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Abstract—Power capping is widely used in cloud datacenters to mitigate power over-provisioning problem, thus improve datacenter
capacity and cut off their operation cost. However, inappropriate or aggressive power capping may lead to performance degradation of
applications (especially latency-sensitive ones), and there are few effective methods that can accurately evaluate and control such
negative impact caused by aggressive power capping. In this paper, we propose Fine-Grained Differential Method (FGD) to
quantitatively analyze how inappropriate power capping degrades the performance of latency-sensitive applications. By using FGD, we
can minimize the provisioned power for each server by setting a precise power budget according to application’s Service Level
Agreement (SLA). And we further propose Precise Power Capping (PPCapping) which is designed to increase the datacenter capacity
with a fixed power supply by means of FGD. Our research also provides an insight of precise tradeoff between applications’ SLAs and

datacenter capacity. We verify FGD and PPCapping by using real world traces from Tencent’s datecenter with 25328 servers. The
experimental results show that FGD can accurately analyze the impact of power capping on the performance of latency-sensitive
applications, and PPCapping can effectively increase datacenter capacity compared with the typical power provisioning strategy.

Index Terms—Datacenter capacity, Power provision, Latency-sensitive application, Cloud computing

1 INTRODUCTION

ATACENTERS have become the first option for IT com-
Dpanies, especially leading ones like Google, Amazon,
and Tencent [1], to deploy their latency-sensitive Internet
services such as web-based applications, online games and
streaming media [2]. Power supply is a common restriction
in datacenter construction [3]. Typically, datacenters are
extremely expensive to build with an average cost of about
10~20 USD per watt in industry [4]. Given such a high
cost, it is important to fully utilize the power capacity of
datacenters.

Unfortunately, the available power in cloud datacenters
is often not fully utilized [5]. Datacenters typically allocate
power budget for a server at its power rating'. However, the
power used by a server is always far below its power rating
[5, 6], which leads to power over-provisioning.

Power over-provisioning causes power margin which is
the unused power budget of a server. Power margin di-
rectly decreases available power utilization of datacenters.
Assume the power demand of a typical server in a period of
time is shown in Fig. 1(a), if we set its power budget at the
power rating as shown in Fig. 1(b), there exists a huge power
margin (shown as the gray area). Due to over-provisioning
problem, power margin widely exists in datacenters [5],
which is a horrendous waste of power budget. It is no doubt
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that the elimination of the widespread power margin has
a great effect on increasing available power utilization of
datacenters.

Power capping is widely used in cloud datacenters to
mitigate power over-provisioning problem, thus improve
capacity and cut off operation cost of datacenters [3, 5, 7-
11]. A cost-effective way to do power capping is restricting
power budget of servers. Since the power supply of a dat-
acenter is typically fixed, restricting servers” power budget
will allow more servers to be deployed in datacenter. Take
Fig. 1 as an example, when we restrict the power budget
(shown as red dashed line) below the power rating as shown
in Fig. 1(c), there is no performance degradation and a
significant part of the power budget is saved compared
with Fig. 1(b). The saved power budget of servers can be
aggregated and used to provision extra servers to increase
datacenter capacity.

However, restricting the power budget may result in
performance degradation when the total power demand of
a server exceeds its budget. For example, when we further
restrict the power budget as shown in Fig. 1(d), power bud-
get violation occurs between ¢y and ¢; (shown as the yellow
area), which will degrade applications” performances.

Hence, there exists a tradeoff between the degradation of
applications’ performance and the power budget saving in
datacenters. On the one hand, sometimes little performance
degradation may bring much more power budget saving
(e.g., the saved power budget in Fig. 1(d) is much more than
that in Fig. 1(c)) as long as such degradation is acceptable
for applications. On the other hand, datacenters are very

1. Similar to [4, 5], power rating refers to as the measured maximum
power consumption of a server rather than the nameplate value that is
often higher.
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Fig. 1. (a) Power demand curve of a typically server in a period of time. (b) If setting power budget for the server at power rating, there exists a large
power margin (shown in gray area). (c) If setting power budget at observed peak power, a notable part of power budget can be saved. (d) Violation

occurs when further restricting the power budget.

cautious about the performance degradation of applications,
especially latency-sensitive ones, due to the concern about
the violation of Service Level Agreement (SLA) signed with
tenants.

The key challenge of power capping is to negotiate the
right tradeoff thus appropriately restrict the power budget
to maximize the elimination of power margin while keeping
applications’ performance degradation in a tolerable range.
So, the question arises that: Can we accurately depict the
effect of power capping on such performance degradation?

Several methods [5, 9, 10, 12] have been proposed to
evaluate the performance degradation caused by power
budget violation. However, they are mainly designed for
batch applications and are defective for latency-sensitive
applications. In this paper, we focus on latency-sensitive
applications, and propose Fine-Grained Differential Method
(FGD) to accurately analyze the performance degradation
of latency-sensitive applications caused by power budget
violation. By using FGD, we can minimize the provisioned
power for each server by setting a precise power budget
according to application’s SLA. And we further propose
Precise Power Capping (PPCapping) which is designed to
increase the datacenter capacity with a fixed power supply
by means of FGD. The main contributions of our work are
as follows:

o We propose an accurate and fine-grained analysis ap-
proach based on calculus, FGD, which can provide an
intuitive perspective about how server power budget
impacts the performance of a latency-sensitive applica-
tion.

o We propose a power capping algorithm based on FGD,
PPCapping, which assigns a precise power budget for
each server and provides an insight of precise tradeoff
between applications” SLAs and datacenter capacity.

o We verify the accuracy of FGD by using real world
web server traces, and evaluate PPCapping with real
world traces consisting of 25000+ servers from Ten-
cent’s production datacenter. The experimental results
show that FGD can accurately analyze the impact of
power capping on the performance of latency-sensitive
applications and PPCapping can effectively increase
datacenter capacity.

The rest of the paper is organized as follows. We elab-
orate the background and our motivation for this research
in Section 2 and give details about Fine-Grained Differential
Method in Section 3. Section 4 proposes our Precise Power
Capping and its usage in datacenter. We validate the accu-

racy of FGD and evaluate effectiveness of PPCapping in
Section 5 while discuss some limitations about our work
in Section 6. We review the related work in Section 7 and
finally conclude the paper in Section 8.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background of
power capping technology and introduce the characteristics
of latency-sensitive applications on which we focus in this
paper. After that, we point out the weaknesses of state-
of-the-art methods of evaluating performance degradation
used in power capping, which motivates our approach.

2.1 Power Capping and Latency-Sensitive Applications

Typically, a cloud infrastructure provisions power in
four levels, datacenter, power distribution unit (PDU), rack,
and server. The datacenter has a fixed power supply which
is normally partitioned into several PDUs, and then into
tens of racks. Each rack has a power budget. Servers are
deployed in racks and are provisioned commonly according
to their power ratings, which leads to serious power margin.
Assuming a rack’s power rating is 6KW and a server’s
power rating is 300W, one can only launch 20 servers in
this rack, which is conservative.

Power Capping. Deploying an aggressive number of
servers into a rack will incur a risk of exceeding power
rating of the rack, or power oversubscription [13]. Power
oversubscription may break the circuit and power off all
servers, which is a catastrophic event for users. Power
capping technology is used to limit facilities’ power budgets
to protect them from overloading. Power capping usually
triggers Dynamic Voltage and Frequency Scaling (DVFS) when
the power of a server is beyond its power budget. Note that,
previous researches [5, 14, 15] recognize the strong correla-
tion between a server’s CPU utilization and its full-system
(including CPU, memory, disk, etc.) power consumption?.
The finding suggests resizing the CPU utilization has almost
the same effect as capping the power budget. Therefore, in
this paper, we resize a server’s CPU utilization threshold
instead of power budget to simplify the analysis of power

2. The reason for such strong correlation is that other components
have very small dynamic power range or their activity levels correlate
well with CPU activity at the full-system level.
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capping impact. Also, for simplicity, we throttle CPU utiliza-
tion® so as to equivalently throttle the power consumption
of a server.

