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Abstract—With the development of multi-core platforms and
cloud computing, Non-Uniform Memory Access (NUMA) ar-
chitecture has been dominant in cloud data centers in recent
years. However, NUMA architecture is not well supported in
virtualized environments. Because of the semantic gap intro-
duced by the virtualization layer, hypervisors know little about
the characteristics of applications running in virtual machines
(VMs). More importantly, in order to guarantee hypervisors’
applicability, load balance strategies of virtual CPU (VCPU)
schedulers do not consider the memory access characteristics
of applications running in VMs, which probably introduces
significant shared resource contention and unnecessary remote
memory accesses.
In this paper, we propose a NUMA-aware VCPU scheduler

based on Xen, named vProbe, to improve the performance
of memory-intensive applications while maintaining the trans-
parency of the virtualization layer in NUMA-based servers.
It collects performance monitoring units (PMU) data for each
VCPU and analyzes their memory access characteristics. Then,
according to the memory access characteristics of each VCPU,
it periodically reassigns all memory-intensive VCPUs to each
NUMA node evenly while preferentially allocating them to their
local nodes, which aims to alleviate shared resource contention
and reduce unnecessary remote memory accesses. Moreover,
when a physical CPU (PCPU) becomes idle, it preferentially
steals a VCPU from the run queues of PCPUs in the local node
to this PCPU, which helps to maintain balanced last-level cache
(LLC) contention and reduce extra remote memory accesses.
Our evaluation shows that vProbe can significantly improve the
performance of memory-intensive applications (e.g., up to 45.2%
performance improvement compared with the Credit scheduler)
while introducing negligible overheads.
Index Terms—NUMA, Virtualization, VCPU Scheduling,

Load Balance Strategy
I. INTRODUCTION

NUMA architecture has been dominant in the multi-core

server market in recent years due to its high memory band-

width and good scalability. NUMA-based servers are widely

deployed in existing cloud data centers and host many kinds

of applications. Though previous researches have addressed

various scheduling problems with NUMA-based servers,

there are still significant challenges in resource management

in virtualized servers based on NUMA architecture.

First, current VCPU schedulers of hypervisors usually use

load balance strategies to improve the CPU resource utiliza-

tions in the multi-core servers, but they do not consider the

characteristics of applications running in VMs, which proba-

bly aggravates shared resource contention and introduces un-

necessary remote memory accesses (as demonstrated in Sec-

tion II-B). Because of the semantic gap between hypervisors

and guest operating systems (guest OSes), hypervisors know

little about the characteristics of applications running in VMs.

More importantly, in order to guarantee hypervisors’ appli-

cability, load balance strategies of VCPU schedulers do not

consider the memory access characteristics of applications

running in VMs, which probably aggravates LLC contention

and brings extra remote memory accesses when VCPUs that

have lots of LLC accesses are frequently migrated among

different nodes to utilize available CPU resources. Previous

studies [1–3] optimize thread scheduling strategies to improve

the performance of memory-intensive applications, but they

are ineffective in virtualized environments because NUMA

architecture is invisible to guest OSes. Rao et al. [4] present a
NUMA-aware VCPU scheduler to schedule VCPUs accord-

ing to their uncore penalties determined by the penalty to

access the “uncore” memory subsystem. However, because

all performance-degrading factors are treated equally when

calculating VCPUs’ uncore penalties, it cannot give precise

optimization for each factor.

Second, it is difficult to improve the performance of

memory-intensive applications while maintaining the trans-

parency of the virtualization layer in virtualized servers based

on NUMA architecture. In virtualized systems, hypervisors

take control of resource management, which introduces a

semantic gap between the underlying NUMA architecture

and guest OSes. As a result, guest OSes know little about

the underlying memory distribution and hardware resource

allocations, which makes it hard to improve the performance

of memory-intensive applications at the guest OS level. Rao

et al. [5] present a vNUMA-mgr approach which exposes

virtual NUMA topology to VMs for performance optimiza-

tion at the guest OS level. Liu et al. [6] leverage NUMA

overhead awareness in the hypervisor’s memory management.

However, both of them need to modify the guest OS kernel,

which breaks the transparency of the virtualization layer and

restricts the applicability of the proposed methods. Thus, it

is a significant challenge to design a NUMA-aware VCPU

scheduler which can improve the performance of memory-

intensive applications while maintaining the transparency of

the virtualization layer.

The above challenges motivate us to design a NUMA-

aware VCPU scheduler, named vProbe. According to the

memory access characteristics of applications running in

VMs, vProbe optimizes VCPU migration strategies to al-

leviate shared resource contention and reduce unnecessary

remote memory accesses while maintaining the transparency
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of the virtualization layer, which improves the performance

of memory-intensive applications on virtualized servers based

on NUMA architecture. Moreover, we implement a working

prototype of vProbe and evaluate its effectiveness with vari-

ous benchmarks and real-world applications.

The main contributions of this paper are as follows:

• We propose a NUMA-aware VCPU scheduler, named

vProbe, which schedules VCPUs according to their

memory access characteristics calculated by the col-

lected PMU data, to improve the performance of

memory-intensive applications while maintaining the

transparency of the virtualization layer.

• We implement a prototype in the Xen [7] hypervi-

sor based on the Credit scheduler [8] and verify its

effectiveness through different kinds of test scenarios

and applications. The experimental results show that

our scheduler can significantly improve the performance

of memory-intensive applications (e.g., up to 45.2%

performance improvement compared with the Credit

scheduler) while introducing negligible overheads.

II. BACKGROUND AND MOTIVATION

In this section, we give a detailed description of NUMA

architecture and the load balance strategy of Xen’s Credit

scheduler, and experimentally show the performance prob-

lems in virtualized servers based on NUMA architecture.

A. NUMA Architecture

Nowadays, with the increasing number of cores per chip,

memory bandwidth has become a significant performance

bottleneck in centralized memory architecture, i.e., Uniform
Memory Access (UMA), which promotes the appearance of

NUMA architecture. A typical NUMA system consists of

multiple nodes and each node has its own memory controller

and memory blocks. With distributed memory controllers,

memory controller contention can be effectively alleviated,

which guarantees high memory bandwidth. As NUMA ar-

chitecture has become increasingly popular because of its

high memory bandwidth and good scalability, NUMA-based

servers are widely deployed in existing data centers and host

a wide variety of applications.

