency of RPCs in different
YCSB workloads. Since most YCSB workloads are read-
intensive, such as workloads B, C, and D, our durable RPCs
show moderate performance improvement compared with
other RPCs of the same type. For workloads A and E, W-
RFlush-RPC and WFlush-RPC reduce the average latency
of RPCs by up to 50% compared with other RPCs using
RDMA write primitives. S-RFIlush-RPC and SFlush-RPC
also reduce the latency of remote read/write operations by 7%

72 1.5 NN RFP [1] Octopus EES FaRM I ScaIeRPC
E S RFIush RPCRRN SFlush-RPCEZ 21

[
(@4
2

IN
[}

nN
(=]

Ave.Latency(us)

(=]

99% 99 9%
Server Availability

Figure 12. The total execution time of different workloads using our
durable RPCs, all normalized to a traditional RPC system in which
the sender needs to re-issue RPC requests upon a system failure

99 99% 99.999%

and 23% compared with DaRPC. These results demonstrate
that our RDMA F1lush-based durable RPCs are beneficial
for real-world write-intensive workloads.

5.4 Efficiency of Failure Recovery

We evaluate the efficiency of failure recovery for our durable
RPCs in a microservice scenario. The RPC services are de-
ployed in lightweight VMs using unikernels, which show ex-
tremely short startup latency (about 300 ms) [3]. We simulate
unexpected failures for the unikernels with different proba-
bilities of server availability [2] [44]. We set the re-transfer
interval of RDMA packets to 100 ms [47]. We use workloads
with different read/write ratios to perform RPCs for 10° times
and measure the total execution time of different workloads.
For traditional RPCs, the sender has to re-sent RPC requests
upon a system failure, and we refer those RPCs as the baseline.
Figure 12 shows that our durable RPCs lead to much lower
cost in failure recovery than traditional RPCs for all cases.
Because our RPCs can decouple the data persisting from the
RPC processing, uncompleted RPCs can be re-executed if the
data is already persisted in the log buffer, without re-sending
the data from clients. Thus, write-intensive workloads benefit
more from our durable RPCs than read-intensive workloads.
Moreover, our RPCs reduce more recovery latency when the
rate of server availability is lower.

SC 21, November 14-19, 2021, St. Louis, MO, USA

N b O
= =]

Ave.Latency(us)

ZN

\:{P pC
5 RFP casS paon va“woﬁeevoa“?av\“s v\usmeav\“ \I\lv\\)S\"R

Figure 13. The latency of RPCs varies with object sizes

arC
Figure 14. The impact of RDMA network load on the RPC latency

5.5 Sensitivity Studies

Object Sizes. Figure 13 shows the average latency of RPCs in
the micro-benchmark using different object sizes. Our durable
RPCs always achieve less latency than other RPCs of the
same type. When the object size increases from 64 B to 4
KB, the micro-benchmark shows a slight growth of latency
for all RPC systems. However, when the object size becomes
larger than 4 KB, there is a significant growth of latency for all
RPCs. This implies that the application performance is mainly
determined by the software cost of RDMA communication
when the data size is small, and the RDMA network round-
trip time for data transferring becomes a dominant factor of
application performance when data packets become larger
than 4 KB. Moreover, RPCs using RDMA send primitives
such as DaRPC are more sensitive to the object size. Thus,
we advocate RPCs using one-sided RDMA primitives if the
application has to access different sizes of objects.

