
57

Dual-Page Checkpointing: An Architectural Approach to
Efficient Data Persistence for In-Memory Applications

SONG WU, FANG ZHOU, XIANG GAO, and HAI JIN, Huazhong University of Science
and Technology, China
JINGLEI REN, Microsoft Research, China

Data persistence is necessary for many in-memory applications. However, the disk-based data persistence
largely slows down in-memory applications. Emerging non-volatile memory (NVM) offers an opportunity to
achieve in-memory data persistence at the DRAM-level performance. Nevertheless, NVM typically requires
a software library to operate NVM data, which brings significant overhead.

This article demonstrates that a hardware-based high-frequency checkpointing mechanism can be used to
achieve efficient in-memory data persistence on NVM. To maintain checkpoint consistency, traditional log-
ging and copy-on-write techniques incur excessive NVM writes that impair both performance and endurance
of NVM; recent work attempts to solve the issue but requires a large amount of metadata in the memory
controller. Hence, we design a new dual-page checkpointing system, which achieves low metadata cost and
eliminates most excessive NVM writes at the same time. It breaks the traditional trade-off between metadata
space cost and extra data writes. Our solution outperforms the state-of-the-art NVM software libraries by
13.6× in throughput, and leads to 34% less NVM wear-out and 1.28× higher throughput than state-of-the-art
hardware checkpointing solutions, according to our evaluation with OLTP, graph computing, and machine-
learning workloads.

CCS Concepts: • Computer systems organization → Processors and memory architectures; • Hard-
ware → Memory and dense storage;

Additional Key Words and Phrases: Data persistence, non-volatile memory (NVM), checkpointing, crash
consistency

ACM Reference format:
Song Wu, Fang Zhou, Xiang Gao, Hai Jin, and Jinglei Ren. 2019. Dual-Page Checkpointing: An Architectural
Approach to Efficient Data Persistence for In-Memory Applications. ACM Trans. Archit. Code Optim. 15, 4,
Article 57 (January 2019), 27 pages.
https://doi.org/10.1145/3291057

1 INTRODUCTION
Data persistence makes a critical performance bottleneck of many in-memory applications [5, 74].
Particularly, latest analytics applications [15, 64] show the rise of stream processing [35], graph

This work is supported by National Key Research and Development Program under Grant No. 2018YFB1003600, National
Science Foundation of China under Grants No. 61872155 and No. 61472151, and Pre-research Project of Beifang under Grant
No. FFZ-1601.
Authors’ addresses: S. Wu, F. Zhou, X. Gao, and H. Jin, Huazhong University of Science and Technology, Services Comput-
ing Technology and System Lab, Cluster and Grid Computing Lab, Wuhan, 430000, China; emails: {wusong, flame, xgao,
hjin}@hust.edu.cn; J. Ren, Microsoft Research, Beijing, 100000, China; email: jinren@microsoft.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1544-3566/2019/01-ART57
https://doi.org/10.1145/3291057

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:2 S. Wu et al.

computing [27], and machine learning [33]. Persistence of in-memory data provides an important
form of fault tolerance to such applications. For continuous queries or endless jobs that process
data flowing from/to external sources [34, 47, 73], the computing states cannot be lost, because
there is no easy way to rebuild them. The rebuild process is either time consuming (e.g., training a
model) or lossy as the original data is no longer available (e.g., sensor data in an Internet of Things
setting). Thus, efficient in-memory data persistence is highly demanded, especially for modern
systems whose mean time between failures (MTBF) is relatively low [16, 18, 50, 61].

Underlying in-memory storage, such as Alluxio [3], Silo [66], and RAMCloud [45], invest huge
efforts in overcoming the bottleneck. On the one hand, sequential data persistence and parallel I/O
are exploited to increase persistence efficiency [44, 77]. On the other hand, special data abstrac-
tions are designed [32, 74] to minimize the amount of necessary data to persist. However, those
solutions still largely limit the performance of in-memory applications or sacrifice the flexibility
of programming.

Emerging byte-accessible non-volatile memory (NVM) promises an opportunity to achieve effi-
cient in-memory data persistence, overcoming the traditional bottleneck. NVM technologies, such
as 3D XPoint [22], PCM [29, 54], STT-RAM [4, 28], and ReRAM [2], enable performant, direct
access to persistent data via load/store processor instructions. The access latency and bandwidth
of NVM attached to the memory bus are orders of magnitude better than disks [30, 52]. Conse-
quently, the overhead due to software manifests. To avoid such software overhead, we typically by-
pass traditional heavyweight filesystems or databases when applying NVM to data persistence [7,
12, 38, 75]. However, doing so exposes the crash consistency issue to applications so that they still
have to employ a software transaction library to operate NVM. For example, Mnemosyne [70] and
NV-heaps [9] are early efforts, and many others [19, 21, 26] continue to improve the system to fully
utilize the advantages of NVM. Recently, DudeTM [36] introduces a shadow DRAM for transac-
tion processing, employs a redo log to maintain crash consistency and performs group commit
to raise the transaction throughput. Nevertheless, those sophisticated software components still
incur significant overhead in data persistence.

This article explores an architectural way to realize in-memory data persistence and reduce the
overall system complexity and overhead. It turns out that a high-frequency whole-memory check-
pointing technique can serve the purpose. We constantly keep a consistent checkpoint of the whole
memory in NVM and update it with a short checkpointing interval, which ensures that applica-
tions can recover to the latest persistent state quickly after a crash. Such an approach arises as
we observe a convergence of the software storage library behavior and the recent development of
hardware checkpointing techniques. On the one hand, a software transactional storage has the
advantage of being able to synchronously persist a transaction, but, to fulfill the extremely high
throughput demand of applications, group commit or its variant is employed (e.g., SiloR [77] and
DudeTM [36]). On the other hand, unlike traditional software-based memory checkpointing solu-
tions [1, 13], recent hardware checkpointing solutions support a millisecond-level checkpointing
interval [56]. That means they can support comparable persistence latency to a software trans-
actional storage optimized for throughput. Such an observation gives rise to our architectural
approach to data persistence, which has several advantages. First, it requires minimal work in soft-
ware by utilizing the natural address translation capability of the memory controller. Second, it
automatically incorporates the group commit optimization by dividing execution time into epochs
and generating a checkpoint at the end of each epoch. As a result, our solution simplifies the over-
all system design across software and hardware, and achieves at least one order of magnitude more
performant data persistence than state-of-the-art software solutions on NVM [21, 36].

To apply a checkpointing technique to NVM, a key challenge is how to efficiently guarantee
crash consistency of each checkpoint. Traditional hardware redo/undo logging or copy-on-write

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:3

Table 1. Tradeoff between the Amount of NVM Writes (Data) and the Space Cost
of Address Mappings (Metadata)

Metadata cost in the memory controller
large ✗ small ✓

Extra data
write

large ✗ (undesirable) redo/undo logging, CoW, etc.
small ✓ ThyNVM [56], page overlays [58], etc. dual-page checkpointing

(CoW) can guarantee such consistency but requires at least 2× NVM writes than the amount
of actual dirty data. The extra NVM writes are strongly undesirable, because NVM writes are
slow (at least one order of magnitude slower than DRAM) and the endurance of NVM is limited
(109 P/E cycles compared to DRAM’s 1015 cycles) [30]. To reduce the extra NVM writes, a viable
way is to use fine-grained CoW to protect checkpoints, which avoids copying most clean data.
While it reduces the amount of data writes, a small granularity increases the metadata to main-
tain in the memory controller. The metadata consists of address mappings required by CoW. The
space overhead of address mappings at the cache-line-level granularity is usually too large for
scarce hardware space. Although recent work such as ThyNVM [56] and page overlays [58] con-
structs sophisticated solutions to overcome the issue, such metadata and its management are still a
bottleneck.

We design a new checkpointing scheme to address the challenge. It achieves both minimal extra
NVM writes and minimal metadata space/management overhead. In this design, we maintain in
the memory controller the coarse-grained address mappings for dirty pages. In these mappings, we
compactly embed fine-grained states that track actual dirty cache lines. Particularly, each logical
dirty page is mapped to two physical NVM pages to separately store both the checkpoint and
working data. And, a bit vector is employed to denote dirty cache lines and their locations in either
physical page. Therefore, we name our approach dual-page checkpointing. By maintaining two
versions of the data, we guarantee that the checkpoint version keeps consistent while the working
version is being written. We recycle the pages of checkpoint version and working version to reduce
space overhead, and the final NVM space wastage is only 3.7% of total NVM space. Our unique
insight here is that we can take advantage of the page-level information to efficiently perform
cache-line level management. Compared to ThyNVM [56] and page overlays [58], we realize 5×
to 20× lower hardware overhead of metadata.

In summary, our solution breaks the traditional trade-off between extra writes in NVM and
metadata overhead in the memory controller, as shown in Table 1. Traditional redo/undo logging
and CoW require little metadata in the memory controller but write excessive NVM data (more
details in Section 2). Lately, ThyNVM [56] and page overlays [58] reduce extra NVM writes but
increase hardware cost for metadata. In contrast, our dual-page checkpointing solution obtains
the best in both metrics.