Latency-Sensitive Applications. In this paper, we focus
on latency-sensitive applications such as Internet services
which are widely deployed in cloud datacenters. Latency-
sensitive applications usually contain a large number of
request-response operations (e.g., a request sent to the serv-
er and its response back to the client), and are sensitive to the
response time (i.e., latency) of their requests. Typically, each
latency-sensitive application has a strict SLA especially on
tail latency (i.e., the distribution of latency) [13]. Therefore,
the performance of latency-sensitive applications can be
easily affected by power capping. For example, a HTTP
web server’s response time will increase seriously if power
budget violation occurs [8, 16]. Given that latency is the ma-
jor concern of latency-sensitive applications, in this paper,
if not otherwise specified, SLA refers to the latency SLA.
Additionally, in this paper, we assume that a server runs
one application at a time, which is a common practice for
IT companies (e.g., Tencent Inc.) to guarantee their latency-
sensitive applications’ performance.

2.2 Existing Methods for
Degradation

Evaluating Performance

Current power capping tends to be conservative or ag-
gressive when setting the power budget of servers [5, 17].
The conservative power capping always sets the power
budget according to the power rating or observed peak power.
However, the majority of servers cannot reach the power
budget for most of the time. Though the conservative power
capping can guarantee applications’ SLAs, it cannot achieve
potential maximum power utilization. On the contrary, the
aggressive one always sets a low power budget to substan-
tially eliminate the power margin thus improving the power
utilization, which, however, frequently incurs SLA violation.

In summary, current power capping cannot set a precise
power budget to maximize power utilization while meeting
SLAs of applications. The crux of the problem is how to
accurately evaluate the performance degradation of latency-
sensitive applications caused by power budget violation.

Several existing methods have been proposed to evalu-
ate the performance degradation caused by power budget
violation [5, 9, 10, 12]. However, we find that they have ob-
vious limitations when evaluating the performance degra-
dation of latency-sensitive applications. In the following,
we will analyze the problems of two typical state-of-the-art
methods, which motivate us to devise a new one.

One method proposed by [5, 10] takes an evaluation
approach that measures the performance degradation by
the time percentage of the power budget violation, which
is denoted by percentage of budget violation (PBV). That is, the
longer the violation of the power budget, the severer the
performance degradation.

Fig. 2 shows two cases of power budget violation in a
scenario where the two curves represent the CPU utilization
demands of two servers. The shaded areas represent the

3. We can easily throttle CPU utilization with Linux command cpulim-
it or cgroups.
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Fig. 2. The performance degradation given by PBV in the above cases
are the same, but the actual performance degradation degrees are
different.
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Fig. 3. In this case, the performance degradation indicated by PPL is 0,
but it exists in fact.

parts of jobs suffering from power budget violation, respec-
tively. As shown in Fig. 2(a) and 2(b), the power budget is
violated during the time period from ¢; to t3, which lies
in the total time period from %y to ¢3. In these two cases,
the performance degradation values given by PBV are both
(t2 — t1)/(ts — to). However, the CPU utilization demand
in Fig. 2(b) is much steeper than that in Fig. 2(a) during
the violation time period, and its shaded area shown in sy
is much larger than s; in Fig. 2(a). As we mentioned, if
lack of CPU resource (i.e., power budget violation occurs),
the performance of latency-sensitive applications will be
greatly affected. Intuitively, for a latency-sensitive appli-
cation, the performance degradation in Fig. 2(b) is much
severer, although its performance degradation value given
by PBV is equal to that in Fig. 2(a). In summary, PBV cannot
describe the performance degradation of latency-sensitive
applications accurately, because it cannot reflect the degree
of violation during the violation time period.

The other method proposed by [9, 12, 18] uses the
percentage of work done during an observed time period
to measure the performance loss of applications, which is
denoted by percentage of performance loss (PPL). This method
is useful for batch jobs that mainly concern how long their
completion time has been delayed. Note that, some methods
used in other studies are the variants of PPL, such as [19].
These metrics are all time-related, and they the same in
essence.

PPL is too coarse-grained to evaluate the performance
degradation of latency-sensitive applications which usual-
ly contain a great deal of request-response operations. To
illustrate the inapplicability of PPL when measuring per-
formance degradation of latency-sensitive applications, we
take a web application scenario as an example. Assuming
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the application can process 100 requests per second at its
best effort and 70 requests per second after restricting a fixed
power budget of the server. As shown in Fig. 3, assuming a
client sends requests at the rate in Fig. 3(a) and the number
of total requests between ¢y and t3 is 2000. The request-
processing rate under the fixed power budget is shown in
Fig. 3(b), where the number of requests processed between
to and ¢3 is also 2000. That is, no requests are lost. Therefore,
the performance degradation given by PPL is 0. However,
performance degradation exists when power budget viola-
tion occurs, because some requests arriving between ¢; and
to cannot be processed immediately. This scenario shows
that PPL is not suitable for evaluating the performance
degradation of latency-sensitive applications because it fails
to capture the performance loss of those tiny parts of these
applications (e.g., the delay of a request-response operation
of web applications).

To address the limitations of existing methods, we de-
vise a fine-grained analysis method, Fine-Grained Differential
Method, to evaluate the performance degradation of latency-
sensitive applications.

3 FINE-GRAINED DIFFERENTIAL METHOD

In this section, we first introduce the basic idea of our
method. Then we discuss Fine-Grained Differential Method
(FGD) in detail, based on the concept of differential Work-
load, to effectively evaluate the performance degradation
of latency-sensitive applications caused by power budget
violation.

3.1 Basic ldea

As analyzed above, both PBV and PPL have their lim-
itations in evaluating performance degradation of latency-
sensitive applications. In this subsection, we introduce the
basic idea of our method, which can address problems of
the state-of-the-art methods.

In Fig. 2, we use the shaded area to represent the de-
gree of power budget violation. And actually it can also
reflect the degree of applications” performance degradation.
Typically, the larger the shaded area, the severer the power
budget violation. For example, the shaded area in Fig. 2(b) is
larger than that in Fig. 2(a), which implies that more serious
performance degradation exists in the case of Fig. 2(b). In
order to measure the shaded area, we introduce the concept
of CPU Workload (Workload for short), which is the integral
of CPU utilization (denoted by (t)) during a period of time
(e.g., from ¢, to t1), as shown in Equation 1.

t1

Workload = u(t)dt 1)

to

The meaning of Workload is the CPU cycles needed for an
application during the time period from ¢y to ¢;. Since each
request-response operation of the latency-sensitive applica-
tion consumes a certain number of CPU cycles, Workload
can refer to a set of request-response operations. In short,
Workload can be understood as a set of requests. By using
Workload, the problem of PBV presented in Fig. 2 can be
solved.

4

As for PPL, it is too coarse-grained to evaluate latency-
sensitive applications (it neglects the violation occurring
from t; to t2 shown in Fig. 3(a)). In order to solve this
problem, we introduce another concept, differential Work-
load, which is Workload in a very narrow time period. By
calculating the performance degradation of each differential
Workload, the subsistent performance degradation from t;
to to in Fig. 3 can be easily captured, which is crucial
for evaluating performance degradation of latency-sensitive
applications. Hence, the problem of PPL presented in Fig. 3
can be solved.

3.2 Detail of Our Method

In this subsection, we first introduce the design of our
method, and then present how to implement it.

3.2.1 Design

To clearly describe our design, first we introduce the
metric of tail latency considering in FGD, then we present
P-Table as the goal of our method, and finally we show how
to achieve the goal.

tail latency. As we mentioned above, tail latency is one
of the most concern of latency-sensitive applications. Obvi-
ously, the shorter application’s latency, the better its perfor-
mance. Thus we adopt tail latency as the performance metric
of our approach. For simplicity, a two-tuple (percentage of
requests, latency time) is used to represent the tail latency to
describe the performance of a latency-sensitive application.
For example, (95%, 200ms) means that the performance
is “95% of requests’ latencies are below 200ms”. Setting
power budget for a server may cause longer latency of
requests. Performance degradation can be clearly reflected
in requests’ tail latency. For example, the performance may
drop from (95%, 200ms) to (95%, 400ms) after setting a lower
power budget.

Clearly, there is a negative effect on the performance
after setting a lower power budget (i.e., CPU Threshold).
Now we take CPU Threshold into account and extend the
two-tuple (percentage of requests, latency time) to a three-tuple
(percentage of requests, latency time, Threshold). For example,
(95%, 200ms, 60%) means 95% of requests’ latencies are
below 200ms with 60% CPU utilization Threshold, and the
performance may drop from (95%, 200ms, 60%) to (95%,
400ms, 50%) after restricting CPU Threshold from 60% to a
lower value 50%.