Load of RDMA Networks. Figure 14 shows the aver-
age latency of RPCs in the micro-benchmark under different
RDMA network loads. To simulate a high load of RDMA net-
work between sender and receiver, we exploit a background
program to contiguously send small data packets. When the
network link is congested with data packets (busy), S-RFIush-
RPC reduces the average latency by 45% compared with
RPCs using RDMA send primitives such as DaRPC. W-
RFlush-RPC reduces the average latency by 43% compared
with other RPCs using RDMA write primitives, such as
L5, RFP, Octopus, FaRM, ScaleRPC. RPCs using receiver-
initiated RDMA F1lush primitives can achieve higher per-
formance because there are fewer RDMA primitives in the
persistent data path than RPCs using sender-initiated RDMA
Flush primitives, such as SFlush-RPC and WFlush-RPC.
The receiver-initiated RDMA flushing mechanism can reduce
the load of RDMA network because the RNIC at the re-
ceiver side issues RDMA F1lush primitives itself. Moreover,
RPCs using RDMA write primitives get more performance
lose than RPCs using RDMA send primitives when the
load of RDMA networks becomes high. This implies RDMA
writes are highly sensitive to the network load.

Duan and Lu, et al.

~600

arC C oG
/P P
W e ot el 2eR® Gre R s;\us @v\“swv\u‘-v““
Flgure 15. The impact of receivers’ CPU load on the RPC latency
[Jidle

L
S QP @PY apC
WO RFP ot ol pef® oa‘*‘> P v\uSYlN RF\“S\NF\“S“R

Figure 16. The impact of senders’ CPU load on the RPC latency

ZN

C R?C

A A s
B P ot a?‘N\ a\eg\’ ooRPS G PV 5\;\\!‘5‘:1«@9\““%%?\“5“

Figure 17. The impact of concurrent senders on the RPC latency

Receivers’ CPU Load. Figure 15 shows the impact of
CPU load at the receiver side on the average latency of
RPCs for the micro-benchmark. We increase the receivers’
CPU load by running a computation-intensive program in
the background. When the CPU load becomes high (busy),
all RPCs show a significant increase of latency. RPCs using
two-sided RDMA primitives such as DaRPC, SFlush-RPC,
and S-RFlush-RPC show a larger growth of latency than other
RPCs using one-sided RDMA primitives because they require
more CPU resource for polling the message buffer. However,
RPCs using one-sided RDMA primitives get higher perfor-
mance slowdown relative to the idle case, such as Octopus
and scaleRPC. This implies the performance of RPCs using
one-sided RDMA primitives is more sensitive to the receivers’
CPU load.

Senders’ CPU Load. Figure 16 shows how the CPU load
of the sender can effect the average latency of RPCs for the
micro-benchmark. When the sender is under a high CPU load,
the average latency of RPCs all increases significantly. This
implies that the performance of RPCs is highly sensitive to
the sender’s CPU load.

The Number of Concurrent Senders. Figure 17 shows
the average latency of RPCs for the micro-benchmark which
uses multiple senders to communicate with a single receiver
concurrently. Each sender requests objects for 30K times.
We find that the average latency of previous RPCs increases
sightly with the number of concurrent senders. In contrast, the
average latency of our durable RPCs remains stable regard-
less of the number of concurrent senders. This implies that
our durable RPCs offer higher scalability than traditional
RPCs. The reason is that our RPCs require less remote CPU
intervention for RDMA network transmission.

Hardware-Supported Remote Persistence for Distributed Persistent Memory

[] 5%read+95%uwrite

0%read+50%write 5%read+5%write

Ave.Latency(us)

S C PC pC | @PC LoC
\o eff 00\0"“ pa?*\‘\sga\e‘av 0agg;p\\ﬁ“;\us@gﬂ\ﬁm;\uS“R

Figure 18. The impact of data access patterns on the RPC latency

90
75

[

C
c\:N_RF\US\'\‘RPWp\uS\'\'RPC

paR scale o-RFIWUS! CSF\uSh'

Figure 19. The impact of batch sizes on the RPC performance

Data Access Patterns. Figure 18 shows the average la-
tency of RPCs for the micro-benchmark with different read-
/write ratios. For the read-intensive workload (95% read +
5% write), our durable RPCs achieve similar performance
to other RPCs because RDMA read operations are on the
critical path of applications’ execution, and RDMA Flush
primitives are only needed for a small portion of RDMA write
operations. For the write-intensive workload (5% read + 95%
write), W-RFIlush-RPC and WFlush-RPC can reduce the aver-
age latency by 63%-71% compared with other RPCs using
RDMA write primitives. Compared to DaRPC, SFlush-
RPC and S-RFlush-RPC even reduce the latency by 1.3 and
3.1 times, respectively. These results demonstrate that our
durable RPCs can achieve significant performance improve-
ment relative to other RPCs for write-intensive workloads by
overlapping the data transmission and the RPC processing.