We apply dual-page checkpointing to a DRAM + NVM hybrid persistent memory system to sup-
port data persistence for in-memory computing applications. Considering that NVM has larger
access latency and much lower endurance than DRAM, a small DRAM cache layer is set atop
NVM [25, 52, 56]. Our solution performs system-level checkpointing, which is transparent to
applications—programmers need not write code for generating and restoring checkpoints. This
feature largely reduces programmers’ burden. The memory controller is configured with a fixed
epoch length (a.k.a., checkpointing interval).1 Applications can acknowledge durability as long
as one epoch has passed, following the external synchrony model [43]. The acknowledgement

1An alternative is to offer a checkpointing instruction to software.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:4 S. Wu et al.

latency can be confined as our solution offers high-frequency checkpointing, with millisecond-
level epochs.

This article makes the following contributions:
• We explore an architectural approach to supporting in-memory data persistence on NVM.

We demonstrate that a simple hardware-based checkpointing mechanism in the memory
controller can efficiently achieve data durability and crash consistency of in-memory data
and avoid the overhead of complex state-of-the-art software solutions.

• We design a new dual-page checkpointing scheme for the memory controller. It maintains
address mappings at both page granularity and cache-line granularity in an integrated man-
ner without incurring excessive space and management overhead. Our solution solves the
traditional dilemma in the trade-off between metadata hardware overhead and extra NVM
data writes.

• We implement dual-page checkpointing in a DRAM + NVM hybrid persistent memory sim-
ulator. Our evaluation with various OLTP, graph computing, and machine-learning work-
loads shows that our solution outperforms the state-of-the-art software solution by 13.6×
higher throughput, and latest checkpointing techniques by 1.28×, on average.

The rest of the article is organized as follows. Section 2 reviews background and motivates our
design rationale. Section 3 describes the design of our dual-page checkpointing system. Section 4
details key implementations and optimizations. Section 5 presents the experiment results. We dis-
cuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND AND MOTIVATION
Consistency of checkpoints is a vital issue for a checkpointing mechanism. Particularly, it is re-
quired that a checkpoint is a snapshot of the memory image captured at a time point. The time
interval between two consecutive checkpoints is referred to as an epoch. Next, we review existing
approaches to protect checkpoint consistency and motivate our design.

2.1 Logging
Logging is a general way to guarantee consistency of data updates, and can be applied to hard-
ware checkpointing. There are two types of logging, undo logging and redo logging. To protect
the existing consistent checkpoint data, undo logging requires that the original data is copied to
a separate, special log area before it can be updated to a new value. Should a system crash, a re-
covery process would scan the log area and restore the original data to ensure consistency of the
checkpoint. To the contrary, redo logging requires that an update is written to the log area before
modifying the original checkpoint data.

Such a logging mechanism suffers from the write twice issue—every memory write incurs an-
other extra write to the separate log area, as described above. Each logging also needs to record the
page information, which produces more writes. Those redundant writes occupy excessive NVM
write bandwidth and consume limited NVM endurance [30]. To alleviate this issue, one optimiza-
tion [61] is to track writes within one epoch using an address mapping structure. Multiple writes to
the same address within one epoch can be coalesced instead of going through the full logging path.
This optimization can reduce unnecessary NVM writes but entails large hardware space overhead
for address mappings, because the mapping granularity is as small as the cache line size [56].

2.2 Copy-on-Write (CoW)
To solve the above address mapping overhead, we can enlarge the mapping granularity and per-
form CoW in the hardware to protect checkpoint consistency. Such a coarse granularity is typically

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:5

Fig. 1. The percentage of extra NVM writes by page-level address mapping. The number shows the ratio of
clean cache lines in dirty pages.

set to the page size, e.g., 4KB. Within one epoch, when a page is updated for the first time, a shadow
page is allocated and the original page is copied to the shadow page. Then, the update is only ap-
plied to the shadow page. Accordingly, a new address mapping is created for the page, so that
following accesses within the same epoch are redirected to the shadow page. The original page, as
part of the checkpoint data, is protected.

However, the problem with CoW is that it has to copy the whole page even if only a small part of
it is actually dirty. We test various workloads with CoW. Figure 1 calculates the percentage of extra
write (definitions of the workloads are in Section 5.1.3). The average extra write ratio is 61.1%, and
5 out of the 11 workloads have the ratio above 70%. Overall, CoW saves hardware space overhead
for address mapping but brings an unacceptable amount of extra NVM writes.

2.3 Mixed-Granularity Mapping
Lately, it has been explored to manage address mappings at both fine-grained and coarse-grained
granularities, to reduce extra NVM writes and take small hardware space for the mappings. Below
are two representative solutions.

ThyNVM [56] incorporates two independent tables for cache-line level and page-level mappings,
respectively. Choice of granularity is dynamically determined by the access pattern of individual
pages. ThyNVM uses cache-line level mapping for pages with poor locality to reduce NVM writes,
and page-level mapping for pages with high locality to decrease metadata overhead. However, one
bottleneck of ThyNVM is the small number of cache-line level mappings that can be stored in the
limited hardware space. The cause of the problem is that each cache-line mapping contains at least
one full memory address to record which cache line is mapped. After optimization, it still requires
at least 42 bits, assuming 48-bit address space in the current x86-64 architecture. In contrast, our
work aims to minimize the bits to record a cache-line address mapping.

Page overlays [58] add to each page an overlay that stores modified cache lines of the page. This
solution widens physical addresses, modifies TLB and incurs complex cache line management
(e.g., each overlay is put into a fixed-length segment, and has to migrate to a larger one if the
overlay outgrows the segment). Overall, the cache line mappings still require 352 bits per page in
most cases. In contrast, we aim at a simple, scalable mechanism with minimal software/hardware
modifications (more details in Section3.5).

3 DESIGN
This section describes our dual-page checkpointing mechanism for a persistent memory system.
The mechanism constantly maintains a consistent checkpoint of the whole memory in NVM. Our
design breaks the tradeoff in traditional hardware checkpointing systems and achieves both min-
imal extra NVM data writes and minimal hardware metadata overhead. Our key insight is that
cache-line-level mappings can be compactly stored and efficiently managed by confining their
scope to dirty pages and associating them to the page-level mappings.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:6 S. Wu et al.

3.1 Epoch and Consistency
Our solution follows an epoch model as most checkpointing schemes do. The whole system exe-
cution is divided into successive epochs [10, 56]. Each epoch consists of a fixed-length time period
of normal execution, and a checkpointing period to stall the system and generate a checkpoint
of the whole memory.2 The checkpoint contains necessary CPU states for resuming the system
execution upon recovery.

The failure model we adopt is identical to Whole-System Persistence [42] and ThyNVM [56]:
when a crash or failure occurs, the system recovers by resuming execution from the checkpoint in
NVM. If the system interacts with a client, then the software should acknowledge any operation
(e.g., persistence of a transaction) after the operation is checkpointed. This behavior is similar to
group commit and has been adopted by external synchrony [43] and DudeTM [36].

We store and only store two versions of data in NVM, the checkpoint version and the work-
ing version. The two versions of data only diverge when the data is updated within an epoch;
otherwise, they share the same data in NVM. When the two versions diverge, we need to install
an address mapping in the memory controller to record the addresses of both versions. By that
mapping, subsequent memory accesses can find the right working version of the data.

3.2 Dual-Page Mapping
Our checkpointing mechanism is efficient in two senses: (1) A cache-line writeback to NVM from
CPU requires minimal extra write, which has strong implications on both performance and en-
durance of NVM. (2) We minimize the hardware space overhead to track cache-line level mappings.

To realize such efficiency, the key idea is to maintain page-level mappings in a table of the
memory controller and embed cache-line level mappings in per-page bit vectors. This idea leads
to the design of dual-page mapping, where a logical page is mapped to two physical NVM pages.
We refer to one page at its home location as the base page, and the other page, which is allocated
in a specialized area, as the derivative page. The mapping information is stored in the memory
controller so that any NVM access can look up the mapping and visit either the base page or the
derivative page.

In addition to pages, we need cache-line level mappings to avoid the extra copy of clean data
in CoW, and we have to store these mappings in a space-efficient form. Our solution is to avoid
storing full cache-line address mappings. Instead, we reuse page-level mappings, and associate
two bit vectors to each page mapping. The kth bit of a vector corresponds to the kth cache line
of the page. The first bit vector records checkpoint position, i.e., whether each cache line has its
checkpoint in the derivative page (set to 1) or in the base page (set to 0). The second bit vector
records dirtiness, i.e., whether each cache line is dirty (set to 1) or not (set to 0) in the current
epoch. In this way, we manage to use 2 bits to store all necessary mapping information for a
cache line. As the page addresses are known, we only need to determine in which page a version
of the cache line locates according to the two-bit state. Then, we can calculate the cache line
address.

Figure 2 illustrates all four states of cache lines, numbered – , and how they transfer
between each other. A cache line has two versions in the base page and the derivative page,
respectively.

Initially, if a cache line is not modified in an epoch, it acts as both the checkpoint and the working
data (at this time, the derivative page may be not allocated yet). That is the state of on the left
side, where the cache line locates in the base page, and it is not dirty yet, so the state in the two bit

2We currently assume the memory controller notifies the CPU to do so. It is also possible to offer a CPU instruction to OS
to trigger it.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:7

Fig. 2. Cache-line states in dual-page mapping. We use a (checkpoint position, dirtiness) tuple to
denote the two bits of a state.

Fig. 3. A page through consecutive epochs of dual-page checkpointing.

vectors is (0, 0). Now suppose a write request arrives, as the checkpoint data cannot be overwritten
for consistency protection, the new value should be put in the derivative page as separate working
data, so the state of transfers to .