A request takes a certain period of time to be processed,
and the total latency of a request is the sum of basic process-
ing time (baseline latency) and the waiting time (additional
latency) caused by power budget violation. Since the base-
line latency can be considered as a fixed value for the same
types of requests, adding it to the additional latency would
not affect the distribution of tail latency. Thus, for simplicity,
we assume that the baseline latency is constant, and only
calculate additional latency to highlight the power capping
impact on SLA.

P-Table. The goal of our method is to quantify perfor-
mance with the fixed CPU Threshold. To show the quantified
results in an intuitive way, we put three-tuple performance
results in a performance table (P-Table for short). Table 1 is
an example of P-Table. By looking up P-Table, we can easily
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obtain the performance with any fixed CPU threshold. Ob-
viously, we can also obtain the performance degradation by
comparing corresponding three-tuples in P-Table. A natural
question arises: how to obtain P-Table of a latency-sensitive
application?

TABLE 1
The example of P-Table for an application, which records the latency
time (ms) with all possible request percentiles and CPU thresholds.

i ptile 95% 99% | 100%
31% 300 800 | 900
32% 100 750 | 800
99% 50 [ .. [ 100 | 200
100% T30 [ .| 80 | 150

The crux of obtaining P-Table is to obtain requests’ la-
tency with a fixed CPU threshold. For latency-sensitive ap-
plications, as mentioned in Section 3.1, differential Workload
can be equivalent to tiny requests. Thus by evaluating the
latency of each differential Workload for a certain application,
we can equivalently obtain the corresponding latency of any
request. Hence, the following, we explore how to get the
latency of every differential Workload of an application.

Latency of differential Workload. To get the latency of
each differential Workload, first we analyze how power bud-
get violation impacts Workload in a time period as shown in
Fig. 4. Specifically, Fig. 4(a) presents the CPU demand curve
over time (denoted by f(t)) of a server. Recall that capping
the CPU utilization has almost the same effect as resizing the
power budget, if setting a CPU utilization threshold at the
value of thrld, the power budget violation will occur during
the time from tq to t; and from t3 to t4, and its actual CPU
utilization will be the curve (denoted by ¢(t)) shown in Fig.
4(b). Differential Workload (e.g., the one shown as the dark
gray bar at ¢, in Fig. 4(a)) cannot be served immediately, and
it will be accumulated and processed until there is abundant
CPU resource (e.g., the differential Workload at t,, in Fig. 4(a)
is finally served at t,, in Fig. 4(b)).

To evaluate the impact of power budget violation on
performance of latency-sensitive applications, we introduce
two key functions as follows.

o The delay of differential Workload at time t, denoted
as Delay(W;), which is caused by the power budget
violation. For example, Delay(W;,) = t, — t,, and
Delay(W,;,) = 0 in the scenario of Fig. 4. Delay(W;)
is exactly what we need to solve.

¢ The amount of accumulated Workload at time ¢, denoted
as h(t), which reflects the degree of CPU resource
shortage.

As shown in Fig. 4(c), from the beginning of ¢y (when
power budget violation occurs), more and more Workload
is accumulated, so h(t) keeps growing. From ¢;, the CPU
utilization demand shown in Fig. 4(a) falls below thrid,
which means CPU resource is abundant. Thereby h(t) starts
to fall from ¢; and becomes 0 at t;. Hence, h(t) can reflect the
real-time relationship between the CPU utilization demand
f(t) and actual CPU utilization g(¢). That is, when h(t) > 0,

5

CPU resource is in shortage, leading g(t) to thrid; when
h(t) = 0, CPU resource is abundant and g¢(¢) equals to f(¢).

As shown in Fig. 4(c), h(t) is always greater than or
equal to 0, and it is greater than 0 when power budget
violation happens periodically. Apparently, h(t) equals to
0 before ty, the time point when power budget violation
occurs, and starts to grow up from ty. The growing speed
of h(t) is determined by the difference between the server’s
CPU demand f(t) and the thrid. Thus in a power budget
violation period, h(t) can be expressed as Equation 2. Once
a power budget violation period begins, it will last until
h(t) decreases to 0 again (e.g., one period starts from ¢y and
ends at ¢} in Fig. 4(c)). The end time point can be obtained
by Equation 3 with the meaning of h(t) = 0.

h(t) = max {/t(f(t) — thrld)dt, O} 2

to

t
/ (F(t) — thrid)dt = 0 3)
to

h(t) is a repetitive segmented function (see Fig. 4(c))
since the power budget violation occurs periodically. Thus,
by repeating above steps, we can get the entire h(t).

As discussed above, when h(t) = 0, g(t) = f(t). In other
cases, g(t) = thrld. Thereby, we can obtain ¢(t) as Equation
4.

f@)  h()=0
g(t) = 4)
thrld else

Assuming Workloads are served in the First In First Out
(FIFO) principle, the arriving Workload have to wait until
the accumulated Workload has been served. According to
the principle of conservation of Workload, the latency of
the differential Workload at time point ¢ (Delay(W;)) must
comply with Equation 5.

t t+Delay(Wy)
[ i | g(t)dt )
0 0

Assuming the Workload at t,, in Fig. 4(a) are finally served at
t, in Fig. 4(b), when we calculate Delay(W,,), the intuition
of Equation 5 is that the light gray area between 0 and ¢, in
Fig. 4(a) should be equal to the one between 0 and ¢,, in Fig.
4(b).

By solving Equation 5, we can obtain the Delay(W;) of
any differential Workload as Equation 6.

Delay(Wi) = ta Q)

JEryde= [y g(t)at

Once getting Delay(W;) of each differential Workload, we
can derive the tail latency by sorting latency of all requests,
which forms a row of P-Table. Finally, we can get entire
P-Table by looping the above process with specific CPU
threshold fixed (1%-100%).

So far, we have elaborated on how to calculate
Delay(Wy) of any differential Workload thus obtaining P-
Tuble. The CPU utilization over time, i.e. f(t), is the precon-
dition of our method. In real-world datacenters, monitoring
systems can record each server’s CPU utilization and other
status data by the agents deployed in servers, and store
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(a) CPU utilization demand

(b) Actual CPU utilization
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Fig. 4. This scenario shows a server’s variation of CPU utilization and its accumulated Workload caused by power budget violation. When the
server’'s CPU utilization demand exceeds the thrid, its actual CPU utilization will be capped and accumulated Workload (shown as function h(t))

will increase.

these traces in database. The CPU utilization over time in
these traces (see Table 2(a)) can be used as the discrete
f(t), which enable the precondition of our method when
calculating Delay(W;).

3.2.2 Implementation

In this part, we show how to obtain P-Tables of latency-
sensitive applications so as to accurately describe their
performance degradation at different power budgets.

P-Table obtaining process is illustrated in Fig. 5. The
process contains two steps. First, we calculate the latency
of Workload, i.e. Delay(W;), through the trace, and put
the latency into RequestsLatency table which is used as a
transitional table to obtain P-Table. Table 2 shows examples
of the trace and the RequestsLatency table. Second, we
yield P-Table by sorting all obtained RequestsLatency tables
with different CPU thresholds. The details are as follows.

Step 1. As shown in Fig. 5, to simulate the accumulat-
ing process of Workload, we introduce a FIFO accumulated
Workload queue (denoted by ARQ). Given a fixed CPU
threshold thrld, we take samples of CPU utilization (denote
the i-th sample by u;) from the trace and transform each
sample to discrete differential Workload as u; x At, where
At is the sample interval of CPU utilization. We enqueue
each differential Workload into ARQ and meanwhile dequeue
Workload at the best of the server’s processing capability
thrld x At. We record the latency of differential Workload
(Delay(W;)) as the difference between its dequeue time
point and enqueue time point.

As we mentioned before, the differential Workload can be
equivalent to a small number of requests. Thus the latency
of differential Workload can be regarded as the latency of
these requests. Recall that we assume the baseline laten-
cy is constant and only record additional latency in the
RequestsLatency table to highlight the power capping im-
pact on SLA. For example, assuming a differential Workload's
enqueue time point is ¢; as shown in Fig. 5, and its dequeue
time point is ¢; due to the queuing effect in ARQ, we record
t; —t; as the latency of these u; x At requests and put it into
RequestsLatency table (see Table 2(b)).