Batch Sizes. Figure 19 shows the total execution time of
micro-benchmark when multiple RDMA requests are batched
into one RPC. The batching mechanism proposed in DaRPC
and ScaleRPC can significantly reduce the software overhead
of RDMA transmission. However, for RPCs using RDMA
send primitives such as DaRPC, we find that the perfor-
mance improvement is not that significant when the batch size
increases because the software cost of RDMA send primi-
tives is sensitive to the data size. In contrast, the execution
time of W-RFlush-RPC and WFlush-RPC is significantly re-
duced when the batch size increases. This implies that RDMA
flushing integrated with batching can significantly improve
the performance of RPCs using RDMA write primitives.

5.6 Software Overhead

Figure 20 shows the breakdown of different RPC latencies
for YCSB workload A. The total latency includes software
overhead at the sender side, network RTTs (hardware), and
software overhead at the receiver side (including RPC pro-
cessing cost and data persisting cost). We can find that the
RPC latency is dominated by the network RTTs. For differ-
ent RPC designs, the difference of hardware cost is rather
significant. For example, the RTTs of DaRPC are almost

SC 21, November 14-19, 2021, St. Louis, MO, USA

E== Software Cost (Sender) [[[llll Software Cost (Receiver)__ | RTT

o

Ave.Latency(us)
RN W
o N oS

o

C
s C 00 ®PC apC (@0 qoC
W e ot et Sca\e\a? 039?5,9?\\35“ 99\\)5“::_@?\“9““\;\05“?

Figure 20. The hardware/software overhead using different RPCs
Table 2. Summary of RPCs using different RDMA Flush primitives

SRFlush | SFlush | WRFlush | WFlush | Other RPCs
Network load High | Medium High Medium | Medium
Sensitivity
Receiver CPU Medium Low High
Requirement
QoS High Medium
Tail Latency Low Medium
Scalability Good Medium
Data Persistence Proactive, Decoupled with RPCs Passive
AP phcaFlon Messages, KVs, Objects, Files Small
Scenarios Messages

twice higher than that of FaRM. The software costs at the
sender side are almost the same for all RPCs. Our PRCs using
RDMA Flush primitives can hide the RPC processing time
by overlapping it with RDMA transmission. Overall, the total
software overhead of our RPCs is no more than 7%.

5.7 Summary

Based on our experimental results, we summarize the features
of different RPCs, as shown in Table 2. Our durable RPCs can
decouple the data persisting from the RPC processing, and
thus provide opportunities to overlap the RDMA transmission
and the costly RPC processing. In this way, our durable RPCs
can significantly improve the RPC performance compared
with traditional RPCs, particularly for write-intensive appli-
cations. We also find that RPCs implemented with sender-
initiated RDMA F1lush primitives have a greater impact on
the RDMA network load because the sender has to send an
additional RDMA F 1ush primitive over the network. As are-
sult, we advocate receiver-initiated RDMA F1ush primitives
for the scenario of high RDMA network load. Moreover, we
advocate one-sided RDMA primitives rather than two-sided
ones for higher throughput and lower latency.

6 Related Work

We describe the related work in software/hardware categories.