However, it is difficult to guarantee the performance of

memory-intensive applications on NUMA-based servers due

to the performance-degrading factors: (a) With distributed

memory controllers, NUMA architecture introduces some ad-

ditional performance-degrading factors, i.e., remote memory

access latency, memory controller contention and intercon-

nect link contention [1, 9]; (b) LLC contention [1, 3, 10]

is also an important factor that affects the performance of

memory-intensive applications although it is not relevant to

NUMA architecture.

B. Load Balance Strategy of Xen’s Credit Scheduler

The VCPU scheduler is an important component of a

hypervisor, which is responsible for the allocation of CPU

resources among VMs. More importantly, the load balance

strategy is the major component of a VCPU scheduler, which

contributes to improving the CPU resource utilizations in

the multi-core servers. However, the load balance strategy
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Fig. 1: The percentage of remote memory accesses number

over Xen’s VCPU scheduler

of Xen’s Credit scheduler cannot support NUMA architec-

ture well because it does not consider the memory access

characteristics of applications running in VMs.

TABLE I: The detailed configuration of our NUMA system

Intel Xeon E5620
Cores 4 cores (2 sockets)
Clock frequency 2.40 GHz
L1 cache 32 KB ICache, 32 KB DCache
L2 cache 256 KB unified
L3 cache 12 MB unified, shared by 4 cores
IMC 25.6 GB/s bandwidth, 2 memory nodes, each

node has 12 GB memory
QPI 2 links, 5.86 GT/s

To study the influence of the load balance strategy of

Xen’s Credit scheduler, we conduct experiments to evaluate

the remote memory access ratios of some memory-intensive

applications. The remote memory access ratio reflects the

percentage of accessed pages belonging to each node, which

is determined by the load balance strategy. Our NUMA

system comprises of two quad-core Intel Xeon CPUs, which

share an integrated memory controller (IMC) and an Intel

QuickPath Interconnect (QPI). More detailed configuration is

described in Table I. All VMs (VM1∼VM3) have 8 VCPUs.

VM1 and VM2 are configured with 8GB memory and run a

4-threaded application of NPB [11] or four identical instances

of an application of SPEC CPU2006 [12] concurrently. VM3

is configured with 2GB memory and runs 8 hungry-loop

applications to consume available CPU resources. As shown

in Figure 1, because the load balance strategy only guarantees

the fair share of CPU resources and does not consider the

underlying NUMA architecture and the characteristics of

applications running in VMs, the remote memory access

ratios of these applications are more than 80% except for

soplex (77.41%), which shows significant potential for per-

formance improvement by reducing remote memory accesses.

Besides, the large number of remote memory accesses can

also aggravate interconnect link contention.

In summary, NUMA architecture is not well supported in

virtualized systems, which motivates us to design a NUMA-

aware VCPU scheduler to improve the performance of

memory-intensive applications while maintaining the trans-

parency of the virtualization layer.

III. DESIGN

In this section, we introduce the design of our VCPU

scheduler, named vProbe. We first describe the system
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Fig. 2: Overview of vProbe

overview of vProbe. Then, we give a detailed description

of each component of vProbe.

A. Overview

vProbe improves the performance of memory-intensive

applications on virtualized servers based on NUMA archi-

tecture via optimized VCPU allocation and migration strate-

gies, which considers applications’ memory access charac-

teristics to alleviate shared resource contention and reduce

unnecessary remote memory accesses while maintaining the

transparency of the virtualization layer.

Figure 2 gives an overview of vProbe, which consists of

three major components: PMU data analyzer, VCPU peri-
odical partitioning, and NUMA-aware load balance mech-

anisms. More specifically, the PMU data analyzer collects

PMU data to analyze the memory access characteristics of

each VCPU. At the end of each sampling period, in order to

alleviate shared resource contention and reduce unnecessary

remote memory accesses, the VCPU periodical partitioning
mechanism reassigns all memory-intensive VCPUs to each

node evenly while preferentially guaranteeing them to run on

their local nodes, according to their memory access character-

istics. Moreover, the NUMA-aware load balance mechanism

enables an idle PCPU to preferentially steal a VCPU from

the run queues of PCPUs in the local node, which aims

to maintain balanced LLC contention while avoiding extra

remote memory accesses.

B. PMU Data Analyzer

In order to make proper scheduling decisions in NUMA-

based servers, the VCPU schedulers need to know the mem-

ory access characteristics of applications running in VMs. In

this section, we present the PMU data analyzer to collect

PMU data for each VCPU and analyze their memory access

characteristics.

In the following part, we introduce memory node affinity
and LLC access pressure which are considered as the typ-

ical memory access characteristics of VCPUs. The former

represents the distribution of node memory accessed by a

VCPU, and the latter represents a VCPU’s demand for shared

resources.

1) VCPU’s Memory Node Affinity: As discussed in Sec-

tion II-A, remote memory access latency can significantly

affect the performance of memory-intensive applications on

virtualized servers based on NUMA architecture. Thus, we

need to know the memory location of each VCPU, i.e., the

node that this VCPU’s pages exist in, which enables VCPU

schedulers to optimize scheduling strategies to reduce un-

necessary remote memory accesses and alleviate interconnect

link contention.

We introduce memory node affinity of a VCPU to denote

which memory node this VCPU’s pages exist in. More

specifically, the PMU data analyzer sets a VCPU’ memory
node affinity to the id of the node that has the maximum

number of pages accessed by this VCPU during the current

sampling period. It is obvious that the memory node affinity
of a VCPU indicates the node that is most suitable for this

VCPU to run on during the current sampling period if we

only consider the influence of remote memory access latency.

What is more, because of the data locality, the memory node
affinities of all VCPUs are crucial for the optimizations on

remote memory access latency in the next sampling period.