In the state of , the working data locates in the derivative page, and it is dirty. Thus, the bits
of this state is (0, 1). If more writes to are received in the same epoch, then these writes can
modify the working data directly, and the state of the cache line does not change. However, when
the epoch ends and a new checkpoint is generated, the working data becomes part of the new
checkpoint, so the state of the cache line will transfer to .

The state of has two bits set to (1, 0), as the checkpoint locates in the derivative page and it is
clean in the new epoch. Suppose now the cache line is to be modified, then the state shall transfer
to , whose bits are (1, 1). It follows a similar path as → . keeps the state in the same
epoch, because the dirty working data can be modified directly. Then after the epoch ends, it will
transfer to .

From the above process, we can see that the dual-page mapping realizes the two goals of effi-
ciency: (1) A cache line writeback is mapped to a proper location without incurring any additional
NVM data writes as logging or CoW does. The only requirement is to persist the mappings in
checkpointing as well, which brings about only a few bits per cache line of NVM write on average.
(2) The storage of cache-line level mappings is as low as 2 bits per mapping.

3.3 Execution and Checkpointing
To better illustrate how cache-line state transfers are aligned with epochs, we show the dual-page
checkpointing and execution process with an example page in Figure 3. We focus on four cache
lines in the page and examine their states through three consecutive epochs. We pick up three
points in the timeline to explain.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:8 S. Wu et al.

When the first epoch finishes checkpointing, we assume the page is clean, and all cache lines
are in the base page. There is no derivative page for it yet. Each cache line is in State of Figure 2.

During the execution period of the second epoch, any NVM write to the example page triggers
allocation of the derivative page. Particularly, suppose the first and fourth cache lines are modified,
then the new values are written to the derivative page as separate working data. The checkpoint
and working data for the two cache lines diverge as shown in ⃝2 . Note that unlike logging or
page-level CoW, our mechanism does not copy any extra data.

When it comes to the third epoch, cache lines that were working data have been checkpointed.
Suppose the first and fourth cache lines of the deviation page at ⃝3 are not modified in this third
epoch, they are both the checkpoint and working data. Meanwhile, cache lines that acted as a
checkpoint in the previous epoch are no longer in use in the current epoch.

3.4 Recovery
In a checkpointing period, all dirty cache lines in CPU caches or a DRAM cache layer have to be
written back to NVM. Besides, we need to persist the following information, referred to as recovery
context, in a particular area in NVM: (1) CPU state, including registers and store buffers; (2) the
address mappings; (3) bit vectors. Note that they cannot overwrite their previous version in NVM,
because that version would be used if the current checkpointing period itself is interrupted by a
crash. Instead, they should write to a standby location. As long as the standby copy is finished, the
previous version is reclaimed. At that time, a new checkpoint is deemed to be safely generated.
After that, we can start the next epoch. On recovery, we restore from NVM the CPU state, the page
mappings and bit vectors (i.e., the recovery context). Then the system resumes running [42].

The correctness of recovery is guaranteed by both isolation and atomicity of the checkpointing
process. Dual-Page mapping ensures isolation, because the checkpoint data is never overwritten
by working data during execution. Atomicity is realized by setting a pre-defined switch pointer
that references the valid version of recovery context (containing all address mappings). The pointer
is reset after all dirty data of an epoch is written back to NVM, and the corresponding recovery
context is fully persistent. Atomically switching to the new version of recovery context denotes
the end of the checkpointing (also the end of the epoch).

3.5 Comparison to Other Designs
A common goal of ThyNVM [56] and our design is to utilize both fine-grained and coarse-grained
mappings. But we introduce a different design paradigm than ThyNVM. ThyNVM employs both
mapping granularities in independent tables for separate data areas. It uses 42 bits index for each
dirty cache line and 36 bits index for each dirty page respectively. In contrast, we integrate both
granularities into one table for all data. Consequently, our design reduces the space overhead of
storing a fine-grained mapping from 42 bits to 2 bits, and thus solves the bottleneck of ThyNVM in
its limited number of fine-grained mappings. Moreover, we largely simplify the design by avoiding
costly page migrations between separate data areas in ThyNVM.

Page overlays [58] introduce a complex cache-line management mechanism to page-level map-
pings. Let alone extensive hardware changes (e.g., widened physical address, modified TLB), di-
rectly applying page overlays to checkpointing would lead to inefficient design. Page overlays
checkpointing use a segment to store dirty cache lines for each dirty page. Each segment uses 64
5-bit slot pointers and a 32-bit vector indicating the free slots within a segment total of 352 bits.
For each new epoch, it has to write existing overlays back to regular pages, incurring lots of extra
writes. Compared to page overlays, our design not only reduces the metadata size from 352 bits per

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:9

page3 to 64 bits but also largely simplifies the metadata management by avoiding overlay segments
and their migration.

Our design stores metadata (address mappings) around 20×/5× more space-efficiently than
ThyNVM/page overlays in the memory controller, while the tradeoff is that our design incurs extra
space in NVM storage. In practice, such additional space is only 3.7% of the NVM.4 Considering
the space capacity of the memory controller is much more scarce than NVM, our position in the
tradeoff is favorable and advantageous.

3.6 Discussion: OS and Applications
This article focuses on the architecture design, but here we briefly discuss the potential influence on
the operating system (OS) and applications. As described in Sections 3.1 and 3.4, our basic model is
to resume the software execution from the latest valid checkpoint. We also guarantee to do check-
pointing in any period of t CPU time. The software can adopt this model in two ways. First, the OS
buffers output of an application to external systems (e.g., an acknowledgment to a client) for at least
t time so that any externally visible output is not invalidated or duplicated when resuming from a
checkpoint. In this case, the applications do not need to be modified. Such an approach has been
practiced by external synchrony [43]. Second, we let applications manage their output to external
systems. An application has to group, for example, committed transactions by time and acknowl-
edge the persistence of any group older than t . That is equivalent to a traditional group commit
behavior. Also, note that there is no problem with a long transaction spanning multiple epochs,
because the transaction can resume in recovery as well. The only requirement is that its output
is buffered until the transaction has been checkpointed. Dual-Page checkpointing supports appli-
cations to adjust the length of the epoch. Transaction applications should decide the epoch at the
beginning of execution, to ensure that most of the transactions can finish in an execution period.

In either case, we do not assume that peripheral device states (e.g., the network card state) are
checkpointed [55, 56], because doing so is costly [42]. That means the software may encounter
device errors upon recovery. Handling those device errors should not affect the persistent data
consistency. Such an assumption is practical and widely adopted (e.g., by most transactional stor-
age systems) [49, 67, 77].

Finally, the output buffering behavior enlarges the response latency of interactive applications.
Since the checkpointing interval t also influences the throughput of applications (Section 5.6), it
makes a tradeoff between latency and throughput, similar to that of a traditional group commit
optimization. A high checkpointing frequency or short interval drags the throughput but enables
faster responses. In practice, it can be determined by users’ requirement such as SLA. Particularly,
we can set the checkpointing interval as the required response time minus the network round-trip
delay.

4 IMPLEMENTATION
In this section, we describe an implementation of dual-page checkpointing on a DRAM + NVM
hybrid persistent memory architecture. We will first overview the architecture, then discuss im-
plementation details, and finally give a summary by putting them together.

4.1 Architecture Overview
Both academia and industry show a trend to construct a hybrid DRAM+NVM memory system, as
the performance and endurance of NVM is worse than DRAM. Figure 4 shows the hybrid memory

3One implication of Figure 1 is that, in most workloads, less than half of a dirty page is updated. We regard this as the
typical case and calculate the space overhead of page overlays.
4We allocate 300MB derivative pages for 8GB NVM.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:10 S. Wu et al.

Fig. 4. Architecture overview of dual-page checkpointing.

architecture we use. It adopts DRAM as the cache of NVM. The DRAM cache can filter a significant
portion of memory accesses [20, 52], which is a great help for memory performance and NVM
lifetime. Our design can also be easily extended to the other hybrid memory architecture that
DRAM and NVM share physical address space.

In the memory controller, Cache Page Table (CPT) records which page is cached in DRAM. Each
CPT entry is associated with a bit vector to denote which cache line of the page is dirty. Therefore,
when a DRAM-cached page is checkpointed, only dirty cache lines are written back to NVM.

Derivative Page Table (DPT) records the metadata of dual-page mapping, as described in
Section 3.2. DPT and NVM handle two sources of data writes: evicted dirty DRAM pages during
the execution period, and flush of dirty DRAM pages during checkpointing. The derivative page
pool in NVM is used to allocate and manage the derivative pages. Next, we elaborate main
functionalities and components of the system.

4.2 Address Translation
We introduce an additional address translation layer to the memory controller, as depicted in
Figure 4. It translates a physical address to a hardware address according to dual-page mapping.
The hardware address space has the same size as NVM, and is split into two regions, the major
base region and the derivative page pool. This address translation approach makes our work
transparent to other layers of the system, minimizing software and hardware modifications.

The physical hardware address translation is done by querying CPT and DPT. All accesses are
first checked against CPT. The DRAM cache typically has a high hit ratio and can filter most mem-
ory accesses. Only missed accesses are looked up in DPT, and go through the dual-page mapping
path to NVM. Such misses also trigger page replacement in the DRAM cache. Our implementation
uses a LRU policy for cache replacement (Section 5.1.1).