Software Approaches to Remote Persistence. A few pro-
posals such as Intel’s Appliance Remote Replication [36] and
Erda [24] exploit the read-after-write mechanism [29] to en-
sure remote data persistence without involving the remote
server’s CPU. Although these approaches do not involve the
remote CPU, the sender needs to issue additional RDMA
read operations for remote data persisting, and thus increases
the load of RDMA networks. Moreover, the effectiveness of
these approaches is highly influenced by the DDIO hardware
feature. A few proposals rely on remote CPUs to guarantee

SC 21, November 14-19, 2021, St. Louis, MO, USA

remote data persistence. Hotpot [38] exploits the the data
servers’ CPUs to conduct a multi-phase commit protocol.
Orion [51] uses RDMA write—-IMM primitives to notify
the memory address of written data to the remote server’s
CPU. Consequently, the CPU stores the data to PM. Intel also
proposes another remote data persisting mechanism called
General-purpose Remote Replication [27], which needs the
client to issue an RDMA send verb to the remote server after
a set of RDMA write operations. The remote server’s CPU
has to notify the completion of data persisting to the client.
These approaches all get the remote CPU involved in data
persisting, and thus increase latency on the critical path of
data transmission, and also offset the performance benefit of
one-sided RDMA communication. In contrast, our proposals
exploits RNIC hardware functionalities to flush data from the
RNIC cache to the PM actively, and guarantees remote data
persistence without involving the remote server’s CPU.

RPCs de facto provide another way to guarantee remote
data persistence. There have been a number of RPC systems
designed for distributed PM, such as DaRPC [39], FaRM [8],
Herd [18], FaSST [19], L5 [11], RFP [40], ScaleRPC [5],
Octopus [25], and LITE [46]. They actually support durable
RDMA operations. Kalia et. al. analyze the challenges of
remote data persistence introduced by RNIC and DDIO tech-
nologies [17], and propose state machine replication using
optimized eRPCs [20] for durable RDMA operations. How-
ever, these RPCs tightly couple the remote data persisting with
the costly RPC processing, and thus postpone the visibility
of remote data persistence to client applications. In contrast,
our work allows the remote data persistence visible earlier
by decoupling data persisting and RPC processing. Thus, our
design can achieve higher performance than previous RPCs
when the latency of RPC processing is high.

Hardware Approaches to Remote Persistence. A num-
ber of studies have discussed the data persistence problem
in RDMA-based PM systems. They expect that the future
RDMA network device can provide flushing operations to
guarantee data persistence, for example, novel I/O flows for
remote durability [25], and new RDMA primitives like RDMA
Commit. Tailwind [42] argues that hardware and firmware
modifications and non-portable solutions are required to guar-
antee remote data persistence. Tsai et. al. [45] believe that
the durable RDMA write commit takes one network round
trip [9], and thus use RDMA write to emulate the perfor-
mance of durable RDMA write directly.

Because DDIO technologies [6] change the data path of
RDMA data transmission, some studies discuss its impact
on the remote data persistence. Yang [52] et. al. deem that
DDIO makes remote data persistence more costly and diffi-
cult. Hu [14] et.al., exploit advanced network controller and
self-developed memory controller to send the ACK of data
persisting to the client’s RNIC, and thus eliminate the impact
of DDIO on the remote data persistence. However, they do
not provide details about the advanced network controller.

Duan and Lu, et al.

Recently, there have been some discussions on hardware-
assisted RDMA primitives for durable RDMA transmission.
Tavakkol [43] et. al. analyze multiple possible data paths
when data is evicted from the volatile cache of the remote
RNIC, and propose a number of RDMA primitives to improve
the efficiency of persistent memory replication. However,
they just evaluate the proposed primitives through simulation
which may not accurately reflect the RDMA performance
in a real testbed. Kashyap [21] et. al. analyze the impact
of different system configurations on the performance of re-
mote data persisting, including the range of persistent domain,
DDIO technologies, and the durability of RDMA QPs. Their
results show that the correct and fast remote persisting solu-
tions differ widely depending on the system configurations
at the server side, compelling programmers to make trade-
offs among different design goals. IBTA [10] also defines
the InfiniBand specification for RDMA Flush primitives,
including their functionalities, packet formats, ordering rules,
memory region selectivity levels, and so on. However, this
proposal only specifies the design of sender-initiated RDMA
Flush primitives. In contrast, we further propose another
optional design, i.e., receiver-initiated RDMA Flush primi-
tives. Although receiver-initiated primitives may require an
extra RTT to notify the completion of an RDMA Flush
operation, the latency is not on the critical path of applica-
tions. Thus, the network costs of sender-initiated and receiver-
initiated primitives are similar.