Step 2. After step 1, we can get all RequestsLatency
tables by setting thrid at all possible CPU utilization levels
(from 1% to 100%). We sort each RequestsLatency table
by latency to obtain tail latency. For example, Table 2(b)
is sorted, and the total number of requests is 24690, thus
the 95-th and the 99-th tail latency of requests is 300ms
and 500ms, respectively. We can calculate all percentiles

of tail latency, which forms a row of P-Table (see Table 1).
The pseudo code of P-Table obtaining process is shown in
Algorithm 1.

Differential Workload u; X At
enqueues at time point ti

Workload (with the max. capacity thrid x At)
dequeues at time point t, i

Step 1

T
<thrld
> — | i
ARQ queue
RequestsLatency
Sort each table by latency
and calculate tail latency Step2
T

P-Table

Fig. 5. P-Table obtaining process with two steps. 1) Each sample of
CPU utilization (denote the i-th sample by w;) in the trace is transformed
to discrete differential Workload as w; x At requests, where At is the
CPU utilization sampling interval. We simulate the process in ARQ and
record requests’ latency in RequestsLatency table. 2) Sorting each
RequestsLatency table by latency to obtain tail latency, which forms
arow in P-Table.

TABLE 2
Examples of the trace and the RequestsLatency table. The trace
records sampling time points and the corresponding CPU utilization.
RequestsLatency table records the latency time and the corresponding
Workload (i.e., the number of requests) in order to obtain tail latency.

(a) trace (b) RequestsLatency
time CPU Uti. latency | # of requests
12:00:00 25% Oms 15000
12:05:00 30% 50ms 7800
12:10:00 58% 300ms 1300
500ms 570
tn Un 1000ms 20

Cost analysis: In our algorithm, each round of comput-
ing iterates all n samples, and it loops 100 rounds (constant),
thus its time complexity is O(n). For each server, the al-
gorithm uses a queue AR(Q) and a table RequestsLatency
to record the latency of all differential Workload, hence its
space complexity is O(n). Sorting RequestsLatency by
latency costs O(n) with the help of the extra space of table
RequestsLatency. Therefore, the total time complexity of
solving P-Table of a server is O(n). Note that, the algorithm
is performed offline, and it has only O(1) cost for the
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Algorithm 1 P-Table obtaining algorithm

Input: CPU utilization trace of a server with n samples, and
denote the i-th sample by u;.
Output: P-Table of the server.
1: for thrid <— 1 to 100 do
2: Initialize ARQ and RequestsLatency table which is
used to record the number of requests with different
latencies.

3: w =0 /* Accumulated Workload, h(t) in Fig. 4(c) */
4: time = 0 /* timestamps */
5: for u; € trace do
6: Insert the tuple comprising the current number
of Workload u; * At and the current time point ¢time
into ARQ.
7: w=w + u; * At
8: /* thrld * At in next line means the max. number
of Workload that CPU can serve in a cycle*/
9: if w>thrid *+ At then
10: Dequeue thrld = At of Workload from ARQ
and recording their latencies (the difference
between current time point and enqueue time
point) into Requests Latency.
11: w=w — thrld « At
12: else
13: Dequeue all Workload from ARQ and recording
the number of requests with corresponding
latencies into RequestsLatency.
14: w=0
15: end if
16: time = time + 1
17: end for
18: end for

19: Sort each RequestsLatency by latency to obtain tail latency
which can form the P-Table.

datacenter to find the performance degradation with a given
CPU threshold of a server once P-Table is obtained.

4 PRECISE POWER CAPPING

In this section, we first obtain the precise power budget
for each server according to application’s SLA by using
FGD, then we design Precise Power Capping (PPCapping) to
maximize the usage of power and increase the capacity of
datacenter.

4.1 Precise Power Budgets for Servers

In a large-scale datacenter, every server is typically
assigned a unique key denoted by SID. Taking a server
whose SID is 10001 as example, if we want to evaluate its
performance under different power budgets, we need its
CPU utilization trace (as shown in Table 2(a)) and a table
mapping its CPU utilization to power (Table 3). Typically,
Table 3 is provided by the manufacturer of this server. If
this information is not provided, it is easy for administrators
to obtain such information by measurements. By inputting
Table 2(a), Algorithm 1 can output the P-Table shown as
Table 1, in which each row presents the tail latency of
requests with a fixed CPU utilization threshold.

We denote the SLAs of latency-sensitive applications as
the two-tuple expressed tail latency. For example, previous
research [20] mentioned that latency-sensitive application-
s particularly require 95th-percentile latency of requests.
Users will propose SLA with an acceptable performance.

TABLE 3
The Mapping table that maps server’s CPU utilization to its power.

CPU utilization | power

100% 250W

99% 248W

98% 246W

32% 180W

31% 178W
TABLE 4

The example of the power budget Suggestion table

SID SLA(s) power budget ( CPU thrld)
(95%, 100ms) 180W (1 32%)
10001 | (95%, 200ms) 175W (30%)
10002 (99%, 500ms) 208W ( 50%)
10003 (99%, 500ms) 195W (35%)

Algorithm 2 Precise Power Budget Obtaining Algorithm

Input: Traces, the Mapping table and SLA of the application.

Output: Precise power budget for the server.

1: Obtaining P-Table by calling Algorithm 1 which uses traces
of the server as input.

2: Finding out the precise CPU threshold for the server by
looking up P-Table according to application’s SLA.

3: Returning precise power budget for the server by looking
up the Mapping table.

Then we can find out the most appropriate CPU threshold
for a server by looking up P-Table. For instance, if SLA
requires (95%, 100ms), then we search Table 1 in the column
with percentile ‘95%" bottom-up to find the lowest CPU
utilization threshold meeting this SLA. In this example, the
precise CPU utilization threshold is 32%. Then we consult
the Mapping table and find out the precise power budget is
180W. We plot the detail algorithm in Algorithm 2.

Further, administrators can apply Algorithm 2 to all
servers in their datacenters, and they will finally obtain a
power budget Suggestion table for all servers as shown in
Table 4. Therefore, administrators can allocate precise power
budgets to all servers by looking up this table.

4.2 Precise Power Capping Algorithm

So far, we have obtained the Suggestion table containing
precise power budget for each server by using Algorithm
2. In this subsection, we propose Precise Power Capping Al-
gorithm (PPCaping) to increase the capacity thus achieving
higher power utilization of large-scale datacenter.

By using PPCapping, we can deploy more servers into
the datacenter. Fig. 6 illustrates how PPCapping works.
Since there is no power budget record in the Suggestion table
for each new server running a certain type of application,
we set the power budget of an existing server who runs
the same application as the new one’s initial power budget.
After that, we use the First-Fit Bin-packing method to deploy
this server. That is to say, we search all racks and find the
first rack which can accommodate this server, i.e., Pe +
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]16\/21 P, < ]5, while P; and P refer to the set power budget
for the i-th server and rack’s power rating, respectively. Our
work can be easily extended by integrating more efficient
Bin-packing methods [21, 22], but this is beyond the scope
of this paper. Finally, in order to accurately reflect the
recent characteristics of applications, we periodically update
the power budget Suggestion table by calling Algorithm 2
and the period depends on the specified application. In
particular, we find a week is suitable for most applications
in Tencent datacenter. Algorithm 3 is the pseudo code of
PPCapping.

Suggestion table

D : o
Ve initialized power

new server

budget P

new

Piew + XP. <P ?

no 0 @ yes
power rating P P P
S0 [ E O HRERE
Peer 2 k 12 12 m
rack 1 rack i rack n

Fig. 6. PPCapping works with three steps. 1) First we set an initial power
budget for the new server according to the Suggestion table and the
type of application it will run. 2) Then we deploy the server into a rack
by using the First-Fit Bin-packing method. P; and P refer to the set
power budget for the i-th server and rack’s power rating, respectively. 3)
We periodically update the power budget Suggestion table to accurately
reflect the recent characteristics of applications.

Algorithm 3 Precise Power Capping Algorithm

8

and to explore how much power budget can be saved
in a large number of servers with acceptable performance
degradation. Further, we show advantage of PPCapping in
performance guaranteeing in Section 5.3. Finally, in Section
5.4, we demonstrate the effectiveness of PPCapping and
provide an insight of precise tradeoff between applications’
SLAs and datacenter capacity.

5.1 Accuracy of FGD

In this subsection, we verify the accuracy of FGD, PBV
and PPL by setting different CPU utilization thresholds for
the experimental server and comparing the performance
degradation evaluated by these three methods to the per-
formance degradation obtained by actual measurement.
We carry out experiments with a real world trace, Mini-
Challenge 3 [23].