Before discussing the calculation of the memory node
affinity, we define some variables as follows:

1) vc: a VCPU.

2) N : the number of nodes in the NUMA system.

3) N(vc, i): the number of pages in the ith node, which

are accessed by vc during the current sampling period.

At the end of the current sampling period, the PMU data
analyzer calculates the memory node affinity of vc as follows.
It first collects PMU data for vc, including the number of

pages accessed by vc in each node, i.e., {N(vc, 1), N(vc, 2),
... , N(vc,N)}. Then, it sets the memory node affinity of vc
to the node id where id is represented as follows.

N(vc, id) = max
1≤i≤N

{N(vc, i)} (1)

2) VCPU’s LLC Access Pressure: Apart from remote

memory access latency, shared resource contention can sig-

nificantly affect the performance of memory-intensive appli-

cations as well. As discussed in Section I, the VCPU sched-

ulers of hypervisors probably introduce significant shared

resource contention due to their disregards for the characteris-

tics of applications running in VMs. To address this problem,

we need to find an effective metric that can represent VCPUs’

demands for shared resources.

In this paper, we introduce LLC access pressure of a VCPU
to denote its demand for shared resources. This is because

alleviating LLC contention can also reduce the number of

memory accesses which alleviates memory controller and

interconnect link contentions. Previous studies [13–15] use

the LLC miss rate to represent an application’s LLC demand,

but the LLC miss rate is instable because it has a direct

relation with interfering workloads. Therefore, we calculate

a VCPU’s LLC access pressure according to Equation (2),

whose effectiveness and stability have been demonstrated in

[16].

RLLCref
=

LLCref

InstrucRetired
·α (2)

The variables used in Equation (2) are defined as follows:

1) LLCref : The number of last level cache references.

2) InstrucRetired: The number of retired instructions.

3) α: A constant which is used to adjust the ratio of

LLCref and InstrucRetired to an appropriate order

of magnitude.

What’s more, in order to help VCPU schedulers to make

more flexible scheduling decisions, we need to classify all
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VCPUs into different types according to their LLC access
pressures. VCPUs that belong to the same types have similar

LLC access pressures. More specifically, we empirically

classify VCPUs into three categories as follows:

• LLC thrashing (LLC-T): LLC-T VCPUs have lots of

LLC misses because of their large cache demands even

when there is no interfering VCPUs.

• LLC fitting (LLC-FI): The capacity of a LLC can

meet the requirements of LLC-FI VCPUs, but the LLC

miss rate of these VCPUs can significantly increase if

interfering VCPUs introduce serious LLC contention.

• LLC friendly (LLC-FR): The performance of the ap-

plications running on LLC-FR VCPUs has almost no

correlation with LLC capacity because of their negligi-

ble demands on LLC.

We classify all VCPUs into different types due to the

following reason. Although LLC access pressure is an effec-

tive metric that can help VCPU schedulers to alleviate LLC

contention, memory allocation of VMs on NUMA system

makes performance optimization more complicated. As the

VCPUs that belong to the same types have similar LLC access
pressures, it gives greater flexibility for the VCPU scheduler

to schedule VCPUs according to their types instead of LLC
access pressures.

Besides, we also define two bounds, named low and high,
to distinguish VCPUs from different categories according to

their LLC access pressures as shown in Equation (3). (We

will illustrate how to determine the values of these bounds

in Section IV-A.)

V CPU type =

⎧⎨
⎩

LLC-FR if RLLCref < low
LLC-FI if low≤ RLLCref <high
LLC-T if RLLCref ≥ high

(3)

In summary, the PMU data analyzer collects PMU data to

calculate all VCPUs’ memory node affinities and LLC access
pressures. Because PMU data are collected at the hypervisor

level, guest OSes do not need to be modified, which maintains

the transparency of the virtualization layer. In the following,

we describe how to optimize VCPU scheduling strategy by

considering all VCPUs’ memory node affinities and LLC
access pressures.

C. VCPU Periodical Partitioning

In this section, we propose a VCPU periodical partitioning
mechanism to alleviate shared resource contention while

reducing unnecessary remote memory accesses. It periodi-

cally reassigns all memory-intensive VCPUs whose types are
LLC-T or LLC-FI to each node evenly while preferentially

allocating them to their local nodes, according to their mem-
ory node affinities and types. Because LLC-FR VCPUs are

non-memory-intensive ones, we use the default scheduling

strategy to schedule them to maintain load balance. In the

following, we describe this mechanism in detail.

The variables and functions used in this section are pre-

sented in Table II.

At the end of each sampling period, the VCPU periodical
partitioning mechanism is activated. Initially, it marks all

memory-intensive VCPUs as unassigned. Then, it continu-
ously finds MIN-NODE and assigns a suitable unassigned
VCPU to this node, and marks this VCPU as reassigned.

TABLE II: Variables and Functions used in this section

Variables and Functions Description
nodei the ith NUMA node where 1 ≤ i ≤ N
reassigned VCPU a memory-intensive VCPU which has

been reassigned to a node
unassigned VCPU a memory-intensive VCPU which has

not been reassigned to any node
MIN-NODE the node with the minimum number of

reassigned VCPUs
groupOfVc(c,p) a group of unassigned VCPUs whose

categories are c and memory node
affinities are p

node.reassigned load the number of memory-intensive VC-
PUs reassigned to node

max
1≤i≤N

{groupOfVc(Type,i)} calculate the group that has the maxi-
mum number of VCPUs whose type are
Type

Because LLC contention on MIN-NODE is relatively small,

preferentially assigning a suitable memory-intensive VCPU

to MIN-NODE can help to balance LLC contention among all

nodes. More specifically, the VCPU periodical partitioning
mechanism finds MIN-NODE and preferentially selects a

VCPU from the unassigned LLC-T VCPUs according to their

memory node affinities as follows.