Inspired by the above studies, we further propose several
potential implementations of RDMA Flush primitives, and
design durable and recoverable RPCs based on the RDMA
Flush primitives. Our work is complementary to previous
proposals for remote data persistence. Moreover, through
extensive experimental studies, we provide instructive guide-
lines to support remote persistence in different scenarios.

7 Conclusion

In this paper, we made an extensive study of existing RDMA-
based RPCs. Based on the lessons learnt, we designed several
hardware-supported RDMA Flush primitives to guarantee
the persistence of RDMA update operations. We also pro-
posed durable RPCs based on the new RDMA Flush prim-
itives for fast failure recovery. We compared our proposals
with several state-of-the-art RPCs in a real testbed equipped
with Intel Optane DCPMM and InfiniBand networks. Experi-
mental results show that the proposed RDMA Flush primi-
tives and the corresponding RPCs can significantly improve
the throughput and latency of durable RDMA transmission.

Acknowledgments
This work is supported by National Key Research and Devel-
opment Program of China under grant No.2017YFB1001603,

and National Natural Science Foundation of China under
grants No.62072198, 61732010, 61825202, 62032008.

Hardware-Supported Remote Persistence for Distributed Persistent Memory

References

[1]

[2

—

[3

[t}

[4

=

[5

[t}

[6

=

[7

—

[8

[t}

[9

—

[10]

(11]

[12

[13]

[14]

[15]

[16]

Mohammadreza Bayatpour, Seyedeh Mahdieh Ghazimirsaeed, Shulei
Xu, Hari Subramoni, and Dhabaleswar K. Panda. 2020. Design and
Characterization of InfiniBand Hardware Tag Matching in MPI. In
Proceedings of the 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computin (CCGRID’ 20). 101-110.

Antonia Bertolino, Guglielmo De Angelis, Micael Gallego, Boni Garcfia,
Francisco Gortéazar, Francesca Lonetti, and Eda Marchetti. 2019. A
Systematic Review on Cloud Testing. ACM Comput. Surv. 52,5, Article
93 (Sept. 2019), 42 pages.

Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E. Engel-
stad, and Kyrre M. Begnum. 2015. IncludeOS: A Minimal, Resource
Efficient Unikernel for Cloud Services. In Proceedings of the 7th IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom’ 15). 250-257.

Xianzhang Chen, Edwin Hsing-Mean Sha, Ahmad Abdullah, Qingfeng
Zhuge, Lin Wu, Chaoshu Yang, and Weiwen Jiang. 2017. UDORN: A
Design Framework of Persistent In-Memory Key-value Database for
NVM. In Proceedings of the IEEE 6th Non-Volatile Memory Systems
and Applications Symposium (NVMSA’ 17). 1-6.

Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC
on Reliable Connection with Efficient Resource Sharing. In Proceed-
ings of the 14th ACM European Conference on Computer Systems
(EuroSys’ 19). 19:1-19:14.

Intel Data Direct I/O Technology (Intel DDIO).
https://www.intel.com/content/dam/www/public/us/en/doc
uments/technology-briefs/data-direct-i-o-technology-brief.pdf
Kangping Dong, Linpeng Huang, and Yanmin Zhu. 2017. Exploiting
RDMA for Distributed Low-Latency Key/Value Store on Non-volatile
Main Memory. In Proceedings of the 23rd IEEE International Confer-
ence on Parallel and Distributed Systems (ICPADS’ 17). 225-231.
Aleksandar Dragojevi, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In Proceedings
of the 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’ 14). 401-414.