4.3 Metadata Management
DPT stores page-level mappings and bit vectors in the memory controller for dual-page mapping.
When a page is managed by dual-page mapping, we allocate a derivative page and a corresponding
DPT entry for it. A full DPT entry has four fields, as listed in Table 2:

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:11

Table 2. DPT Entry Structures in Different Storage Media

Location BPI CPBV DBV Valid
Controller 36 bits (64 bits) (64 bits) 1 bit

DRAM — 64 bits 64 bits —
NVM 36 bits 64 bits — 1 bit

Parentheses denote bits that can be omitted and offloaded to slower
storage.

Fig. 5. Derivative page table management.

(1) Base Page Index (BPI), storing the higher-order bits of the physical address of a page;
(2) Checkpoint Position Bit Vector (CPBV), indicating whether the checkpoint of each cache

line of the page is physically stored in the base or the derivative (every bit represents a
cache line);

(3) Dirty Bit Vector (DBV), indicating whether each cache line of the page has been modified
in the current epoch (every bit represents a cache line);

(4) Valid flag, denoting whether the DPT entry is in use.

The memory controller contains a small piece of SRAM to store the metadata [52, 53, 56, 58].
Ideally, all bit vectors can be stored in the memory controller so that address translation for indi-
vidual cache lines is very fast. However, SRAM is expensive and less dense than DRAM, thus we
can put the metadata in DRAM and cache frequently used entries in the memory controller.

BPI and the valid flag are used by every NVM access so that they are completely stored in the
memory controller. However, the space-consuming bit vectors (CPBV and DBV) are only used
when a NVM access matches a BPI. So, by default, we store the bit vectors in DRAM, and only
cache the bit vectors for one DPT entry in the memory controller, as shown in Figure 5. It turns
out that such a small cache is very effective, because both DRAM cache replacement and check-
pointing are done in the page granularity. Two bit vectors, once cached, can serve all cache lines
of a page. According to our evaluation in Section 5.5, compared to an ideal setup that stores all
bit vectors in the memory controller, our current implementation is only 3% lower on average.
Through this optimization, only a small part (37 bits) of a DPT entry need to be stored in the mem-
ory controller, which reduces the storage space by 77.6%. As Table 3 shows, the metadata storage
efficiency of dual-page checkpointing is one order of magnitude better than the two state-of-the-
art checkpointing systems.

Figure 5 shows the management mechanism of DPT during execution period and checkpointing
period. The metadata in controller and DRAM is used to record page states of dual-page mapping,
while the metadata in NVM is only used for backup and recovery. The DPT entries are stored
in controller, DRAM, and NVM sequentially. During execution period, the DPT in controller and
DRAM is modified dynamically when the dirty cache lines are written back to NVM (more details

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:12 S. Wu et al.

Table 3. Comparison of Metadata Space Overhead

System Hardware Space Overhead
ThyNVM [56] 42 bits per cache-line

Page Overlays [58] 352 bits per page
Dual-Page Checkpointing 37 bits per page

Fig. 6. Derivative page management.

in Figure 8). The modifications of DPT entries in DRAM will not be flushed back to NVM. During
checkpointing period, the DPT in controller and DRAM will be written back to NVM for backup
after all dirty pages in DRAM are written back to NVM, as shown in Figure 7. Such a NVM version
of DPT stores CPBV for locating the checkpoint upon recovery. It does not store DBV, because the
dirtiness information is unnecessary for recovery.

4.4 Derivative Page Management
Naively mandating derivative page management to OS would cause frequent interrupts, impairing
the system performance. We implement a simple hardware-based derivative page management
mechanism, which does not involve interrupts. We also design an optimization of pre-allocation.

4.4.1 Derivative Page Allocation. When a derivative page allocation request is received, the
derivative page pool returns a free derivative page. The number of pages in the derivative page
pool equals to the number of entries in the DPT. Initially, all pages in the derivative page pool
are free, and all entries in the DPT have invalid flags. We allocate them one by one as Figure 6(a)
shows.

4.4.2 Derivative Page Reclaim. The derivative page pool can be saturated as the dirty data writ-
ten back to NVM increases. When there are no free derivative pages in derivative page pool, we
reclaim clean pages as Figure 6(b) shows. To do so, the memory controller scans the DPT to find
a clean page, and writes all its checkpoint cache lines in the derivative page back to the base page.
Such writebacks do not violate consistency, because any clean page has only one version of data
that acts as both the checkpoint and the working data, and those cache lines in the derivative page
hold that version. Only after all writebacks are done, the derivative page can be reclaimed and its
DPT entry is invalidated.

A clean page is either uncached in DRAM as Page A in Figure 6(b), or cached as Page C. Since
most frequently used pages are cached, our policy is to first choose uncached pages to reclaim.

A derivative page allocation may fail if we are unable to find a clean page (we call this situation
an allocation failure). That means all pages in the pool have been modified during the current epoch
and there are no page for allocation in derivative page pool. In that case, we have to immediately

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:13

start checkpointing, which will persist all those dirty pages as a new checkpoint and make them
clean for the next epoch. Then all pages in the pool become reclaimable again.

4.4.3 Derivative Page Pre-allocation. The above reclaim process has two influences on deriva-
tive page allocation. First, the allocation is on the critical path. Before performing the NVM write,
the controller has to wait for the allocation to finish. If the allocation entails an eviction, then the
latency would be relatively large. Second, it is impossible to remedy a failed allocation. Although
checkpointing can make all derivative pages clean and ready for allocation, it does not help in the
following situation. If one allocation fails, then triggering checkpointing would cause more NVM
writes, which would possibly cause more allocation failures.

Therefore, we pre-allocate derivative pages when their DRAM cache pages get dirty. Such an op-
timization is fairly efficient, because it moves the allocation overhead off the critical path, so that
allocations can be conducted in parallel with applications execution. To perform pre-allocation,
we need to detect whether the physical address of a DRAM write hits DPT. This detection is per-
formed in the background without blocking DRAM requests. Thus, the allocation is totally off the
critical path, and leaves small influence on memory access latency, because it mainly communi-
cates with NVM while most memory requests are served by the DRAM cache during an execution
period.

As we parallelize the allocation process and DRAM writes, some DRAM pages may get dirty
before the derivative page pool reports an allocation failure. As a result, the dirty DRAM pages
may have no derivative pages to accommodate them in the write path. We treat this rare situation
in a special way. Dirty cache lines of those pages are logged into a buffer area in NVM, so that we
do not lose data. We observed that the frequency of such pre-allocation failures is only 1.17 per
epoch (0.01% of all per-allocations), resulting in negligible performance impact. Also, the space of
10 cache lines is enough for the special buffer area, costing only 720B.

4.5 Putting It All Together
4.5.1 During Execution. Control flow of Dual-Page checkpointing is shown in Figure 7. When

Page A is evicted from DRAM by replacement algorithm, if Page A is clean, then Page A will be
discarded directly. If Page A is dirty, then there are three possible paths in dual-page checkpointing
system.
⃝1 If corresponding Derivative Page of Page A exists in NVM, then dirty cache lines of Page

A can be written back to NVM directly by Address Translation in Section 4.2. The write path is
shown in Figure 8.
⃝2 If Page A has no derivative page in NVM, then Dual-Page checkpointing will send a derivative

page allocation request to Derivative Page Allocation (Section 4.4.1) mechanism. If there are free
pages in derivative page pool, then Dual-Page checkpointing will allocate a derivative page to Page
A, then, write dirty cache lines of Page A back to NVM (similar to ⃝1 ).
⃝3 If Page A has no derivative page in NVM and there are no free pages in derivative page pool,

then Dual-Page checkpointing will try to reclaim an existing derivative pages (Section 4.4.2). If
Dual-Page checkpointing finds a clean page, then it will reclaim corresponding derivative page
and allocate this derivative page to Page A, then write dirty cache lines of Page A back to NVM
(similar to⃝1 ). If Dual-Page checkpointing cannot find a clean page, then it will return a derivative
page allocation failure and immediately start checkpointing.

As illustrated in Figure 8, we show the read and write paths and metadata computation in detail.
In a write path, a dirty page, Page A, is written back to NVM. Dual-Page checkpointing first updates
the Dirty Bit Vector in DPT according to individual dirty cache lines of Page A. Then, it calculates
a temporary bit vector P by Equation (1). The value of P indicates the position of working data. If

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:14 S. Wu et al.

Fig. 7. Control flow of (a) replacing a page back to NVM during execution period and (b) flushing all dirty
data to NVM during checkpointing period.

Fig. 8. Read and write path.

the kth bit of P is 1, then the kth cache line of the physical page will be written to the kth cache
line of the derivative page. Otherwise, it will be written to the base page:

P = Dirtiness ⊕Checkpoint position. (1)

In a read path, Page B will be read from NVM into DRAM. Dual-Page checkpointing finds cache
lines from the base page and derivative page of Page B according to DPT. It only needs to calculate
P by Equation (1), and reads cache lines from NVM according to the value of P and writes them to
the DRAM page.

4.5.2 During Checkpointing. Dual-Page will flush all dirty data to NVM during checkpointing
period, as shown in Figure 7. There are four steps:⃝1 Flush dirty data from CPU to DRAM.⃝2 Write
dirty pages from DRAM back to NVM (similar to the path during execution period). ⃝3 Back up
the CPU state and DPT (as described in Section 4.3) in NVM. ⃝4 Set DBV to zero, which means all
pages in DRAM turn clean at the beginning of an epoch. Update CPBV so that the working data
is set as checkpoint, as it becomes the checkpoint of the next epoch. After that, we can start the
next epoch.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:15

Table 4. Simulation Configuration

4.6 Discussion
4.6.1 Complexity and Scalability. To our knowledge, the hardware space/complexity of our de-

sign is the lowest of its class (compared to ThyNVM and page overlays). Currently, we implement
most logic in the memory controller. We hope hardware development will make our design more
affordable. Meanwhile, integrating page allocation with OS (or FPGA as demonstrated by KV-
Direct [31]) is our future work.