First, MIN-NODE is set to the node that has been assigned

the minimum number of memory-intensive VCPUs, i.e., the

node that has the smallest value of reassigned load. The

value of reassigned load is updated as follows: (a) Initially,

all nodes’ reassigned loads are set to 0, which means that

no memory-intensive VCPUs are assigned to any node when

the VCPU periodical partitioning mechanism is activated;

(b) The value of reassigned load of a node is increased by

1 when a memory-intensive VCPU is assigned to this node.

Second, the VCPU periodical partitioning mechanism se-

lects a VCPU from the unassigned LLC-T VCPUs while

considering their memory node affinities. More specifi-

cally, it preferentially selects the first VCPU of the group

groupOfVc(LLC-T, MIN-NODE.id) to guarantee that the

selected VCPU will be assigned to its local node, which

alleviates LLC contention while avoiding unnecessary remote

memory accesses. However, if there is no available VCPU

in that group, it selects the first VCPU of the group max
1≤i≤N

{groupOfVc(LLC-T, i)}, which has the maximum number of

VCPUs. In this case, it alleviates LLC contention while min-

imizing the differences in the sizes of all groupOfVc(LLC-T,
i) where 1 ≤ i ≤ N , which improves the possibility that

other VCPUs will be assigned to their local nodes.

Moreover, if all LLC-T VCPUs have been assigned, it uses

the same principles to assign an unassigned LLC-FI VCPU

to MIN-NODE.

The pseudo-code of the VCPU periodical partitioning
mechanism is shown in Algorithm 1. When there are unas-
signed VCPUs, it finds MIN-NODE and assigns a suitable

memory-intensive VCPU to this node as follows. First, it

calls function getMinNode() to find MIN-NODE (line 2) and

determines the type (denoted Type) of the VCPU which will

be assigned to this node (line 3∼6). Second, it selects a

suitable VCPU that should be assigned to MIN-NODE (line

7∼11). Finally, it marks the selected VCPU as reassigned
(line 12) and migrates it to MIN-NODE (line 13).
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Algorithm 1: VCPU Periodical Partitioning Algorithm

Input: N : number of nodes in NUMA system,

statistics of groupOfVc(c,p) where c ∈ {LLC-T,
LLC-FI} and 1 ≤ p ≤ N .

Output: scheduling decision

1 while there are unassigned VCPUs do
2 MIN-NODE ← getMinNode(all nodes);
3 Type ← LLC-T ;

4 if there is no unassigned LLC-T VCPU then
5 Type ← LLC-FI;

6 end
7 if groupOfVc(Type,MIN-NODE.id) is not empty

then
8 set vc to the first VCPU of groupOfVc(Type,

MIN-NODE.id);
9 else
10 set vc to the first VCPU of

max
1≤j≤N

{groupOfVc(Type,j)};
11 end
12 mark vc as a reassigned VCPU;

13 migrate(vc,MIN-NODE);

14 end
15 return;

D. NUMA-aware Load Balance

In this section, we propose a NUMA-aware load bal-
ance mechanism to maintain balanced LLC contention while

avoiding unnecessary remote memory accesses via appropri-

ate VCPU migration when PCPUs become idle. Because of

the semantic gap between hypervisors and guest OSes, the

VCPU schedulers of hypervisors pay little attention to the

characteristics of applications running in VMs. As a result,

although the VCPU periodical partitioning mechanism can

balance LLC contention, the default load balance strategy

may break this balance by frequently migrating memory-

intensive VCPUs among different nodes when PCPUs be-

come idle, which probably causes significant performance

degradation. Besides, the number of remote memory accesses

significantly increases due to the migration of memory-

intensive VCPUs as well. Thus, we propose the NUMA-aware
load balance mechanism to address these problems. When a

PCPU becomes idle, it preferentially selects a suitable VCPU

from the run queues of PCPUs in the local node, which helps

to maintain balanced LLC contention and avoid unnecessary

remote memory accesses. In the following, we describe this

mechanism in detail.

When a PCPU becomes idle, it activates the NUMA-aware
load balance mechanism and preferentially steals a VCPU

from the run queues of PCPUs in the local node. Moreover,

in order to reduce context switches and keep the load balance

among all PCPUs, it preferentially checks the run queue of

the PCPU that has the heaviest workload. If there are several

runnable VCPUs in the PCPU’s run queue, it steals the one

that has the smallest value of LLC access pressure. Because
VCPUs with smaller LLC access pressure have a relatively

small impact on LLC contention, migrating them to the idle

PCPU can avoid breaking the balance of LLC contention.

Otherwise, if no runnable VCPUs are found, it uses the same

principles to check the run queues of other PCPUs in the local

node.

What is more, if there are no runnable VCPUs on the local

node, it steals a suitable VCPU from the remote nodes to

utilize available CPU resources. The principles of stealing a

VCPU from the remote nodes are the same as for the local

node. Because migrating a memory-intensive VCPU from the

remote nodes to the idle PCPU may break the balance of

LLC contention and introduce extra remote memory accesses,

it preferentially steals a runnable VCPU with smaller LLC
access pressure, which aims to alleviate these problems.

Algorithm 2: NUMA-aware Load Balance Algorithm

Input: run-queue information of the PCPUs where the

scheduler resides, the idle pcpu, loadList of
each node which maintains its PCPUs sorted in

descending order according to their workloads

Output: load balance decision

1 node← pcpu to node(pcpu);
2 while true do
3 foreach p in loadList of node do
4 if there are runnable VCPUs in p’s run queue

then
5 vcpu← a runnable VCPU in p’s run queue,

which has the smallest value of LLC access
pressure;

6 break;
7 end
8 end
9 node← nextNode();
10 end
11 migrate(vcpu, pcpu);
12 return;

The pseudo-code of the NUMA-aware load balance mech-

anism is shown in Algorithm 2. When a PCPU becomes idle,

it steals a VCPU from the run queues of peer PCPUs. It

preferentially checks the local node (line 1), then the remote

ones obtained by the function nextNode() (line 9). Besides,

among all the PCPUs in a node, it preferentially steals

a runnable VCPU with the smallest value of LLC access
pressure from the run queue of the PCPU (p in the algorithm)

that has the heaviest workload (line 3∼8). Finally, it migrates

the VCPU to the idle PCPU by the function migrate() (line
11).