RDMA durable write commit. 2016. https://tools.ietf.org/html/draft-
talpey-rdma-commit-00

Memory Placement Extensions. 2020. https://cw.infinibandta.org/
document/d|/8594

Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas
Neumann, and Alfons Kemper. 2020. Low-Latency Communication
for Fast DBMS Using RDMA and Shared Memory. In Proceedings of
the 36th IEEE International Conference on Data Engineering (ICDE’
20). 1477-1488.

Utility Library for Managing the libnvdimm (non-volatile memory
device) Sub-system in the Linux Kernel. 2020. https:/github.com/p
mem/ndctl

RDMA Extensions for Remote Persistent Memory Access. 2016.
https://openfabrics.org/images/eventpresos/2016presentations
/215RDMAforRemPerMem.pdf

Xing Hu, Matheus Ogleari, Jishen Zhao, Shuangchen Li, Abanti Basak,
and Yuan Xie. 2018. Persistence Parallelism Optimization: A Holistic
Approach from Memory Bus to RDMA Network. In Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’ 18). 494-506.

Nusrat Sharmin Islam, Md. Wasi-ur-Rahman, Xiaoyi Lu, and Dha-
baleswar K. Panda. 2016. High Performance Design for HDFS with
Byte-addressability of NVM and RDMA. In Proceedings of the 30th
ACM International Conference on Supercomputing (ICS’ 16). 8:1-8:14.
Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang,
Md. Wasi-ur-Rahman, Nusrat S. Islam, Xiangyong Ouyang, Hao Wang,
Sayantan Sur, and Dhabaleswar K. Panda. 2011. Memcached Design
on High Performance RDMA Capable Interconnects. In Proceedings of
International Conference on Parallel Processing (ICPP’ 11). 743-752.

2012.

[17]

[18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]

[33]
[34]

SC '21, November 14—19, 2021, St. Louis, MO, USA

Anuj Kalia, David G. Andersen, and Michael Kaminsky. 2020. Chal-
lenges and solutions for fast remote persistent memory access. In Pro-
ceedings of the 11th ACM Symposium on Cloud Computing (SoCC’ 20).
169-182.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using
RDMA Efficiently for Key-value Services. In Proceedings of the 2014
Conference of ACM Special Interest Group on Data Communication
(SIGCOMM’ 14). 295-306.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
(RDMA) Datagram RPCs. In Proceedings of the 13th USENIX Sympo-
sium on Networked Systems Design and Implementation (OSDI’ 16).
185-201.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacen-
ter RPCs can be General and Fast. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’
19). 1-16.

Sanidhya Kashyap, Dai Qin, Steve Byan, Virendra J. Marathe, and
Sanketh Nalli. 2019. Correct, Fast Remote Persistence. arXiv preprint
arXiv:1909.02092 (2019).

Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Honggiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson,
Vyas Sekar, and Srinivasan Seshan. 2018. Hyperloop: Group-based
NIC-offloading to Accelerate Replicated Transactions in Multi-tenant
Storage Systems. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM’ 18). 297-
312.

Intel Optane DIMM latency. 2019. https://www.tomshardware.com
/news/intel-optane-dimm-pricing-performance,39007.html
Xinxin Liu, Yu Hua, Xuan Li, and Qifan Liu. 2019. Write-
Optimized and Consistent RDMA-based NVM Systems. arXiv preprint
arXiv:1906.08173 (2019).

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus:
An RDMA-enabled Distributed Persistent Memory File System. In
Proceedings of the 2017 USENIX Annual Technical Conference (ATC’
17). 773-1785.