For huge NVM, our work can scale well for two reasons: (1) data updates typically have locality
even though NVM is huge, so that each single epoch hardly fills out DPT unreasonably fast; (2)
some DPT entries can be offloaded to DRAM from the memory controller, with minimal overhead
(we tested this case and the result is similar to Section 5.5.2).

4.6.2 Wear-Leveling. Because of the limitations of write endurance, wear-leveling techniques
are important to NVM. The wear-leveling issues of dual-page checkpointing can be easily solved
by related works. On the one hand, the technique in Reference [56] can solve the cacheline level
wear-leveling issue in a NVM page. All cachelines of a NVM page can be periodically shifted.
That only entails extra metadata of 6 bits per page, to record the cacheline index offset. On the
other hand, there are many available page-level wear-leveling techniques for NVM. DPP pool only
requires a 300MB sequential space and allows OS to adjust its position flexibly based on the pages
wear-out in NVM.

5 EVALUATION
5.1 Methodology

5.1.1 Experiment Platform. Our experiments run on MARSSx86 [46], a full system simulator
for x86-64 architecture. We set up a quad-core CPU with out-of-order pipeline. We adopt Hybrid-
Sim [63] to simulate the hybrid memory system, which consists of both DRAM and PCM. It takes
DRAM as the cache of PCM and adopts LRU for the cache replacement algorithm. DRAM is a
256MB DDR3 device simulated by DRAMSim2 [57], and PCM is simulated by NVMain [48] with a
size of 8GB. Table 4 provides a more detailed description of the simulated system’s configuration.

We proposed two implementation strategies about the latency of DPT and CPT: (1) use n RAMs
instead of one to enable parallel lookups, which does not require extra storage but increases hard-
ware complexity and power consumption. (2) use a k-bit index in each RAM, which, however,
sacrifices full associativity. A manufacturer can determine n and k according to practical con-
straints. We assume n = 256 and k = 4 (whose feasibility was confirmed by a hardware engineer),
so the lookup overhead is set to 16 cycles in our simulator. Furthermore, we also evaluated 32-cycle
lookup, which introduced only around 2% slowdown.

5.1.2 Evaluated Systems. We compare our checkpointing solution with a baseline, four typical
hardware checkpointing systems and two software transaction systems. They are all deployed to
the above platform, with the same setup unless noted otherwise.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:16 S. Wu et al.

Table 5. Workloads

Name Workload DRAM Cache
Miss Rate

Read/Write
Ratio

Memory
footprints

SPEC1 leslie3d sjeng sphinx3 wrf 16.08% 4.54 1,199MB
SPEC2 GemsFDTD lbm milc soplex 5.43% 1.80 1,473MB

PR PageRank 17.61% 2.23 1,548MB
CD Community Detection 15.14% 1.91 1,357MB
CC Connected Components 5.30% 2.27 1,208MB
Ann Ann 13.26% 2.15 773MB

Flann Flann 12.58% 1.55 576MB
TATP TATP (hash table) 56.72% 2.47 1,247MB
TPCC TPC-C (hash table) 53.96% 1.72 864MB
Echo Echo 43.57% 1.43 818MB

N-Store N-Store 35.82% 1.38 1,090MB

• Baseline. The bare platform above, without any mechanism for crash consistency or data
persistence.

• Logging. An undo-logging-based hardware checkpointing system that operates data at
cache-line granularity. For fairness, we optimize it by adding an ideal, unbounded mapping
table to avoid logging multiple writes to the same address in one epoch [61].

• CoW. A copy-on-write-based hardware checkpointing system that manages data at the page
granularity. It also uses an ideal, unbounded mapping table.

• ThyNVM. A port of ThyNVM [56] to our simulator. We set the size of its fine-grained address
translation tables to the same size as our DPT, but give extra space for its coarse-grained
address translation tables.

• PageOverlay. An implementation of key mechanisms of page overlays [58], applied to the
checkpointing use case.

• DudeTM [36]. A software durable transactional memory library. DudeTM requires a rela-
tively large DRAM, so we give it 4GB DRAM so that it reaches its best performance.

• NVML [21]. Intel’s undo-logging-based software transaction library for persistent memory.
NVML requires that CPU can directly access both DRAM and NVM, so DRAM is not con-
figured as the cache of NVM in this case.

5.1.3 Workloads. The workloads consist of two write-intensive combinations of SPEC
CPU 2006 benchmarks [62], three algorithms on GraphChi [27], two common machine-learning
algorithms [39, 40], two typical transaction workloads [60, 65], and two persistence workloads
from WHISPER [41], as listed in Table 5. By default for each workload, we run a warm-up phase
and evaluate 1.5B instructions with checkpointing per 30M cycles.

5.2 Comparison with Hardware Systems
We compare dual-page checkpointing with the hardware checkpointing systems in terms of
both execution time and NVM write traffic. We first show basic facts and then summarize main
observations.
Execution Time. Figure 9(a) shows the performance of all hardware systems normalized to that of
dual-page checkpointing. The average slowdown of Logging, CoW, ThyNVM, and PageOverlay,

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:17

Fig. 9. Performance of hardware systems under various workloads (normalized to dual-page checkpointing).

Table 6. Checkpointing Count (Ckpt Count) and the Ratio of Total Checkpointing Time over Total
Execution Time (Ckpt Time Ratio) for Each Workload Running 1.5B Instructions

over dual-page checkpointing, is 1.41×, 1.47× 1.18×, and 1.37×, respectively. Meanwhile, dual-
page checkpointing only introduces 14% overhead compared to the baseline.
NVM Write Amount. Figure 9(b) depicts the amount of NVM writes occurred under different
workloads. All the numbers are normalized to dual-page checkpointing. The average NVM write
amounts of Logging, CoW, ThyNVM, and PageOverlay are 1.80×, 2.68×, 1.40×, and 1.62× that of
dual-page checkpointing, respectively.
Checkpointing Count and Time. Table 6 lists the checkpointing count (Ckpt Count) and the
ratio of total checkpointing time over total execution time. Each workload runs for 1.5B instruc-
tions, and the evaluated system does checkpointing every 30M cycles. ThyNVM can overlap its
execution phases and checkpointing phases, while other systems, Logging, CoW, PageOverlay, and
Dual-Page, have to stall the application during checkpointing.
Analysis. Based on Figure 9 and Table 6, we can make the following observations.

• In general, the amount of NVM writes largely affects the hardware system performance.
For example, Logging outperforms CoW in SPEC1, PR, CD, TATP, TPCC, Echo, and N-Store
as shown in Figure 9(a). That is because the cache-line granularity of Logging leads to less

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:18 S. Wu et al.

NVM writes than CoW at the page granularity, as shown in Figure 9(b). Logging can execute
more instructions per 30M cycles and finish faster than CoW, so the checkpointing count
of Logging is less and the checkpointing time ratio is lower than CoW, as shown in Table 6.
In SPEC2 and CC, CoW writes less to NVM than Logging, and thus has better performance.
The reason is that those workloads have high spatial locality such that CoW and Logging
checkpoints a similar amount of data. However, CoW records much less metadata, at the
page level, than Logging whose checkpoint metadata is at the cache-line level. CoW can ex-
ecute more instructions per 30M cycles and finish faster than Logging, so the checkpointing
count of CoW is less and the checkpointing time ratio is lower in SPEC2 and CC.

• In certain workloads that are not very write-intensive (e.g., Ann and Flann), all systems
show similar performance, checkpointing counts, and checkpointing time ratios, but they
still incur different amounts of NVM writes. Saving on NVM write traffic, even though
having little impact on application performance, helps extend the limited lifetime of NVM
devices.

• Under most workloads, ThyNVM and PageOverlay outperform Logging and CoW. This con-
firms with the results in the original papers of ThyNVM [56] and PageOverlay [58].

• ThyNVM implements a new technique that can overlap the execution phases and check-
pointing phases, but Dual-Page still outperforms ThyNVM. That is mainly because
ThyNVM has more NVM write amount than Dual-Page in most workloads. On the one
hand, to implement the overlap technique, ThyNVM needs to keep multiple versions of
checkpointing and execution data in NVM, which leads to more NVM space overhead and
NVM write amount. On the other hand, ThyNVM supports cache-line granularity check-
pointing for only a small part of dirty cache lines because of the limitation of metadata
overhead in memory controller. For the workloads with poor locality (e.g., TATP, TPCC,
Echo, and N-Store), ThyNVM still suffers from additional write problem, as shown in
Figure 9(b).

• In SPEC2, PR, and CD, PageOverlay has the similar amount of write operations compared
with ThyNVM and Dual-Page, but the performance is different. This is caused by another
influential factor whether the NVM traffic happens in the critical path of memory writes.
Dual-Page and ThyNVM can safely acknowledge a write-back before actual NVM writing
during epoch execution. In contrast, PageOverlay can only do so when no page overlays
have to be moved to larger segments; otherwise, such movement is in the critical path.
Table 6 shows that the checkpointing count of Dual-Page is less and the checkpointing time
ratio is lower than PageOverlay in SEPC2, PR, and CD. This explains why PageOverlay may
incur a similar NVM write amount but result in worse performance.