Mini-Challenge 3 is a dataset including network flow
data and network health and status data. We only take the
number of requests sent to the server in each second and
transform it into a CPU utilization trace as shown in Fig. 7.

100 =
90
80

=NWHAOINON
OOOOOOOO

il
I T e[
! |I ‘ IE i1
0 200 400 600 800 10001200 1400 1600 1800
Time (second)

CPU utilization (%)

Fig. 7. The CPU utilization of a server in Mini-Challenge 3.

We use two physical 16-core nodes (16 x Intel(R) X-
eon(R) CPU E5-2670 0@2.60GHz, 64G RAM) to act as a
web server and a client, respectively. The web server hosts
an Apache HTTP Server application and constantly serves

1: Calling Algorithm 2 and obtaining power budget Suggestion
table for all servers in datacenter.

2: Finding a server who is running the same type application
as each new server will do, and use its power budget to
initialize the new one’s (denoted by Drew).

3: for each rack in all racks do

4: /* Current rack’s power rating and total power

budgets of servers in current rack are denoted by P
and 3N | Py, respectively. */

if Poew + > 5, Pr < P then

/* first fit */
Deploying the new server in this rack and break.
end if

: end for

: After a period of time (e.g., a week), calling Algorithm 2 to

update the power budget Suggestion table.

@YX T

[y

After deploying new servers by using Algorithm 3, we
can increase datacenter’s capacity without violating racks’
power rating while still meeting the SLA of applications.

5 EVALUATION

The experiments consist of four parts. In Section 5.1,
we verify the accuracy of FGD when evaluating perfor-
mance degradation of applications. After that, in Section 5.2,
we apply PPCapping on production servers to show their
performance degradation under different power budgets

the HTTP requests from the client. All requests sent to the
server access the same PHP page and consume fixed CPU
resources. At the client node, we devise a HTTP requests
generator which can send a specified amount of requests
per second as needed. By controlling the sending rate of
requests from the client, we can control the CPU utilization
of the server node. Then we record the response time of
every request in the log under the fixed CPU utilization
threshold of the server. Note that, it takes a certain base time
to process a request. We use the difference between response
time and the basic processing time as the latency caused by
power budget violation, which forms the measured latency
results.

The measured results and the FGD’s evaluated results
are shown in Fig. 8. In the experiment, we set the CPU
threshold at 50%, 62.5%, 75%, and 87.5%, respectively. The
individual difference between the evaluated results and
measured one are 6.9%, 4.5%, 3.6% and 0.5%.

We further illustrate the comparison between the mea-
sured performance degradation and the results given by
FGD, PBV, PPL and CPI' in Fig. 9. With CPU utiliza-
tion thresholds of 50%, 62.5%, 75%, and 87.5% for Mini-
Challenge 3, the measured performance degradation results
are 95.0%, 30.0%, 10.0% and 2.0%; FGD results are 91.1%,

1. [19] uses cycles per second (CPI) to evalaute the performance degra-
dation of an application, and we denote this method as “CPI”.
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Fig. 8. The comparison between the measured tail latency and the
evaluated one obtained by FGD at different CPU utilization thresholds
(87.5%, 75%, 62.5%, and 50%).

i
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CPU utilization threshold

Perf. Degradation (%)
S

Fig. 9. The comparison between the measured performance degrada-
tion and the results given by FGD, PBV, PPL and CPI.

29.1%, 9.7%, and 2.0% while PBV results are 49.4%, 26.7%,
8.3%, and 1.7%; PPL results are 6.0%, 0.0%, 0.0%, and
0.0%, and the CPI results are 1.6%, 0.0%, 0.0%, and 0.0%,
respectively. The overall average differences between the
measured results and FGD, PBV and PPL are 5.0%, 44.0%
and 98.4%, i.e., the FGD results are very close to the mea-
sured ones which means our FGD approach is more accurate
than PBV, PPL and CPI when evaluating the performance
degradation of latency-sensitive applications.

Actually, Fig. 9 shows that the evaluated results ob-
tained by PBV, PPL and CPI are far from the measured
results, proving that these three methods are unsuitable to
evaluate the performance degradation of latency-sensitive
applications, which is consistent with our previous analysis
in Section 2.2. In addition, these three methods do not take
into account SLA which is widely used in cloud datacenters.
They might be very useful when applying to their particular
occasions like in [5, 12, 19]. However, based on above rea-
sons, we do not use these methods to evaluate performance
degradation of production servers in our next experiments.

5.2 Potential Power Budget Saving in Datacenter

We have already verified the accuracy of FGD in previ-
ous experiments. In this subsection, first, we introduce the
real-world traces from Tencent’s datacenter. Then, we select
some representative servers based on application types and
average load, and evaluate their performance degradation
under different CPU utilization thresholds. Further, we
show how to set a CPU utilization threshold with acceptable
performance degradation for these typical servers. After
that, we apply PPCapping on the traces of all 25328 server-
s hosting latency-sensitive applications to see how much
power budget can be saved in a large number of servers
with acceptable performance degradation.

5.2.1 Tencent Traces

The experiments are based on real world traces from
Tencent’s datacenter which runs a large number of latency-
sensitive applications. These traces comprise 10166, 7824,
and 7338 servers deploying web applications, games, and
streams (e.g., videos), respectively. We denote them as web,
game, and stream for short. Tencent’s traces are collected
by agents deployed on running servers and stored in the
MySQL database. The monitoring data comprise fields in-
cluding CPU, memory, disk, network, and alert information.
Recall that capping the CPU utilization has almost the same
effect as resizing the power budget in Section 2, we only use
CPU utilization for our analysis in this paper.

5.2.2 Evaluation on Typical Servers

1
e
" 8% Sl S N
a 05 ff :
O 04pi Stream |
8% A [ :
0.1k~
0

0 10 20 30 40 50 60 70 80 90 100

Avereage CPU utilization (%)
Fig. 10. The CDF of servers’ average CPU utilization.

Many previous researches [5, 14, 15] have proven that
CPU utilization is closely related to server power, and
there is a mapping between CPU utilization and power.
First, we explore the CPU utilization feature of servers in
Tencent’s datacenter. To do so, we calculate the average CPU
utilization distribution of these servers. Fig. 10 presents the
cumulative distribution function (CDF) of three different
types of servers, ie., web, game and stream servers. The
figure shows that, for web servers, 80% of servers’ average
CPU utilizations are lower than 20%. The average CPU
utilizations of game and stream servers are much lower (80%
of servers are lower than 13%). A possible reason is that
games and streams are much less CPU-intensive.

Without loss of generality, we choose nine representative
servers based on application types and average load in
our evaluation. We classify the servers into three classes
based on their average CPU utilization for each application
type, that is high for the 10% ranking server, middle for
40%, and low for 70%. These nine representative servers are
denoted by web-high, web-middle, web-low, game-high, game-
middle, game-low, stream-high, stream-middle, and stream-low,
respectively.

The performance degradation of these nine representa-
tive servers given by FGD are shown in Fig. 11. With the
help of Fig. 11, we can have an intuitive understanding of
P-Table. For example, in Fig. 11(b), when CPU threshold is
26%, the 95th percentile latency of requests is 200ms, which
means we can set CPU threshold to 26% if SLA requires
(95%, 200ms).

The most common feature reflected by these figures is
that when the value of CPU threshold is lower and the
value of percentage of requests is larger, latency becomes
bigger. This trend is consistent with our expectation. If a
strict SLA requires 99% of requests should not be affected
(i.e., (99%, 0)), as we can see, CPU threshold of web-low,
game-low, stream-low, web-middle, game-middle, stream-middle,
web-high, game-high, and stream-high are 33%, 15%, 6%, 40%,
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Fig. 11. Tail latencies with different CPU thresholds of typical servers from Tecent.

10%, 12%, 57%, 87%, and 52%, respectively. These values
can give us suggestions on capping restrictions for different
types of servers.

With further insight of the results in Fig. 11, we can infer
that the CPU utilization can be largely restricted without
affecting the performance for all servers. For example, web-
high can reduce its CPU utilization threshold to 57% with
almost no performance degradation for all requests, and the
CPU utilization threshold can be even lower for web-middle
and web-low. This implies that we can potentially restrict
immense power budget with servers deploying latency-
sensitive applications.