IV. SYSTEM IMPLEMENTATION

We implement a prototype of vProbe based on the Credit

scheduler of Xen-4.0.1. In the following, we first describe

how to determine the bounds for VCPU type. Then, we

describe the modification to the Credit scheduler.

A. Determining Bounds for VCPU Type

We conduct experiments to estimate the two bounds, i.e

low and high, in Equation (3) for VCPU type. We first

measure the LLC miss rates of the selected applications and

classify them into different types. Then, we calculate the

LLC access pressures of different categories of applications

to determine the range of the two bounds.

The detailed configuration of our NUMA system is pre-

sented in Table I. In this experiment, we run a VM (VM1)
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which is configured with 4 GB memory and 1 VCPU pinned

to the local node.

According to the definition of VCPU types described in

Section III-B2 and test results shown in Figure 3(a), we

choose two applications for each types: LLC-FR (povray, ep),

LLC-FI (lu, mg) and LLC-T (milc, libquantum).

�3�� �3��

��3��

��3��

��3�� ��3��

��	

��


��� ���� �� �� ��
��(

�� 
�
��
��
��
��
��
��
��
��
��
���
���

4
4
*
�
��
�
��
��
"#

$

(a) Results of LLC miss rate
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(b) Results of RPTI

Fig. 3: LLC miss rate and LLC references per thousand
instructions (RPTI) for each applications

With the collected information, we calculate LLC access
pressure of each application according to Equation (2) (the

α parameter is empirically set to 1000). As shown in Figure

3(b), LLC access pressures of LLC-FR VCPUs are less than 3

(i.e., povray is 0.48 and ep is 2.01) and LLC access pressures
of LLC-T VCPUs are greater than 20 (i.e., milc is 21.68 and

libquantum is 22.41). As to LLC-FI VCPUs, LLC access
pressures of lu and mg are 15.38 and 16.33 respectively.

Thus, we choose 3 and 20 as the bounds. Besides, if the

value of low or high changes, the number of LLC-T (or LLC-

FI) VCPUs will increase (or decrease), which can affect the

VCPU periodical partitioning mechanism.

B. Modification to the Credit Scheduler

We implement vProbe based on the Credit scheduler. In

the following, we describe the modification in detail.

First, we patch Xen with Perfctr-Xen [17] to obtain run-

time information for each VCPU from low-level hardware

performance counters, including LLC reference, instructions

that retire execution, and the number of local and remote

memory accesses. A running VCPU’s runtime information is

updated before VCPU context switch or every 10ms after this

VCPU burns its credits.

Second, we add two fields named low and high to structure

csched priv, which denote the bounds used for VCPU types

and are initialized to 3 and 20 respectively. We also add three

fields named node affinity, LLC pressure, and vcpu type
to structure csched vcpu, which denote the memory node
affinity, LLC access pressure, and type of a VCPU. At

the end of each sampling period, the PMU data analyzer
updates each VCPU’s node affinity according to Equation

(1), LLC pressure according to Equation (2), and vcpu type
according to Equation (3). Moreover, the sampling period is

experimentally set to 1s. (We will illustrate how the sampling

period affects the performance of vProbe in Section V-C2.)

Finally, we add a variable workload to each PCPU, which

records the number of VCPUs in its run queue. A PCPU’s

workload is increased by 1 if a VCPU inserts into its

run queue. Besides, a PCPU’s workload is decreased by

1 if a VCPU removes from its run queue. When a PCPU

becomes idle, it preferentially selects a runnable VCPU with

the smallest value of LLC pressure from the run queues of

PCPUs in the local node, then the remote nodes if necessary.

Moreover, as to all PCPUs in a certain node, it preferentially

checks the run queue of the PCPU with the largest value of

workload.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of vProbe
through different kinds of test scenarios and workloads, and

study the overheads introduced by vProbe. In the following,

we first describe the experimental methodology. Then, we

analyze the experimental results.

A. Experimental Methodology

(1) Experimental platform. The detailed configuration of

our NUMA system is shown in Table I. The hypervisor is

Xen-4.0.1. All VMs run the CentOS 5.5 Linux distribution

with a Linux 2.6.32.39 kernel.

In the evaluation, we conduct experiments on three VMs

(VM1∼VM3) configured with 8 VCPUs, and VM1 runs

memory-intensive applications while VM2 and VM3 run in-

terfering workloads. The memory allocations and workloads

of all VMs are as follows: (a) VM1 has 15GB memory,

which is split into two nodes to provide a more variable and

complicated runtime environment. (b) VM2 has 5GB mem-

ory. It is an interfering VM which runs the same workloads

as VM1. (c) VM3 is also an interfering VM which runs

eight hungry-loop applications to consume available CPU

resources. Because of the small memory demand, VM3 only

has 1GB memory. We collect runtime information of appli-

cations running in VM1 to evaluate our system performance.

(2) Scheduling approaches. In this evaluation, we evaluate
the performance of applications under several scheduling

approaches as follows:

• Credit: the default scheduler of Xen hypervisor.

• vProbe: the scheduler proposed in this paper, which

consists of PMU data analyzer, VCPU periodical par-
titioning, and NUMA-aware load balance mechanisms.

• VCPU periodical partitioning (VCPU-P): It only im-

plements the VCPU periodical partitioning mechanism,

which is used to demonstrate its importance.

• NUMA-aware Load balance (LB): It only implements

the NUMA-aware load balance mechanism, which is

used to demonstrate its importance.

• Bias Random vCPU Migration (BRM): It is a Bias

Random vCPU Migration scheduler proposed in [4],

which aims to minimize the system-wide uncore penalty.
(3) Metrics. Apart from the general performance metric,

i.e., average throughput for Redis and normalized execution

time for the other applications, we use two other metrics to

evaluate our system performance: total and remote memory

accesses numbers. The total number of memory accesses

reflects memory controller and LLC contention situations.

The number of remote memory accesses reflects the remote

memory accesses and interconnect link contention situations.

These two metrics will help to give an insight on how the

above scheduling approaches affect the system performance.