• In all workloads, dual-page checkpointing exhibits a remarkably better performance, writes
less to NVM, and has the minimal checkpoint count and checkpointing time ratio than all
other hardware checkpointing solutions.

In conclusion, since dual-page checkpointing manages checkpoint data in cache-line granularity
and compacts metadata to the page level, it incurs a minimal amount of NVM writes and enjoys
the best performance among state-of-the-art hardware checkpointing systems.

5.3 Comparison with Software Systems
We compare the performance of dual-page checkpointing with the software systems. We imple-
mented TATP and TPCC benchmarks using the transactional memory APIs of DudeTM and NVML.
In this experiment, TATP and TPCC each are run with four working threads. We also modified the

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:19

Fig. 10. Performance comparison between hardware-based and software-based data persistence.

code of the two benchmarks so that they can run on our hardware checkpointing system for data
persistence (see Section 3.1).

For fairness, we set our checkpointing interval equal to the group commit interval of DudeTM,
which is 16 ms. That means the response latency on DudeTM is basically the same as that on
dual-page checkpointing. The latency on NVML is much lower (96–323 µs) as every transaction is
acknowledged synchronously.

Next, we focus on the throughput and the amount of NVM writes of the three evaluated systems.
Throughput. From Figure 10, we can see that our hardware-based solution is 13.6× and 24.9×
faster than DudeTM and NVML, respectively, in terms of throughput.
NVM Write Amount. Figure 10 shows that dual-page checkpointing incurs a larger amount of
NVM writes than DudeTM, and NVML has the most NVM writes. That is because dual-page check-
pointing has to flush CPU states, DPT and all the dirty data in DRAM to NVM in every epoch.
DudeTM generates redo logs in DRAM and group commit them to NVM. In addition, it performs
a log combination optimization that further reduces the amount of NVM writes. NVML generates
and records all undo logs directly on the NVM, so it incurs most NVM writes.
Analysis. The DudeTM case clearly demonstrates that, with the fast persistent memory, the soft-
ware overhead becomes dominant. Such an observation confirms with the finding in the original
paper of DudeTM [36] (i.e., log flushing is not the bottleneck of DudeTM). Our dual-page check-
pointing solution eliminates most of the software overhead and significantly improves the system
performance. This is achieved by utilizing the natural address translation capability of the mem-
ory controller (a software implementation is not easy to do) and the efficient dirty data tracking
mechanism in dual-page checkpointing.

5.4 Impact of Derivative Pages
Our solution needs to reserve a part of NVM as the derivative page pool (DPP) for storing de-
rivative pages. The question is how the DPP size influences overall system performance. A too
small size may increase the chance of derivative page allocation failures, thus degrading system
performance and increasing NVM writes. Meanwhile, a large DPP would reduce the available NVM
space to applications. We consider both system performance and NVM write amount in making
the choice.
Execution Time. Figure 11(a) shows workload execution time with dual-page checkpointing of
different DPP sizes. The smallest size is 100MB in our experiments, but it only degrades the per-
formance by 3.2%. For write-intensive workloads, the smallest pool size (100MB) only results in
3% performance overhead compared to the largest pool size (500MB). This demonstrates the ef-
fectiveness of our derivative page management mechanism. Particularly, most of derivative page

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:20 S. Wu et al.

Fig. 11. Performance with different DPP sizes (normalized to pool_size = 500MB).

pre-allocation and merge operations are off the critical path, so it has limited influence on execu-
tion time (see Section 4.4).
NVM Write Amount. Figure 11(b) shows the relative amount of NVM writes for various work-
loads as the size of DPP changes. Shrinking DPP increases the amount of NVM writes, because
clean derivative pages are frequently merged back to their base pages to accommodate dirty data.
For write-intensive workloads, a 100MB derivative page pool increases the NVM write amount by
up to 1.44×, compared to a 500MB size.
Analysis. We observe that shrinking DPP has a small impact on the system performance, but a
large impact on the NVM write amount. Overall, we suggest reserving 300MB for DPP (i.e., 3.7% of
the total NVM in our setup), because it incurs up to 20% extra writes, which is less than the average
extra writes incurred by other evaluated systems, and those writes impose negligible influence on
system performance. As NVM can supply storage class capacity, such a small extra space overhead
is acceptable.

5.5 Metadata Overhead
We evaluate the metadata overhead and the impact of our three-version DPT optimization (i.e.,
the NVM version, the DRAM version, and the memory controller version) on the performance.

5.5.1 Space Overhead. Every derivative page has an entry in DPT, and the size of DPP deter-
mines the size of DPT. As discussed above, the best-fit size for DPP is 300MB, so the sizes of NVM,
DRAM and memory controller versions of DPT are 947KB, 1.17MB, 347KB respectively. Such space
overheads are trivial compared to the NVM capacity (8GB) and DRAM capacity (256MB). Even for
SRAM in the memory controller, hundreds of KBs are acceptable [52].

5.5.2 Performance Overhead. To show the impact of DPT on system performance, we evaluate
the systems with different DPT cache sizes. We follow the default configuration where DPP is
300MB and DPT stores 76,800 entries. Below is a list of cache sizes we evaluated.

• All Metadata in MC (1.51MB). The ideal case where the full DPT is stored in the memory
controller.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:21

Fig. 12. Impact of reading metadata from DRAM on the performance of dual-page checkpointing (normal-
ized to the case when all metadata is in the memory controller).

• Optimized Metadata in MC (347KB). The optimized case where we only cache most fre-
quently used fields (Base Page Index of 36 bits and Valid Bit of 1 bit) of each DPT entry, to
reduce the space overhead of the cache in the memory controller. Dual-Page will read the
rest two fields (CPBV and DBV) from DRAM when the Valid Bit is set.

• Optimized Metadata with 10K Entries in MC (504KB). The case where optimized metadata
(BPI and VB of all DPT entries) and 10,000 (CPBV and DBV) entries are cached in the mem-
ory controller.

• 40K Entries in MC (806KB). The case where 40,000 DPT entries are cached in the memory
controller.

• 20K Entries in MC (403KB). The case where 20,000 DPT entries are cached in the memory
controller.

• 10K Entries in MC (202KB). The case where 10,000 DPT entries are cached in the memory
controller.

• All Metadata in DRAM. The worst case where all DPT entries are stored in DRAM. Dual-
Page will read the corresponding entry from DRAM when dirty pages are written back to
NVM.

We observe that, for most workloads, the performance is sensitive to the number of cached en-
tries in the memory controller. Especially for workloads with low locality (e.g., TATP and TPCC),
the performance of the worst case (All Metadata in DRAM) is 1.13× and 1.15× lower than the ideal
case (All Metadata in MC), respectively. We also observe that, for all workloads, the performance
difference is within 3% between the ideal case (All Metadata in MC) and the optimized case (Op-
timized Metadata in MC). For all workloads, the performance of Optimized Metadata with 10K
Entries is very close to the ideal case, and the performance of the optimized case is better than the
case where 40K Entries are cached in MC.

Through our optimization, a major part (77.6%) of DPT does not need to be stored in the memory
controller, without sacrificing much performance. This is very important, because the hardware
space in the memory controller is scarce and easily makes the bottleneck.

5.6 Checkpointing Interval
To show how different checkpointing intervals impact the performance of hardware checkpoint-
ing systems, we evaluate all workloads and present the results in Figure 13. We observe that the
performance of all the systems rises as the checkpointing interval is increasing. That is because
the increase of checkpointing interval enables more NVM writes to coalesce and consequently
reduces the total amount of data to be checkpointed. Another observation is that our dual-page
checkpointing system exhibits a great performance advantage over others with different check-
pointing intervals.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:22 S. Wu et al.

Fig. 13. Average execution time of workloads on different evaluated systems, over various checkpointing
intervals (normalized to dual-page checkpointing at 10M cycles interval).

Although an extended checkpointing interval leads to a better throughput, it also means a long
response latency for interactive workloads. Take an interval of 30M cycles (16ms) for example.
Whether such a latency is acceptable depends on the application requirement. In this setup, the
average checkpointing delay among workloads is between 3.7M and 4.8M cycles (12.4%–15.9%
of the interval), which degrades the throughput. All in all, the tradeoff between throughput and
latency, dictated by the checkpointing interval, is up to the users.

6 RELATED WORK
Traditional disk-based checkpointing systems [6, 14, 71, 72] backup memory data and CPU state in
disks during checkpointing. However, high-frequency checkpointing by these traditional schemes
will bring unacceptable performance overhead and I/O traffic.

DRAM-based checkpointing [50, 61] has been proposed to address the disk bottleneck. It
achieves low access latency, but the volatility of DRAM is still a problem. Although double-memory
checkpointing [76] and ReVive [50] can mitigate this problem to a certain extent, they suffer from
heavy communication cost.

Other NVM-based checkpointing solutions [11, 37, 78] address different problems with ours. For
example, the pre-copy mechanism to parallelize partial checkpointing and execution [17, 24]. In
contrast, our focus is to minimize the metadata overhead and extra writes incurred by traditional
checkpoint consistency protection techniques.

Prior works [23, 51, 61] also improved the logging technology, to obtain a better performance
than copy-on-write and store data more compactly. Shadow memory [59, 69] is another commonly
used solution, which maintains a shadow page or shadow cache line. This mechanism is similar to
undo logging, however, it supplies the ability to quickly access its shadow storage, which gives it
a higher chance to optimize checkpointing. As we explained before, however, logging and shadow
memory cause excessive extra writes if applied to a checkpointing hardware.