5.2.3 Evaluation on Large Scale Datacenter

In the previous subsection, we have carried out per-
formance degradation evaluations on some representative
servers. Now, we aim to find out how much power bud-
get can be saved for a datacenter. In this experiment, we
take seven days traces of all 25328 servers (deploying web
applications, games, and streams) in Tencent datacenter to
explore the savings of the power budget.

To transform CPU utilization to server power usage, we
adopt the model described in [5], p = piaie + (Pbusy — Pidie) *
u;, where p;gie and ppysy refer to the power consumption
when the CPU utilization is 0 and 100%, and w; refers to
CPU utilization. For simplicity, we empirically set pyysy as
300 W and p;q;e as 150 W for all servers [5]. Thus, if the CPU
utilization of a server is 50%, then its power usage is 225 W.
This model is useful when we calculate how much power
budget can be saved after determining the CPU utilization
threshold.

To explore what percentage of power budget can be
saved for all servers with different acceptable performance

degradations, we choose three typical percentiles of tail
latency, i.e., 95%, 99% and 100%, and plot the results in
Fig. 12. Fig. 12(a) demonstrates that even no performance
degradation is accepted, we can save 34% of the power
budget of all servers. With little performance degradation,
we can further restrict the power budget (e.g., we can save
41.3% of the power budget when SLA requirement is (95%,
200ms)).
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Fig. 12. Power budget savings with three typical percentile tail latencies
(95%, 99%, and 100%).

If we divide all these servers into three groups of web
applications, games, and streams, their results are shown
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in Fig. 12(b), 12(c), and 12(d) respectively. As we can see,
power budget savings of web servers are smaller than that of
game and stream servers. For example, if SLA requirement is
(95%, 200ms), power budget savings of web, game, and stream
are 38.0%, 44.3%, and 42.7%, respectively. This demonstrates
that game and stream servers are more potential to save
power budget in the Tecent datacenter.

In summary, the datacenter is potential to save at least
34% of total power budget. With little performance degra-
dation, the room is even bigger. That is to say, it is very
profitable to use FGD as guidance to restrict the power
budget of servers.

5.3 Guaranteeing Applications’ SLAs

In this subsection, we show our advantage in perfor-
mance guaranteeing. In particular, we compare PPCapping
to Facebook’s state-of-the-art power capping technique,
Dynamo[24]. Dynamo is a multi-level power management
system that monitors the entire power hierarchy, and its
lowest level, called leaf controllers, uses a heuristic high-
bucket-first method to determine the amount of power that
must be cut from each server within the same priority
group. We use three physical 16-core nodes (16x Intel(R)
Xeon(R) CPU E5-2670 0@2.60GHz, 64G RAM) to simulate a
rack. For a fair comparison, we replay three real web server
traces belonging to the same priority group, respectively.

Fig. 13 shows three servers’ power consumption over
time. We manually set the rack’s power cap as 720W and
web service’s SLA as (95%, 200ms) in this scenario. As we
can see, at the time point of 1700 minutes, the power of three
servers are 292.5W, 234.5W and 223W, respectively, and the
total power exceeds the cap incurring a power violation of
about 30W. By using PPCapping, we look up P-Tables of
these three servers, and according to their SLAs, we set
280.5W, 226.5W and 213W for these three servers as their
power budgets, respectively. That is, we distribute 12W, 8W,
and 10W of the power violation of 30W to three servers to
cut, respectively.

Dynamo uses a heuristic high-bucket-first method. As
suggested in [24], we set the bucket size is 20W. In this
scenario, only server#1 belongs to the highest bucket, and
servers #2 and #3 belong to a lower bucket. The power
of server#1 exceeds server#2 and #3 by almost three
bucket sizes, thus server#1 may take all 30W power cut
since Dynamo is heuristic and has no idea about the exactly
lowest power cap allowed for each server, which leads to
SLA violation.

Fig. 14 illustrates the result of the 95-th percentile latency
of requests with power capping. Clearly, PPCapping can
meet the SLA requirement (95%, 200ms) for all servers while
server #1 of Dynamo violates the requirement severely.

5.4 Improving Datacenter’s Power Utilization and Ca-
pacity

SLAs guaranteeing rather than the capacity should be
the first-order of concern in datacenters deploying lots of
latency-sensitive applications. However, Dynamo can hard-
ly guarantee SLA of latency-sensitive applications though it
can greatly improve datacenter’s capacity. In this subsection,
we compare PPCapping with another typical method that
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Fig. 13. The respective and total power consumption of three real web
servers.
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Fig. 14. The 95- th percentile latency of three servers with different power
capping methods, PPCapping and Dynamo. PPCapping can meet the
SLA constraint (200ms) for all servers while the latency of server #1
(640ms) in Dynamo violates the constraint severely.

can guarantee SLA of latency-sensitive applications, i.e., ob-
served peak power, in which servers are provisioned according
to their observed peak power. In turn, the number of servers
that can be placed in the rack is the quotient of rack’s power
rating and provisioned power of a server. This strategy is
adopted by most existing datacenters [25].

Note that PPCapping applies the FGD method to pre-
cisely assign power budget for each server to meet different
predefined SLAs thus increasing racks’ average power uti-
lization and datacenter capacity. Fig. 15 shows the CDF of
racks’ average power utilization with different SLA require-
ments with PPCapping and observed peak power methods.
Without loss of generality, we assume all servers have the
same SLA when calculating the CDFE.

1 T T T

0.8 |- jobserved peak —— | / "? |
: | (99%, 100ms) ; / .
L 0.6 (99%, 200ms) --x-- i
a | (99%, 500ms) = /W
© 045 (95%, 100ms) -+ - / B
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' | (95%. 500ms) - = / X
0

40 50 60 70 80 90 100

Rack’s avereage power utilization (%)
Fig. 15. The CDF of racks’ average power utilization.

As we can see, PPCapping can effectively improve the
average utilization with 85%-96% for all racks while observed
peak power achieves 75%-90%. Generally, the less strict of
SLA, the higher improvement of racks’ average power uti-
lization. For example, PPCapping improves racks” average
utilization by 1.12x with applications” SLA (95%, 200ms)
compared with observed peak power.

With regard to the capacity increment of datacenter,
in Table 5, we plot the results of PPCapping compared
with observed peak power. Table 5 shows that PPCapping
can effectively increase datacenter capacity. For example,
PPCapping can increase 12.6% of datacenter capacity with
SLA constraint of (95%, 200ms), which means a large-scale
datacenter with a fixed power supply can hold extra thou-
sands of servers.
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TABLE 5
The capacity increment of PPCapping compared with the typical power
provisioning strategy, observed peak power.

Capacity increment

Server SLAGs) compal?ed tc}; observed peak
(99%, 100ms) 97%
b | (99%, 200ms) 11.9%
we (95%, 100ms) 13.8%
(95%, 200ms) 14.6%
(99%, 100ms) 8.6%
(99%, 200ms) 10.7%
8aME | (95%, 100ms) 12.5%
(95%, 200ms) 13.1%
(99%, 100ms) 6.6%
. (99%, 200ms) 7.9%
stream | 959, 100ms) 8.8%
(95%, 200ms) 9.4%
(99%, 100ms) 87%
. (99%, 200ms) 10.3%
entirety | (959, 100ms) 12.0%
(95%, 200ms) 12.6%

6 DiscussioN

In this section, we discuss some issues related to our
work.

Sample interval of CPU utilization. There is correlation
between the accuracy of FGD and the sample interval (i.e.,
At in Section 3.2.2) in CPU utilization trace. This sample
interval is practically determined by the sampling strategy
of datacenter’s monitoring system, and it is 5 minutes in
Tencent datacenter. Though a finer-grained sample interval
may make our algorithm more precise, it comes with a much
higher monitoring overhead and probably does harm to
applications” SLA and overall system performance. That is
the reason why Tencent’s choice on the sample interval is
relatively conservative.

Trace-based evaluation. FGD relies on the CPU utiliza-
tion trace of a server. However, if the trace cannot properly
reflect the behavior of the workload, it will greatly affect
the accuracy of the method. As for unpredictable special
days, like Thanksgiving, our method may fail. This is the
limitation of all trace-based researches. To our best knowl-
edge, it is still a big challenge to handle the unpredictable
situations while meeting the performance requirements of
applications. Based on the analysis of Tencent’s trace, we s-
elect seven days’ traces for our evaluation, which can reflect
the behavior of servers’” workload in common situation. As
for servers in other datacenters, the proper length of traces
used in evaluation could be different.