(4) Classification of experiments. We conduct two differ-

ent categories of experiments to evaluate both the improve-

ment and the overhead of vProve on NUMA system.
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(a) Normalized Execution Time
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(b) Normalized Total Memory Accesses
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(c) Normalized Remote Memory Accesses

Fig. 4: The experimental results of SPEC CPU2006
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(a) Normalized Execution Time
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(b) Normalized Total Memory Accesses
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(c) Normalized Remote Memory Accesses

Fig. 5: The experimental results of NPB

(5) Benchmarks and applications. The benchmarks and

applications used in our experiments are as follows.

• SPEC CPU2006 [12]: a set of single-threaded programs,

which is used to quantify the performance of a system’s

computer processor, memory subsystem and compiler.

• NPB [11]: a set of MPI programs used to evaluate the

performance of clusters and supercomputers.

• Memcached [18]: An in-memory key-value store, which

is used to improve the performance of web applications.

• Redis [19]: An in-memory key-value database, which is

used to provide high performance for database systems.

B. Experiments with Memory-Intensive Applications

In this section, we evaluate the performance of vProbe
with several memory-intensive applications and compare it

with other related scheduling approaches.

1) Experiments with SPEC CPU2006: We select four

memory-intensive applications (i.e., soplex, libquantum, mcf,
and milc) from the SPEC CPU2006 suite and form five

workloads: (a) We conduct four identical workloads for each

application and each workload runs four identical instances

to evaluate the influence of different VCPU schedulers on

these applications. Specifically, because VM2’s memory can

only support two instances of the mcf application, we run

six instances of the mcf in VM1 and two instances in VM2

to guarantee that all four workloads have the same total

number of instances. (b) The fifth workload mix consists of

all four applications and each application runs one instance

to evaluate the influence of different VCPU schedulers on a

mixed workload. We run the five workloads above in VM1

and VM2, and calculate the average runtime of applications in

VM1. As to the workload mix, we calculate the normalized

execution time of each application, and use the average of

their normalized execution times as the final result. The test

results are shown in Figure 4.

The normalized execution time, total and remote memory

accesses numbers of these applications are shown in Figure

4(a)∼(c) respectively. The results show that vProbe has the

best performance in all workloads. As shown in Figure 4(a),

vProbe obtains the best performance improvement in work-

load soplex. Compared with the Credit scheduler, VCPU-P
and LB, vProbe achieves 32.5%, 16.6%, and 10.2% improve-

ments respectively. VCPU-P improves the performance, but

performs worse than vProbe because of ignoring the load

balance strategy. Besides, LB can reduce remote memory

accesses and improve the performance of these applications.

But the total number of memory accesses of some appli-

cations, such as soplex and mcf, increases slightly. This is

because LB ignores LLC contention problems, which can

reduce the LLC hit rate, and increase the total memory

accesses. As a result, LB attains worse performance than

vProbe. As to BRM, it attains similar or worse performance

than the Credit scheduler, although it can reduce the total and

remote memory accesses. This is because BRM schedules

VCPUs according to each VCPU’s uncore penalty, and it

needs to acquire a system-wide lock before updating a

VCPU’s uncore penalty. Thus, when the number of VCPUs

is large, i.e., greater than 8, the lock contention problem

introduces significant overheads.

2) Experiments with NPB: We select five memory-

intensive applications (i.e., bt, cg, lu, mg, and sp) from the

NPB suite while each application is configured with four

threads. For each test, we run the same application in VM1

and VM2 under different VCPU schedulers, and analyze

the execution time and memory accesses of the application

running in VM1. The experimental results are shown in

Figure 5.

As shown in Figure 5(a)∼(c), vProbe still outperforms

other related VCPU schedulers because it can alleviate LLC

contention and reduce unnecessary remote memory accesses.

Figure 5(a) shows that the best case of performance improve-

ment happens when we run the workload sp. For workload
sp, compared with the Credit scheduler, VCPU-P, and LB,
vProbe achieves 45.2%, 15.7%, and 9.6% improvements re-
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spectively. As shown in Figure 5(b), compared with the Credit

scheduler, LB increases the total number of memory accesses

of some applications (e.g., bt, lu, and sp) due to its ignorance

of LLC contention. Moreover, although LB has a larger total

number of memory accesses, it outperforms VCPU-P because

LB preferentially maintains VCPUs to run on the current

node when VCPU migration occurs and alleviates remote

memory accesses. Unfortunately, BRM still presents the worst

performance due to its lock contention problem, which is

similar to the SPEC CPU2006 results.
3) Experiments with Memcached: Memcached is a

widely used distributed memory caching system. In this test,

each memcached server is configured with eight working

ports for the load process and deployed in VM1 and VM2

respectively. We use the memslap [20] tool to evaluate the

performance of the memcached server. For each test, we

start up memslap with a variable number of concurrent

calls ranging from 16 to 112, and record the total time

of continuously executing the given test 50,000 times. The

experimental results are shown in Figure 6.
As shown in Figure 6(a)∼(c), vProbe has the best per-

formance for memcached servers. Figure 6(a) shows that the

greatest performance improvement happens when the number

of concurrent calls is 80. With this number of concurrent

calls, compared with the Credit scheduler, VCPU-P and LB,
vProbe achieves 31.3%, 13.2%, and 17.3% improvements

respectively. LB outperforms VCPU-P when the number of

concurrent calls is small, e.g., 16 and 32, because the LLC

contention problem is not serious and remote memory access

latency is the major performance-degrading factors. However,

with the increasing number of concurrent calls, the LLC

contention becomes the major degradation factor and VCPU-
P attains better performance than LB. Besides, due to the lock

contention problem, BRM attains better performance than the

Credit scheduler and worse performance than the other VCPU

schedulers.
4) Experiments with Redis: Redis is an open-source,

networked, in-memory and key-value database, which has a

large number of memory accesses. In this test, we use the

redis-benchmark tool to generate a load get for performance

evaluation of redis servers. For each test, we run four redis

servers and four redis-benchmark tools in VM1 and VM2

respectively. For each redis-benchmark tool, the number

of parallel connections ranges from 2,000 to 10,000, and

the total number of requests is 100 million. We conduct

experiments under different VCPU schedulers and present

the experimental results in Figure 7.
The throughput, normalized total and remote memory

accesses numbers are shown in Figure 7(a)∼(c). We can

see that vProbe outperforms other related VCPU schedulers.