Approximate computing/storage [8, 68] provides a parallel approach to efficient data persistence
for in-memory applications. However, losing data quality is not free. As data loss is indeterminis-
tic, programmers have to evaluate and control the influence of data loss/approximation and may
change code accordingly. Such burden/complexity become avoidable, since our checkpointing so-
lution shows a minor 12% performance slowdown. It is up to applications to choose either approach
according to their specific demands.

7 CONCLUSION
In this article, we present the design and implementation of a novel dual-page checkpointing sys-
tem for the DRAM + NVM hybrid memory architecture. The core of our system is the dual-page

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:23

mapping scheme, which protects the checkpoint consistency. We summarize key insights and find-
ings as below.

• The checkpointing-based architectural approach to data persistence is efficient and benefi-
cial. It largely simplifies and outperforms state-of-the-art software transaction systems.

• The efficiency of our solution comes from the dual-page mapping design. It combines dual
physical pages and bit vectors to achieve space efficient cache-line level mapping and avoid
most extra NVM writes. It remarkably outperforms state-of-the-art hardware checkpointing
solutions.

• Our implementation and experiments show that the derivation page pool costs only 3.7% of
the total NVM size. Our solution also offers flexibility in choosing the checkpoint interval.

REFERENCES
[1] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E. Moreira. 2004. Adaptive incremental checkpointing for

massively parallel systems. In Proceedings of the 18th Annual International Conference on Supercomputing (ICS’04).
ACM, 277–286. DOI:https://doi.org/10.1145/1006209.1006248

[2] H. Akinaga and H. Shima. 2010. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 12
(2010). DOI:https://doi.org/10.1109/JPROC.2010.2070830

[3] Alluxio Open Foundation. 2017. Open Source Memory Speed Virtual Distributed Storage. Retrieved from http://www.
alluxio.org/.

[4] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti Tang, Daniel Lottis, Kiseok Moon,
Xiao Luo, Eugene Chen, Adrian Ong, Alexander Driskill-Smith, and Mohamad Krounbi. 2013. Spin-transfer torque
magnetic random access memory (STT-MRAM). ACM J. Emerg. Technol. Comput. Syst. 9, 2, Article 13 (May 2013), 35
pages. DOI:https://doi.org/10.1145/2463585.2463589

[5] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer
Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational data processing in spark.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD’15). 1383–1394.
DOI:https://doi.org/10.1145/2723372.2742797

[6] Austin R. Benson, Sven Schmit, and Robert Schreiber. 2015. Silent error detection in numerical time-stepping schemes.
Int. J. High Perform. Comput. Appl. 29, 4 (2015), 403–421. DOI:https://doi.org/10.1177/1094342014532297

[7] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015. REWIND: Recovery write-ahead system for
in-memory non-volatile data-structures. Proc. VLDB Endow. 8, 5 (Jan. 2015), 497–508. DOI:https://doi.org/10.14778/
2735479.2735483

[8] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Analysis and characterization
of inherent application resilience for approximate computing. In Proceedings of the 50th Annual Design Automation
Conference (DAC’13). Article 113, 9 pages. DOI:https://doi.org/10.1145/2463209.2488873

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.
2011. NV-heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. In Proceed-
ings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’11). 105–118. DOI:https://doi.org/10.1145/1950365.1950380

[10] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick
Coetzee. 2009. Better I/O through byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles. 133–146. DOI:https://doi.org/10.1145/1629575.1629589

[11] Xiangyu Dong, Naveen Muralimanohar, Norm Jouppi, Richard Kaufmann, and Yuan Xie. 2009. Leveraging 3D PCRAM
technologies to reduce checkpoint overhead for future exascale systems. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. 57:1–57:12. DOI:https://doi.org/10.1145/1654059.1654117

[12] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff
Jackson. 2014. System software for persistent memory. In Proceedings of the 9th European Conference on Computer
Systems (EuroSys’14). Article 15, 15 pages. DOI:https://doi.org/10.1145/2592798.2592814

[13] Ifeanyi P. Egwutuoha, David Levy, Bran Selic, and Shiping Chen. 2013. A survey of fault tolerance mechanisms and
checkpoint/restart implementations for high performance computing systems. J. Supercomput. 65, 3 (01 Sep 2013),
1302–1326. DOI:https://doi.org/10.1007/s11227-013-0884-0

[14] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron Brightwell. 2012. Detection and
correction of silent data corruption for large-scale high-performance computing. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis. 78:1–78:12.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:24 S. Wu et al.

[15] Balint Fleischer. 2016. Storage Class Memory in Scalable Cognitive Systems. Keynote in Flash Memory Summit.
Retrieved from https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160809_Keynote5_
Huawei_Fleischer.pdf.

[16] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes,
and Sean Quinlan. 2010. Availability in globally distributed storage systems. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’10). 61–74. Retrieved from http://dl.acm.org/citation.
cfm?id=1924943.1924948.

[17] Shen Gao, Bingsheng He, and Jianliang Xu. 2015. Real-time in-memory checkpointing for future hybrid memory
systems. In Proceedings of the 29th ACM on International Conference on Supercomputing. 263–272. DOI:https://doi.
org/10.1145/2751205.2751212

[18] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file system. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP’03). 29–43. DOI:https://doi.org/10.1145/945445.945450

[19] E. R. Giles, K. Doshi, and P. Varman. 2015. SoftWrAP: A lightweight framework for transactional support of stor-
age class memory. In Proceedings of the 31st Symposium on Mass Storage Systems and Technologies (MSST’15). 1–14.
DOI:https://doi.org/10.1109/MSST.2015.7208276

[20] Tae Jun Ham, Bharath K. Chelepalli, Neng Xue, and Benjamin C. Lee. 2013. Disintegrated control for energy-efficient
and heterogeneous memory systems. In Proceedings of the IEEE 19th International Symposium on High Performance
Computer Architecture. 424–435. DOI:https://doi.org/10.1109/HPCA.2013.6522338

[21] Intel. 2016. The NVM Library. Retrieved from http://pmem.io/.
[22] Intel. 2017. Intel Optane Technology. Retrieved from http://www.intel.com/content/www/us/en/architecture-and-

technology/intel-optane-technology.html.
[23] Ioannis Doudalis and Milos Prvulovic. 2012. Euripus: A flexible unified hardware memory checkpointing accelerator

for bidirectional-debugging and reliability. In Proceedings of the 39th Annual International Symposium on Computer
Architecture. 261–272. DOI:https://doi.org/10.1109/ISCA.2012.6237023

[24] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic. 2013. Optimizing checkpoints using NVM as virtual memory.
In Proceedings of the IEEE 27th International Symposium on Parallel Distributed Processing. 29–40. DOI:https://doi.org/
10.1109/IPDPS.2013.69

[25] Kimberly Keeton. 2017. Memory-Driven Computing. In Proceedings of the 15th USENIX Conference on File and Storage
Technologies (FAST’17). Retrieved from https://www.usenix.org/conference/fast17/technical-sessions/presentation/
keeton.

[26] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch. 2016. High-performance transactions
for persistent memories. In Proceedings of the 21st International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’16). 399–411. DOI:https://doi.org/10.1145/2872362.2872381

[27] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale graph computation on just a PC. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI’12). 31–46. http://
dl.acm.org/citation.cfm?id=2387880.2387884

[28] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating STT-RAM as an energy-efficient
main memory alternative. In Proceedings of the 2013 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’13). 256–267. DOI:https://doi.org/10.1109/ISPASS.2013.6557176

[29] B.C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, E. Ipek, O. Mutlu, and D. Burger. 2010. Phase-change tech-
nology and the future of main memory. IEEE Micro 30 (Jan. 2010), 131–141. DOI:https://doi.org/10.1109/MM.2010.24

[30] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as a scalable
DRAM alternative. In Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA’09).
2–13. DOI:https://doi.org/10.1145/1555754.1555758

[31] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen, and Lintao
Zhang. 2017. KV-direct: High-performance in-memory key-value store with programmable NIC. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP’17). 137–152. DOI:https://doi.org/10.1145/3132747.3132756

[32] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014. Tachyon: Reliable, memory speed storage
for cluster computing frameworks. In Proceedings of the ACM Symposium on Cloud Computing (SOCC’14). Article 6,
15 pages. DOI:https://doi.org/10.1145/2670979.2670985

[33] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene
J. Shekita, and Bor-Yiing Su. 2014. Scaling distributed machine learning with the parameter server. In Proceedings of
the 11th USENIX Conference on Operating Systems Design and Implementation. 583–598.

[34] Harold Lim and Shivnath Babu. 2013. Execution and optimization of continuous queries with cyclops. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data. 1069–1072. DOI:https://doi.org/10.1145/
2463676.2465248

[35] Wei Lin, Haochuan Fan, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and Lidong Zhou. 2016. STREAM-
SCOPE: Continuous reliable distributed processing of big data streams. In Proceedings of the 13th Usenix Conference

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:25

on Networked Systems Design and Implementation (NSDI’16). 439–453. Retrieved from http://dl.acm.org/citation.cfm?
id=2930611.2930640.