Latency-insensitive applications. We concentrate on e-
valuating the performance degradation of latency-sensitive
applications in this paper. However, when fine-grained
method is applied to latency-insensitive applications (e.g.,
batch jobs), it may be not as useful as existing approaches
(e.g., PBV and PPL), because the makespan is the most
concern of this kind of application instead of the latency
of each request. Therefore, our fine-grained method is com-
plementary to existing methods.

7 RELATED WORK

Fan et al. [5] expose the severe power over-provisioning
problem by investigating the power consumption in the
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Google datacenter. Further, many researches [5, 9, 11, 26—
28] have found that power over-provisioning has greatly
impede the increase of datacenter capacity which is an
important factor affecting the total cost of ownership (TCO).

To manage power of datacenter and ease power over-
provisioning problem, there are three major related field-
s, power capping, workload scheduling, and performance
degradation caused by power management approaches.
Power capping and performance degradation evaluation are
most related to our work. We briefly introduce these three
categories here.

7.1 Power capping

Power capping technology is a straightforward way to
ease the power over-provisioning problem and increase
the datacenter capacity, which has been studied by many
researches [5,7, 9, 12, 25, 29-37].

Generally, these power capping techniques can be clas-
sified into several levels, i.e., datacenter/cluster-level, PDU-
level, rack-level and server-level. In datacenter-level, for ex-
ample, Facebook’s Dynamo [24] is the first datacenter-wide
power management system in a real production. Wang et
al. [36] design SHIP to control the power consumption of
an entire datacenter dynamically, while Verma et al. [38]
propose a correlation based server consolidation scheme
to minimize power consumption. Since these methods are
control-theoretic frameworks where feedback loops operate
at multiple levels, they may suffer from power capping la-
tency and instability [25]. For the PDU-level power capping,
statistical profiling-based techniques have been proposed to
provision servers within power constraints [39].

While in the rack-level, Wang et al. [40] design control-
theoretic methods to optimize system performance and
[11, 41] propose heuristic-based methods by controlling
rack-level power consumption. The proposed PPCapping
is also a rack-level method but we control the rack-level
power by setting a precise power budget for each server
while meeting the predefined SLAs.

In server-level power capping, control theory has been
used to control power of a single server in [29, 31, 32] and
Felter et al. [42] apply the open-loop control to maintain
servers’ power budget by switching power between pro-
cessor and memory. Gandhi et al. [30] control the power
to meet the power budget by inserting idle cycles during
execution. Furthermore, [34] proposes heuristic solutions
for power budgeting for virtual machines and [12] designs
dynamic server power capping techniques for VMs. Ma et
al. [35] propose a capping technique to power gate the cores
and apply percore DVES for multi-threaded applications.
Intel Node Manager [43] also proposes some techniques to
facilitate power capping.

Additionally, there are some recent work on energy stor-
age device sizing framework for fuel cell powered datacen-
ters, which coordinates energy storage devices with power
capping policies to handle power shortfalls in datacenters,
such as [17, 44]. These solutions could wisely mitigate the
impact of power shortfalls, however, with an expensive cost
of energy storage devices.
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7.2 Workload scheduling

Guosai Wang et al. [4] implements dynamic power man-
agement by directly affecting the workload scheduling to
fully utilize available power resources thus increasing data-
center capacity. [45-48] use server consolidation approach to
ease power over-provisioning. Server consolidation unites
as many applications as possible into fewer servers to make
fully use of power budget. However, there are some prob-
lems with this method in real-world datacenters [20]. First,
due to the higher density of applications in a server, a single
point of failure will affect more applications. Meanwhile,
server consolidation is typically based on virtualization,
which could bring some overheads and unfair contentions
among applications. Finally, there is inevitable cost of appli-
cation migration when consolidating applications.

7.3 Performance degradation evaluation

Performance degradation of applications caused by
power management is another important issue. [5, 10] e-
valuate the performance degradation by measuring what
percentage of time is spent in budget violation (PBV),
and [9, 12] evaluate that by measuring how much of the
work done is lost (PPL). Although these two methods are
suitable in some specialized scenarios (e.g., PPL is very
effective in evaluating the performance degradation of non
latency-sensitive applications), they have drawbacks in de-
scribing the performance degradation of latency-sensitive
applications. Our proposed FGD is a fine-grained evalua-
tion method which can accurately evaluate each request’s
latency of latency-sensitive applications.

Meanwhile, there are also some other methods that are
used to evaluate the performance degradation of servers.
[45] carries out experiments to measure the performance
by consolidating any two jobs. This method can be ac-
curate, but it also incurs a substantial experimental cost.
[49] assumes that the servers with similar CPU utilization
characteristics suffer from similar performance degrada-
tions. This method is efficient when there are abundant
jobs whose CPU utilization characteristics are similar. [50]
includes memory access time as another factor that affects
latency other than the CPU time. It provides a new model
for predicting job latency with multiple factors. Similar to
the thought of Workload accumulation in our work, [42] also
assumes that Workload not accomplished will be delayed to
the next time interval, but it does not give an evaluation of
the performance degradation when power budget violation
occurs.

8 CONCLUSIONS

How to reduce the TCO in turn to improve the profitabil-
ity of datacenter has been a hot topic in cloud computing.
Increasing datacenter capacity with acceptable performance
degradation is an effective way. Unfortunately, there is no
effective method to measure the performance degradation
of latency-sensitive applications at present. In this paper,
we analyze the reasons why the state-of-the-art methods are
not appropriate to evaluate the impact of power budget vio-
lation on latency-sensitive applications” performance. Then
we propose a new method, Fine-Grained Differential Method,
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which can provide a fine-grained way to evaluate such an
impact precisely. Further, we propose Precise Power Capping
to improve power utilization and capacity of datacenters.
We verify Fine-Grained Differential Method by replaying real
world web traces and evaluate the performance degrada-
tion of 25328 servers in a production datacenter. Experi-
mental results demonstrate that our Fine-Grained Differential
Method behaves more accurately than other state-of-the-art
methods, and we can effectively improve power utilization
and datacenter capacity while maintaining the applications’
performance degradation within controllable and acceptable
range by using Precise Power Capping. In particular, PPCap-
ping improves racks’ average utilization up to 1.12x and
datacenter capacity by 12.6% with SLA of (95%, 200ms)
compared with observed peak power.

ACKNOWLEDGMENTS

The authors would like to thank Tencent Inc, in particu-
lar colleagues in Infrastructure Platform of TEG (Technology
and Engineering Group), for making their invaluable trace
available.

REFERENCES

[1] “Tencent corporation, http:/ /www.tencent.com/, 2016.”

[2] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp:
comparing public cloud providers,” in proc. of IMC, pp. 1-
14, ACM, 2010.

[3] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and
M. Martonosi, “An analysis of efficient multi-core global
power management policies: Maximizing performance for
a given power budget,” in proc. of MICRO, pp. 347-358,
IEEE Computer Society, 2006.

[4] G. Wang, S. Wang, B. Luo, W. Shi, Y. Zhu, W. Yang, D. Hu,
L. Huang, X. Jin, and W. Xu, “Increasing large-scale data
center capacity by statistical power control,” in proc. of
EuroSys, p. 8, ACM, 2016.

[5] X.Fan, W. Weber, and L. A. Barroso, “Power provisioning
for a warehouse-sized computer,” in proc. of ISCA, vol. 35,
pp. 13-23, ACM, 2007.

[6] T.Imada, M. Sato, Y. Hotta, and H. Kimura, “Power man-
agement of distributed web savers by controlling server
power state and traffic prediction for qos,” in proc. of
IPDPS, pp. 1-8, IEEE, 2008.

[71 A. Saifullah, S. Sankar, J. Liu, C. Lu, R. Chandra, and
B. Priyantha, “Capnet: A real-time wireless management
network for data center power capping,” in proc. of RTSS,
pp. 334-345, 2014.

[8] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Partic: Power-
aware response time control for virtualized web servers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22,
no. 2, pp. 323-336, 2011.

[9] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang,
and X. Zhu, “No power struggles: Coordinated multi-
level power management for the data center,” in proc. of
ASPLOS, vol. 36, pp. 48-59, ACM, 2008.