Figure 7(a) shows that the greatest performance improvement

happens when the number of parallel connections is 2000.

With this number of parallel connections, compared with the

Credit scheduler, VCPU-P and LB, vProbe achieves 26.0%,

13.3%, and 16.8% improvements respectively. As shown

in Figure 7(a), VCPU-P outperforms LB. This is because

VCPU-P can significantly alleviate LLC contention, which

is the major performance-degrading factor for redis servers.

Besides, although BRM can reduce the number of remote

memory accesses, it attains similar performance to the Credit

scheduler due to the lock contention problem.

5) Experimental Results Analysis: In this subsection, we

analyze the results of the above experiments and draw the

following conclusions.

• The Credit scheduler does not consider the memory

access characteristics of applications running in VMs,

which probably introduces significant LLC contention

and remote memory accesses. Thus, it cannot guarantee

the performance of memory-intensive applications.

• vProbe has the best performance among all the related

VCPU schedulers. This is because it optimizes VCPU

allocation and migration strategies, which reduces LLC

contention and unnecessary remote memory accesses.

• Both VCPU-P and LB outperform the Credit scheduler,

but they have lower performance than vProbe. This is

because VCPU-P ignores the importance of the load

balance strategy, which probably brings unbalanced LLC

contention and remote memory accesses by frequently

migrating memory-intensive VCPUs among all nodes.

LB ignores the importance of balanced LLC contention,

which also causes performance degradation.

• BRM attains lower or similar performance to the Credit

scheduler. This is because it needs to acquire a system-

wide lock before updating a VCPU’s uncore penalty.
Thus, although it can reduce the total and remote mem-

ory accesses, the lock contention problem can introduce

significant performance degradation.

C. Overheads

In this section, we first evaluate the overheads introduced

by vProbe. Then, we conduct experiments to analyze how the

sampling period affects the performance of vProbe.
1) Overheads of vProbe: The overheads of vProbe come

from several sources: (a) the time required to collect PMU

data; (b) the time required for the VCPU periodical parti-
tioning mechanism to reassign all memory-intensive VCPUs

to suitable nodes. For simplicity, we call the above extra cost

“overhead time”. In this section, we conduct experiments

to evaluate the percentage of “overhead time” in the total

execution time. We create one to four VMs configured with

4GB memory and 2 VCPUs. Each VM runs two instances of

the soplex application. When there are 4 VMs, the number of

VCPUs is equal to that of PCPUs, which means all PCPUs

are busy and the amount of PMU data collection in parallel

reaches its maximum limit.

TABLE III: The experimental results of “overhead time”

Number of VMs The percentage of “overhead time”
1 0.00847
2 0.01206
3 0.01619
4 0.01062

As shown in Table III, with the increasing number of VMs,

the percentage of “overhead time” increases. However, as

concerns the case of 4 VMs, the number of total VCPUs

of DomUs is 8, which is equal to the number of PCPUs.

As a result, the amount of VCPU migration reduces, which

decreases the frequency of PMU data collection and extra

overheads. Thus, the “overhead time” is even smaller when

running 4 VMs. Table III shows that the percentage of
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(a) Normalized Execution Time
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(b) Normalized Total Memory Accesses
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(c) Normalized Remote Memory Accesses

Fig. 6: The experimental results of Memcached
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(a) Average Throughput
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(b) Normalized Total Memory Accesses

���� ���� ���� ���� �����
�3�
�3�
�3�
�3�
�3�
�3�
�3�
�3�
�3�
�3�
�3�
�3�

/
�
��

��
�1
�&

�
��

�
��
!
��
��
��
�

+������� ��

�����
�

*��&�� (+��	� )*+,0+ 49 9��

(c) Normalized Remote Memory Accesses

Fig. 7: The experimental results of Redis

“overhead time” is much lower than 0.1%. That is to say,

vProbe introduces negligible overheads.
2) The Sampling Period: To study the influence of the

sampling period, we set the sampling period vary from 0.1s

to 10s and run workload mix described in Section V-B1. The

experimental results are presented in Figure 8.
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Fig. 8: The experimental results of workload mix under

variable sampling period

As show in Figure 8, the performance of vProbe increases

when the sampling period increases from 0.1s to 1s, because

the “overhead time” becomes serious when the sampling

period is short. However, vProbe presents worse performance

when the sampling period is bigger than 1s, because the

memory access characteristics of VCPUs cannot be updated

timely. As a result, the VCPU scheduler cannot make suitable

scheduling decisions timely. Thus, we choose 1s as the

sampling period in this paper.

VI. DISCUSSION AND FUTURE WORK

Dynamic bounds for VCPU type. In this paper, the

bounds for VCPU type used by vProbe are set manually.

Although vProbe can significantly improve the performance

of memory-intensive applications in VMs based on NUMA

system, dynamically adjusting these bounds according to

the workload in VMs will make vProbe more adaptable to

different real-word applications. Thus, our future work is to

study how to adjust these bounds dynamically according to

the workloads in the system.