[36] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, and Jinglei Ren. 2017. DudeTM: Building
durable transactions with decoupling for persistent memory. In Proceedings of the 22nd International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’17). 329–343. DOI:https://doi.org/
10.1145/3037697.3037714

[37] A. Mirhosseini, A. Agrawal, and J. Torrellas. 2016. Survive: Pointer-based in-DRAM incremental checkpointing for
low-cost data persistence and rollback-recovery. IEEE Comput. Architect. Lett. PP, 99 (2016), 1–1. DOI:https://doi.org/
10.1109/LCA.2016.2646340

[38] Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia, Parthasarathy Ranganathan, and Nathan Binkert.
2013. Consistent, durable, and safe memory management for byte-addressable non volatile main memory. In Pro-
ceedings of the 1st ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS’13). Article 1, 17 pages.
DOI:https://doi.org/10.1145/2524211.2524216

[39] David M. Mount and Sunil Arya. 1998. ANN: A library for approximate nearest neighbor searching. Proceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms.

[40] M Muja and D. G. Lowe. 2014. Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern
Anal. Mach. Intell. 36, 11 (2014), 2227–2240.

[41] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M Swift, Haris Volos, and Kimberly Keeton. 2017. An analysis of
persistent memory use with WHISPER. ACM SIGOPS Operat. Syst. Rev. 51, 4 (2017), 135–148.

[42] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In Proceedings of the 17th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’12). 401–410.
DOI:https://doi.org/10.1145/2150976.2151018

[43] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn. 2006. Rethink the sync. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI’06). 1–14. http://dl.acm.org/
citation.cfm?id=1298455.1298457

[44] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel Rosenblum. 2011. Fast crash re-
covery in RAMCloud. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). 29–41.
DOI:https://doi.org/10.1145/2043556.2043560

[45] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro, Seo
Jin Park, Henry Qin, Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen Yang. 2015. The RAMCloud
storage system. ACM Trans. Comput. Syst. 33, 3, Article 7 (Aug. 2015), 55 pages. DOI:https://doi.org/10.1145/2806887

[46] A. Patel, F. Afram, Shunfei Chen, and K. Ghose. 2011. MARSS: A full system simulator for multicore x86 CPUs. In
Proceedings of the 48th ACM/EDAC/IEEE Design Automation Conference. 1050–1055.

[47] Thao N. Pham, Panos K. Chrysanthis, and Alexandros Labrinidis. 2016. Avoiding class warfare: Managing con-
tinuous queries with differentiated classes of service. VLDB J. 25, 2 (2016), 197–221. DOI:https://doi.org/10.1007/
s00778-015-0411-4

[48] M. Poremba, T. Zhang, and Y. Xie. 2015. NVMain 2.0: Architectural simulator to model (non-)volatile memory systems.
Comput. Architect. Lett. PP, 99 (2015), 1–1. DOI:https://doi.org/10.1109/LCA.2015.2402435

[49] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou. 2008. Transactional flash. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI’08). 147–160. Retrieved from http://dl.
acm.org/citation.cfm?id=1855741.1855752.

[50] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. 2002. ReVive: Cost-effective architectural support for rollback
recovery in shared-memory multiprocessors. In Proceedings of the 29th Annual International Symposium on Computer
Architecture (ISCA’02). 111–122. Retrieved from http://dl.acm.org/citation.cfm?id=545215.545228.

[51] M. Prvulovic, Zheng Zhang, and J. Torrellas. 2002. ReVive: Cost-effective architectural support for rollback recovery in
shared-memory multiprocessors. In Proceedings of the 29th Annual International Symposium on Computer Architecture.
111–122. DOI:https://doi.org/10.1109/ISCA.2002.1003567

[52] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009. Scalable high performance main mem-
ory system using phase-change memory technology. In Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA’09). 24–33. DOI:https://doi.org/10.1145/1555754.1555760

[53] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page placement in hybrid memory systems. In Pro-
ceedings of the International Conference on Supercomputing. 85–95. DOI:https://doi.org/10.1145/1995896.1995911

[54] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L.
Lung, and C. H. Lam. 2008. Phase-change random access memory: A scalable technology. IBM J. Res. Dev. 52, 4 (July
2008), 465–479. DOI:https://doi.org/10.1147/rd.524.0465

[55] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. 2017. Programming for non-volatile main memory is
hard. In Proceedings of the 8th Asia-Pacific Workshop on Systems (APSys’17). Article 13, 8 pages. DOI:https://doi.org/
10.1145/3124680.3124729

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



57:26 S. Wu et al.

[56] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur Mutlu. 2015. ThyNVM: Enabling
software-transparent crash consistency in persistent memory systems. In Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’15). 672–685. DOI:https://doi.org/10.1145/2830772.2830802 Re-
trieved from http://persper.com/thynvm/.

[57] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A cycle accurate memory system simulator. Comput.
Architect. Lett. 10, 1 (2011), 16–19. DOI:https://doi.org/10.1109/L-CA.2011.4

[58] Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C.
Mowry, and Trishul Chilimbi. 2015. Page overlays: An enhanced virtual memory framework to enable fine-grained
memory management. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA’15).
79–91. DOI:https://doi.org/10.1145/2749469.2750379

[59] Weidong Shi, H. H. S. Lee, L. Falk, and M. Ghosh. 2006. An integrated framework for dependable and revivable
architectures using multicore processors. In Proceedings of the 33rd International Symposium on Computer Architecture.
102–113. DOI:https://doi.org/10.1109/ISCA.2006.8

[60] Neuvonen Simo, Wolski Antoni, Manner Markk, and Raatikka Vilho. [n.d.]. Telecom Application Transaction Pro-
cessing Benchmark. Retrieved from http://tatpbenchmark.sourceforge.net/.

[61] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A. Wood. 2002. SafetyNet: Improving the availability
of shared memory multiprocessors with global checkpoint/recovery. In Proceedings of the 29th Annual International
Symposium on Computer Architecture (ISCA’02). 123–134. http://dl.acm.org/citation.cfm?id=545215.545229

[62] Standard Performance Evaluation Corporation. [n.d.]. SPEC CPU 2006. Retrieved from http://www.spec.org/cpu2006.
[63] Jim Stevens, Paul Tschirhart, Mu-Tien Chang, Ishwar Bhati, Peter Enns, James Greensky, Zeshan Chisti, SL Lu, and

B Jacob. 2013. An integrated simulation infrastructure for the entire memory hierarchy: Cache, DRAM, nonvolatile
memory, and disk. Intel. Technol. J. 17, 1 (2013), 184–200.

[64] Nisha Talagala. 2016. The New Storage Applications: Lots of Data, New Hardware and Machine Intelligence. Keynote
address. In Proceedings of the 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads.

[65] The Transaction Processing Council. 2017. TPC-C benchmark Version 5. Retrieved from http://www.tpc.org/tpcc/.
[66] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. 2013. Speedy transactions in mul-

ticore in-memory databases. In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13).
18–32. DOI:https://doi.org/10.1145/2517349.2522713

[67] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell. 2011. Consistent and durable
data structures for non-volatile byte-addressable memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST’11). 61–75. Retrieved from http://dl.acm.org/citation.cfm?id=1960475.1960480.

[68] Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Qual-
ity programmable vector processors for approximate computing. In Proceedings of the 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO’13). 1–12. DOI:https://doi.org/10.1145/2540708.2540710

[69] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum. 2015. Lightweight memory checkpointing. In Proceedings of the
45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 474–484. DOI:https://doi.org/10.
1109/DSN.2015.45

[70] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight persistent memory. In Proceed-
ings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’11). 91–104. DOI:https://doi.org/10.1145/1950365.1950379

[71] John Paul Walters and Vipin Chaudhary. 2007. A scalable asynchronous replication-based strategy for fault tolerant
MPI applications. In Proceedings of the 14th International Conference on High Performance Computing. 257–268.

[72] J. P. Walters and V. Chaudhary. 2009. Replication-based fault tolerance for MPI applications. IEEE Trans. Parallel
Distrib. Syst. 20, 7 (2009), 997–1010. DOI:https://doi.org/10.1109/TPDS.2008.172

[73] Matei Zaharia. 2016. Continuous Applications: Evolving Streaming in Apache Spark 2.0: A foundation for end-
to-end real-time applications. Databricks Engineering Blog. Retrieved from https://databricks.com/blog/2016/07/28/
continuous-applications-evolving-streaming-in-apache-spark-2-0.html.

[74] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (NSDI’12).
15–28. Retrieved from http://dl.acm.org/citation.cfm?id=2228298.2228301.

[75] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. 2015. Mojim: A reliable and highly available
non-volatile memory system. In Proceedings of the 20th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’15). 3–18. DOI:https://doi.org/10.1145/2694344.2694370

[76] Gengbin Zheng, Xiang Ni, and L.V. Kale. 2012. A scalable double in-memory checkpoint and restart scheme towards
exascale. In Proceedings of the IEEE/IFIP 42nd International Conference on Dependable Systems and Networks Workshops.
1–6. DOI:https://doi.org/10.1109/DSNW.2012.6264677

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.



Dual-Page Checkpointing: An Architectural Approach to Efficient Data Persistence 57:27

[77] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast databases with fast durability and recov-
ery through multicore parallelism. In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI’14). 465–477. Retrieved from http://dl.acm.org/citation.cfm?id=2685048.2685085.

[78] Ruijin Zhou and Tao Li. 2013. Leveraging phase change memory to achieve efficient virtual machine execution. In
Proceedings of the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments. 179–190.
DOI:https://doi.org/10.1145/2451512.2451547

Received March 2018; revised October 2018; accepted October 2018

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 4, Article 57. Publication date: January 2019.