[10] X. Wang and M. Chen, “Cluster-level feedback power
control for performance optimization,” in proc. of HPCA,
pp- 101-110, IEEE, 2008.

[11] P. Ranganathan, P. Leech, D. Irwin, and ]. Chase,
“Ensemble-level power management for dense blade
servers,” in proc. of ISCA, vol. 34, pp. 66-77, IEEE Com-
puter Society, 2006.

[12] H. Chen, C. Hankendi, M. C. Caramanis, and A. K.
Coskun, “Dynamic server power capping for enabling

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2881893, IEEE

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Sustainable Computing

data center participation in power markets,” in proc. of
ICCAD, pp. 122-129, IEEE Press, 2013.

L. A. Barroso, J. Clidaras, and U. Holzle, “The data-
center as a computer: An introduction to the design of
warehouse-scale machines,” Synthesis lectures on computer
architecture, vol. 8, no. 3, pp. 1-154, 2013.

S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A compar-
ison of high-level full-system power models.,” HotPower,
vol. 8, pp. 3-3, 2008.

D. Meisner and T. F. Wenisch, “Peak power modeling for
data center servers with switched-mode power supplies,”
in proc. of ISLPED, pp. 319-324, ACM, 2010.

S. Wang, J. Chen, J. Liu, and X. Liu, “Power saving design
for servers under response time constraint,” in proc. of
ECRTS, pp. 123-132, IEEE, 2010.

S. Govindan, D. Wang, A. Sivasubramaniam, and B. Ur-
gaonkar, “Leveraging stored energy for handling pow-
er emergencies in aggressively provisioned datacenters,”
ACM SIGARCH Computer Architecture News, vol. 40, no. 1,
pp. 75-86, 2012.

K. Tang, D. Tiwari, S. Gupta, P. Huang, Q. Lu, C. Engel-
mann, and X. He, “Power-capping aware checkpointing:
On the interplay among power-capping, temperature, reli-
ability, performance, and energy,” in proc. of DSN, pp. 311-
322, 2016.

R. Bianchini, R. Bianchini, R. Bianchini, R. Bianchini, and
R. Bianchini, “Fast power and energy management for
future many-core systems,” Acm Transactions on Modeling
and Performance Evaluation of Computing Systems, vol. 2,
no. 3, p. 17, 2017.

D. Meisner, C. M. Sadler, L. A. B., W. Weber, and T. F.
Wenisch, “Power management of online data-intensive
services,” in proc. of ISCA, pp. 319-330, IEEE, 2011.

M. M. Baldi, T. G. Crainic, G. Perboli, and R. Tadei,
“Branch-and-price and beam search algorithms for the
variable cost and size bin packing problem with optional
items,” Annals of Operations Research, vol. 222, no. 1, p-
p- 125-141, 2014.

Y. Cui, Y. Yao, and Y.-P. Cui, “Hybrid approach for the
two-dimensional bin packing problem with two-staged
patterns,” International Transactions in Operational Research,
vol. 23, no. 3, pp. 539-549, 2016.

“Vast challenge 2013, http://www.vacommunity.org/
VAST+Challenge+2013\%3A+Mini-Challenge+3, 2016.”
Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar,
B. Li, . Meza, and Y. J. Song, “Dynamo: facebook’s data
center-wide power management system,” in proc. of ISCA,
pp. 469480, IEEE, 2016.

A. A. Bhattacharya, D. Culler, A. Kansal, and S. Govindan,
“The need for speed and stability in data center power
capping,” in proc. of IGCC, pp. 183-193, 2012.

A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy,
“Optimal power allocation in server farms,” in proc. of
SIGMETRICS, vol. 37, pp. 157-168, ACM, 2009.

S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and
J. Underwood, “Power routing: dynamic power provision-
ing in the data center,” in proc. of ASPLOS, vol. 45, pp. 231-
242, ACM, 2010.

V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson,
H. Homayoun, E. Pettis, D. M. Tullsen, and T. S. Rosing,
“Managing distributed ups energy for effective power
capping in data centers,” in proc. of ISCA, pp. 488-499,
IEEE, 2012.

C. Lefurgy, X. Wang, and M. Ware, “Power capping: a
prelude to power shifting,” in proc. of CLUSTER, vol. 11,
pp. 183-195, Springer, 2008.

A. Gandhi, M. Harchol-Balter, R. Das, J. O. Kephart, and
C. Lefurgy, “Power capping via forced idleness,” in proc.
of WEED, 2009.

R. J. Minerick, V. W. Freeh, and P. M. Kogge, “Dynamic

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

(50]

14

power management using feedback,” in proc. of COLP,
Citeseer, 2002.

K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-
theoretic techniques and thermal-rc modeling for accurate
and localized dynamic thermal management,” in proc. of
HPCA, pp. 17-28, IEEE, 2002.

C. Hankendi, S. Reda, and A. K. Coskun, “vcap: Adaptive
power capping for virtualized servers,” in proc. of ISLPED,
pp- 415-420, IEEE Press, 2013.

R. Nathuji, K. Schwan, A. Somani, and Y. Joshi, “Vpm to-
kens: virtual machine-aware power budgeting in datacen-
ters,” in proc. of CLUSTER, vol. 12, pp. 189-203, Springer,
2009.

K. Ma and X. Wang, “Pgcapping: exploiting power gating
for power capping and core lifetime balancing in cmps,”
in proc. of PACT, pp. 13-22, ACM, 2012.

X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, “Ship: A
scalable hierarchical power control architecture for large-
scale data centers,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 23, no. 1, pp. 168-176, 2012.

W. Hou, C. Yu, L. Guo, and X. Wei, “Virtual network
embedding for power savings of servers and switches
in elastic data center networks,” Science China Information
Sciences, vol. 59, no. 12, pp. 1-14, 2016.

A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari,
“Server workload analysis for power minimization using
consolidation,” in proc. of ATC, pp. 28-28, USENIX Associ-
ation, 2009.

S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam,
and A. Baldini, “Statistical profiling-based techniques for
effective power provisioning in data centers,” in proc. of
EurSys, pp. 317-330, ACM, 2009.

X. Wang, M. Chen, and X. Fu, “Mimo power control
for high-density servers in an enclosure,” Transactions on
Parallel and Distributed Systems, vol. 21, no. 10, pp. 1412-
1426, 2010.

M. E. Femal and V. W. Freeh, “Boosting data center perfor-
mance through non-uniform power allocation,” in proc. of
ICAC, pp. 250-261, IEEE, 2005.

W. Felter, K. Rajamani, T. Keller, and C. Rusu, “A
performance-conserving approach for reducing peak pow-
er consumption in server systems,” in proc. of ICS, pp. 293—
302, ACM, 2005.

“Intel node manager, http://www.intel.com/content/
www /us/en/data-center/data-center-management/
node-manager-general.html, 2016.”

Y. Li, D. Wang, S. Ghose, J. Liu, S. Govindan, S. James,
E. Peterson, J. Siegler, R. Ausavarungnirun, and O. Mutlu,
“Sizecap: Efficiently handling power surges in fuel cell
powered data centers,” in proc. of HPCA, pp. 444-456,
IEEE, 2016.

J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations,” in proc. of MI-
CRO, pp. 248-259, ACM, 2011.

L. Tang, J. Mars, and M. L. Soffa, “Compiling for niceness:
Mitigating contention for qos in warehouse scale comput-
ers,” in proc. of CGO, pp. 1-12, ACM, 2012.

N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla,
M. Hiltunen, and M. Satyanarayanan, “Jettison: efficient
idle desktop consolidation with partial vin migration,” in
proc. of the 7th ACM EurSys, pp. 211-224, ACM, 2012.

M. Lin, A. Wierman, L. L. Andrew, and E. Thereska,
“Dynamic right-sizing for power-proportional data cen-
ters,” IEEE/ACM Transactions on Networking, vol. 21, no. 5,
pp. 1378-1391, 2013.

C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware
scheduling for heterogeneous datacenters,” proc. of MI-
CRO, vol. 34, pp. 17-30, 2014.

B. Su, J. L. Greathouse, J. Gu, M. Boyer, L. Shen, and



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2018.2881893, IEEE
Transactions on Sustainable Computing

15
Z. Wang, “Implementing a leading loads performance pre-

dictor on commodity processors,” in proc. of ATC, pp. 205—
210, USENIX Association, 2014.

2377-3782 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