Page migration. In this paper, currently we only focus on

optimizing VCPU scheduling strategy. In fact, page migra-

tion may be an alternative way to alleviate shared resource

contention and reduce remote memory accesses. On the

one hand, page migration can effectively alleviate memory

controller contention and avoid remote memory access. On

the other hand, the cost of page migration is expensive while

VCPU scheduling strategy is relatively cheap. Thus, in the

future, we will study how to combine VCPU scheduling and

page migration strategies to improve the performance of our

system.
VII. RELATED WORK

There are many studies that optimize NUMA system

performance in traditional environments.
On one hand, many studies optimize NUMA system per-

formance via proper thread scheduling. Su et al. [2] present
a NUMA-aware thread placement algorithm which considers

the critical path to improve the performance of OpenMP

programs. Blagodurov et al. [1] present a method to schedule

threads according to their LLC misses. Besides, it migrates

the partial pages along with the thread. Majo et al. [3] present
a novel thread placement algorithm which attempts to benefit

from data locality while avoiding significant LLC contention.
On the other hand, page management strategies are also

effective in improving the performance of memory-intensive

applications. Lachaize et al. [9] improve the performance of

memory-intensive applications by reducing the number of

remote memory accesses via page replication, interleaving

and allocation strategies. Dashti et al. [10] identify that

remote memory access latency is not the major performance-

degrading factor, and alleviate shared resource contention

via page interleaving, page co-location, page replication, and

thread clustering. Goglin et al. [21] implement a system call

to enable high-performance memory migration in Linux.
Besides, many studies [22–25] improve NUMA system

performance at the application level. However, the above

studies are not fit for virtualized environments because

NUMA architecture is invisible to guest OSes.
In virtualized environments, Rao et al. [4] present a

NUMA-aware VCPU scheduler to schedule VCPUs accord-

ing to their penalties to access the “uncore” memory sub-

system. However, it needs to acquire a system-wide lock
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before updating a VCPU’s uncore penalty, which restricts its

scalability. Rao et al. [5] present a vNUMA-mgr approach

that exposes the virtual NUMA topology to VMs, which

enables developers to optimize system performance at the

guest OS or application level. Liu et al. [6] leverage NUMA

overhead awareness in the hypervisor’s memory management,

but it ignores the importance of VCPU scheduling. Ibrahim et
al. [26] use partitioning and direct inter-VM shared memory

support to improve the performance of high performance

computing applications. However, this only improves the

access latency of shared memory blocks. What is more,

the above studies need to modify the guest OS kernel,

which breaks the transparency of the virtualization layer and

restricts the applicability of the proposed methods.

VIII. CONCLUSION

In this paper, we design and implement a NUMA-aware

VCPU scheduler, named vProbe. By considering the mem-

ory access characteristics of each VCPU, vProbe optimizes

VCPU allocation and migration strategies to alleviate shared

resource contention and reduce unnecessary remote memory

accesses while maintaining the transparency of the virtual-

ization layer, which improves the performance of memory-

intensive applications on virtualized servers based on NUMA

architecture. More specifically, we introduce PMU data ana-
lyzer to collect PMU data for each VCPU and calculate their

memory node affinities and LLC access pressures. In order

to alleviate shared resource contention and reduce remote

memory accesses, we present VCPU periodical partitioning
mechanism to periodically reassign all memory-intensive

VCPUs to suitable nodes according to their memory node
affinities and categories. We also propose a NUMA-aware
load balance mechanism to preferentially steal a suitable

VCPU from run queues of PCPUs in local node to an idle

PCPU, which aims to maintain balanced LLC contention and

avoid extra remote memory accesses. Finally, we conduct

experiments to validate the effectiveness and overheads of

vProbe. The experimental results show that vProbe can

significantly improve the performance of memory-intensive

applications (e.g., up to 45.2% performance improvement

compared with the Credit scheduler) while introducing neg-

ligible overheads.
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profiler for NUMA multicore systems,” in Proc. of USENIX
ATC, 2012, pp. 53–64.

[10] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth, “Traffic management: A
holistic approach to memory placement on NUMA systems,”
in Proc. of ASPLOS, 2013, pp. 381–394.

[11] D. Baliley, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski,
R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weer-
atunga, “The NAS parallel benchmarks-summary and prelim-
inary results,” in Proc. of SC, 1991.

[12] Standard Performance Evaluation Corporation CPU 2006
(SPECCPU2006). http://www.spec.org/cpu2006/.

[13] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
shared resource contention in multicore processors via schedul-
ing,” in Proc. of ASPLOS, 2010, pp. 129–142.

[14] A. Jaleel, H. H. Najaf-Abadi, S. Subramaniam, S. C. Steely,
and J. Emer, “Cruise: cache replacement and utility-aware
scheduling,” in Proc. of ASPLOS, 2012, pp. 249–260.

[15] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-
aware scheduling on SMP-CMP-SMT multiprocessors,” in
Proc. of EuroSys, 2007, pp. 47–58.

[16] S.-g. Kim, H. Eom, and H. Y. Yeom, “Virtual machine schedul-
ing for multicores considering effects of shared on-chip last
level cache interference,” in Proc. of IGCC, 2012, pp. 1–6.

[17] R. Nikolaev and G. Back, “Perfctr-xen: a framework for
performance counter virtualization,” in Proc. of VEE, 2011,
pp. 15–26.

[18] A distributed memory object caching system (memcached).
http://www.memcached.org.

[19] Redis. http://www.redis.io/.
[20] M. Zhuang and B. Aker, “memslap: Load testing and

benchmarking tool for memcached.” http://docs.tangent.org/
libmemcached/memslap.html.

[21] B. Goglin and N. Furmento, “Enabling high-performance
memory migration for multithreaded applications on Linux,”
in Proc. of IPDPS, 2009, pp. 1–9.

[22] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot,
“Scale-out NUMA,” in Proc. of ASPLOS, 2014, pp. 3–18.

[23] S. Li, T. Hoefler, and M. Snir, “NUMA-aware shared-memory
collective communication for MPI,” in Proc. of HPDC, 2013,
pp. 85–96.

[24] L. M. Maas, T. Kissinger, D. Habich, and W. Lehner, “Buz-
zard: a NUMA-aware in-memory indexing system,” in Proc.
of ACM SIGMOD ICMD, 2013, pp. 1285–1286.

[25] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich, D. Molka, and
W. Lehner, “Eris: A NUMA-aware in-memory storage engine
for analytical workloads,” The VLDB Endowment, vol. 7,
no. 14, 2014.

[26] K. Z. Ibrahim, S. Hofmeyr, and C. Iancu, “The case for
partitioning virtual machines on multicore architectures,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25,
no. 10, pp. 2683–2696, 2014.

79