W. Pepper Marts, Matthew G. F. Dosanjh, Whit Schonbein, Ryan E.
Grant, and Patrick G. Bridges. 2019. MPI tag matching performance
on ConnectX and ARM. In Proceedings of the Proceedings of the 26th
European MPI Users’ Group Meeting (EuroMPI’ 19). 13:1-13:10.
Persistent Memory Replication Over Traditional RDMA
Part 1: Understanding Remote Persistent Memory. 2020.
https://software.intel.com/content/www/us/en/develop/artic
les/persistent-memory-replication-over-traditional-rdma-part-1-
understanding-remote-persistent.html

Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-
Sided RDMA Reads to Build A Fast, CPU-Efficient Key-Value Store.
In Proceedings of the 2013 USENIX Annual Technical Conference
(ATC’ 13). 103-114.

NVM Programming Model (NPM). 2020. https://www.snia.org/tec
h_activities/standards/curr_standards/npm

DPDK: Hardware-Level Performance Analysis of Platform I/O.
2018. https://www.dpdk.org/wp-content/uploads/sites/35/201
8/09/Roman-Sudarikov-DPDK_PRC_Summit_Sudarikov.pptx
PageRank. 2020. http://pr.efactory.de/

Ivy Bo Peng, Maya B. Gokhale, and Eric W. Green. 2019. System
evaluation of the Intel optane byte-addressable NVM. In Proceedings
of the International Symposium on Memory Systems (MEMSYS’ 19).
304-315.

PRDMA. 2021. https://github.com/CGCL-codes/PRDMA
Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
2009. Scalable High Performance Main Memory System Using Phase-
change Memory Technology. In Proceedings of the 36th Annual Inter-
national Symposium on Computer Architecture (ISCA’ 09). 24-33.

https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
 https://tools.ietf.org/html/draft-talpey-rdma-commit-00
 https://tools.ietf.org/html/draft-talpey-rdma-commit-00
https://cw.infinibandta.org/document/dl/8594
https://cw.infinibandta.org/document/dl/8594
https://github.com/pmem/ndctl
https://github.com/pmem/ndctl
https://openfabrics.org/images/eventpresos/2016presentations/215RDMAforRemPerMem.pdf
https://openfabrics.org/images/eventpresos/2016presentations/215RDMAforRemPerMem.pdf
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-replication-over-traditional-rdma-part-1-understanding-remote-persistent.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-replication-over-traditional-rdma-part-1-understanding-remote-persistent.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-replication-over-traditional-rdma-part-1-understanding-remote-persistent.html
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.dpdk.org/wp-content/uploads/sites/35/2018/09/Roman-Sudarikov-DPDK_PRC_Summit_Sudarikov.pptx
https://www.dpdk.org/wp-content/uploads/sites/35/2018/09/Roman-Sudarikov-DPDK_PRC_Summit_Sudarikov.pptx
http://pr.efactory.de/
https://github.com/CGCL-codes/PRDMA

SC '21, November 14—-19, 2021, St. Louis, MO, USA

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

(43

[44

[45

[46

[47]

[48]

[49]
[50]

[51]

[52]

[53]
[54]

Software mechanisms for enabling access to remote persistent memory
RDMA with PMEM. 2015. http://www.snia.org/sites/default/files
/SDC15_presentations/persistant_mem/ChetDouglas_ RDMA
_with_PM.pdf

Remote Persistent Memory Access (RPMA). 2021. https://pmem.io/
rpma/manpages/master/librpma.7.html

Timo Schneider, James Dinan, Mario Flajslik, Keith D. Underwood,
and Torsten Hoefler. 2017. Fast Networks and Slow Memories: A
Mechanism for Mitigating Bandwidth Mismatches. In Proceedings of
the 25th IEEE Annual Symposium on High-Performance Interconnects
(HOTI’ 17). 17-24.

Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed
Shared Persistent Memory. In Proceedings of the Sth ACM Symposium
on Cloud Computing (SoCC’ 17). 323-337.

Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle.
2014. DaRPC: Data Center RPC. In Proceedings of the 5th ACM
Symposium on Cloud Computing (SoCC’ 14). 1-13.

Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei
Wau. 2017. RFP: When RPC is Faster than Server-Bypass with RDMA.
In Proceedings of the 12th ACM European Conference on Computer
Systems (EuroSys’ 17). 1-15.

Kosuke Suzuki and Steven Swanson. 2015. The Non-Volatile Memory
Technology Database (NVMDB). UCSD-CSE Techreport CS 2015-
1011 (2015).

Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and Toni Cortes. 2018.
Tailwind: Fast and Atomic RDMA-based Replication. In Proceedings of
the 2018 USENIX Annual Technical Conference (ATC’ 18). 851-863.
Arash Tavakkol, Aasheesh Kolli, Stanko Novakovic, Kaveh Razavi,
Juan Gémez-Luna, Hasan Hassan, Claude Barthels, Yaohua Wang,
Mohammad Sadrosadati, Saugata Ghose, Ankit Singla, Pratap Sub-
rahmanyam, and Onur Mutlu. 2018. Enabling Efficient RDMA-based
Synchronous Mirroring of Persistent Memory Transactions. arXiv
preprint arXiv:1810.09360 (2018).

Maria Toeroe, Neha Pawar, and Ferhat Khendek. 2014. Managing
application level elasticity and availability. In Proceedings of the 10th
International Conference on Network and Service Management (CNSM’
14). 348-351.

Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating
Persistent Memory and Controlling Them Remotely: An Exploration
of Passive Disaggregated Key-Value Stores. In Proceedings of the 2020
USENIX Annual Technical Conference (ATC’ 20). 33-48.

Shin-Yeh Tsai and Yiying Zhang. 2017. Lite Kernel RDMA Support
for Datacenter Applications. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP’ 17). 306-324.

Yi Wang, Kexin Liu, Chen Tian, Bo Bai, and Gong Zhang. 2019. Error
Recovery of RDMA Packets in Data Center Networks. In Proceedings
of the 28th International Conference on Computer Communication and
Networks (ICCCN’ 19). 1-8.
The webdata of dblp. 2010.
2010/

The webdata of enron. 2020. http://law.di.unimi.it/webdata/enron/
The webdata of wordassociation. 2011. http:/law.di.unimi.it/webdat
a/wordassociation-2011/

Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion: A
Distributed File System for Non-volatile Main Memory and RDMA-
capable Networks. In Proceedings of the 17th USENIX Conference on
File and Storage Technologies (FAST’ 19). 221-234.

Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR:
Rethinking RDMA Networking for Scalable Persistent Memory. In
Proceedings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’ 20). 111-125.

YCSB. 2020. https://ycsb.site

Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: A Reliable and Highly-Available Non-Volatile

http://law.di.unimi.it/webdata/dblp-

Duan and Lu, et al.

Memory System. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’ 15). 3-18.

http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
https://pmem.io/rpma/manpages/master/librpma.7.html
https://pmem.io/rpma/manpages/master/librpma.7.html
http://law.di.unimi.it/webdata/dblp-2010/
http://law.di.unimi.it/webdata/dblp-2010/
http://law.di.unimi.it/webdata/enron/
http://law.di.unimi.it/webdata/wordassociation-2011/
http://law.di.unimi.it/webdata/wordassociation-2011/
https://ycsb.site

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	2.2 RDMA
	2.3 DDIO Technologies
	2.4 Challenges of Remote Data Persisting

	3 Motivations
	4 Durable RDMA Operations
	4.1 RDMA Flush Primitives
	4.2 Durable RPCs for Failure Recovery
	4.3 Remote Data Persisting for Batching
	4.4 Case Studies of Using RDMA Flush Primitives
	4.5 Discussion

	5 Evaluation
	5.1 Experimental Setup
	5.2 Micro-benchmark Performance
	5.3 Macro-benchmark Performance
	5.4 Efficiency of Failure Recovery
	5.5 Sensitivity Studies
	5.6 Software Overhead
	5.7 Summary

	6 Related Work
	7 Conclusion
	References

