
VirtCFT: A Transparent VM-Level Fault-Tolerant System for Virtual Clusters

Minjia Zhang, Hai Jin, Xuanhua Shi, Song Wu
Services Computing Technology and System Lab

Cluster and Grid Computing Lab
School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, 430074, China
hjin@hust.edu.cn

Abstract—A virtual cluster consists of a multitude of virtual
machines and software components that are doomed to fail
eventually. In many environments, such failures can result in
unanticipated, potentially devastating failure behavior and in
service unavailability. The ability of failover is essential to the
virtual cluster’s availability, reliability, and manageability.
Most of the existing methods have several common
disadvantages: requiring modifications to the target processes
or their OSes, which is usually error prone and sometimes
impractical; only targeting at taking checkpoints of processes,
not whole entire OS images, which limits the areas to be
applied. In this paper we present VirtCFT, an innovative and
practical system of fault tolerance for virtual cluster. VirtCFT
is a system-level, coordinated distributed checkpointing fault
tolerant system. It coordinates the distributed VMs to
periodically reach the globally consistent state and take the
checkpoint of the whole virtual cluster including states of CPU,
memory, disk of each VM as well as the network
communications. When faults occur, VirtCFT will
automatically recover the entire virtual cluster to the correct
state within a few seconds and keep it running. Superior to all
the existing fault tolerance mechanisms, VirtCFT provides a
simpler and totally transparent fault tolerant platform that
allows existing, unmodified software and operating system
(version unawareness) to be protected from the failure of the
physical machine on which it runs. We have implemented this
system based on the Xen virtualization platform. Our
experiments with real-world benchmarks demonstrate the
effectiveness and correctness of VirtCFT.

Keywords-Fault Tolerance; Coordinated Checkpointing;
Virtual Machine; High Availability

I. INTRODUCTION
In recent years, internet services have been growing in

number and functionality, and the increasing demand for
computing power and reducing of the running cost have led
to the widespread of virtualization technology [1].

In this way, using virtual cluster provided by virtual
machine to decrease the number of physical machines leads
to better utilization of resources like space, electric power,
maintenance, and management [1]. A virtual cluster is
consisted of multiple virtual machines (VMs) distributed
across physical hosts. A virtual cluster can execute
distributed application such as client-server systems and
transaction processing; or an isolated, private sandbox-like

environment with little performance reduction; or a flexible
computing environment customized by the users. In fact,
Amazon’s Elastic Compute Cloud (EC2) already uses the
virtual cluster to provide customers with a completely
customized environment on which to execute their
computations [21].

However, with the increased use of virtual clusters, fault-
tolerance has also become a major issue. As the virtual
cluster consists of large counts of virtual machines
functioning as compute nodes, faults are becoming common
place. Even more unfortunately, the failure of a single virtual
machine usually causes a significant crash of fault of the
other related part of the virtual cluster to fail. Because the
running state is not stored redundantly, loss of any data is
catastrophic. Especially, the scientific computing is quite
time consuming. It often executes hours even days to get the
result, it is unbearable to start it all over again just because
fault happens. Thus, the large computing potential of virtual
cluster is often impeded by its susceptibility of failures.

In order to bring high availability to virtual cluster, it is
highly desirable to provide a mechanism of fault tolerance to
protect the entire virtual environment from failure. It can
save running states of entire VMs as well as network
communication. This mechanism needs to ensure the entire
virtual cluster recovery to the correct state when fault is
detected.

In this paper, we propose VirtCFT, a fault tolerance
system for virtual cluster based on the Virtual Machine
Monitor (VMM) Xen. VirtCFT runs beneath target virtual
cluster and can provide fault tolerance to arbitrary
applications like executing MPI programs. VirtCFT initiates
coordination of virtual machines, continuously takes and
replicates checkpoints of individual VMs to additional
backup host for fault resiliency. When a virtual machine
crashes for any reason, the latest taken checkpoints will be
immediately restored on a backup physical node and the
backup VM will replace the crashed primary VM to provide
services until the primary VM recovers.

Different from all the existing distributed checkpointing
fault tolerant techniques, VirtCFT aims to transparently
backup the entire OS at the virtual machine level, while all
the other checkpoint-recovery methods are only concerned
with taking checkpoints of target processes. Besides,
VirtCFT does not require any modification to applications as
well as the guest operating system (GuestOS).

2010 16th International Conference on Parallel and Distributed Systems

1521-9097/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPADS.2010.125

147

Our system can be extended to platform of cloud
computing for providing fault-tolerance. Further, our system
can be easily developed to include supporting for job
schedulers like PBS, and monitor of virtual cluster like
Open-Nebulas. With such functionality, migration and load
balance can be used to reduce checkpoint overhead while
still providing fault-tolerance.

The rest of the paper is organized as follows. Section 2
discusses the related work of fault tolerance mechanism.
Section 3 details the design and implementation of VirtCFT
on top of Xen. In section 4, we test VirtCFT with several
popular benchmarks and analyze the experiments. We draw
the conclusion of the paper in section 5.

II. RELATED WORKS

A. Fault Tolerance Mechanism
Over the years, computer scientists and commercial

companies have developed numerous practical mechanisms
to achieve fault tolerance for cluster. Many of techniques are
proposed to deal with distributed applications, yet very few
have addressed the need for providing fault tolerance to an
entire cluster environment, and even fewer to a virtual cluster
with the virtualization technology.

One of the main components of fault tolerance
mechanism is checkpoint/rollback. Traditional fault tolerance
can be classified by several levels of checkpointing, each of
which balances generality and efficiency differently. These
techniques can be mainly classified into application-level,
OS-level (e.g. [6, 7]), and library-level (e.g. [8–10]) fault
tolerance. Although these solutions work fine in their own
rights and perform well in specific scenarios, each has its
own limitations.

Application-level checkpointing is the most common
one. It requires the programmer to manually identify the live
data structures, the accurate points in the application where it
is possible to take the checkpoint. It is error-prone and needs
access to source code of application which is impossible
under certain circumstances. OS-level checkpointing often
requires modifications to the OS kernel or requires new
kernel modules, which may bring more errors and instability.
Besides, it will introduce incompatibility to other system-
level applications and make them unable to execute.
Similarly, only a certain kinds of applications can benefit
from linking to a specific checkpointing library. This is due
to that the checkpointing library is usually developed as part
of the message passing library (such as MPI) which not all
applications can use. Moreover, many of these solutions
cannot maintain communication of network connected and
adjust dependencies of application on local resources such as
process identifiers (PIDs), IP addresses, MAC addresses, and
file descriptors. The problems of dependencies are usually
the main obstacles that prevent a checkpoint from being
recoverable on a backup physical host.

In addition to different granularities, fault tolerance can
also be categorized as automatic methods (checkpoint-based
or log-based) [11, 12, 13] and non-automated approaches [9,
14]. Checkpoint-based methods usually rely on a
combination of OS support to checkpoint a process image

(e.g., via Berkeley Labs Checkpoint Restart (BLCR) Linux
module [16]) combined with a coordinated checkpoint
protocol handling the complexities arising from each
process. Log-based methods generally rely on logging
messages and possibly their temporal ordering, then rollback
and replay input deterministically when a fault occurs. Yet it
is impractical for real-time operation, especially in a multi-
processor environment. Non-automatic approaches generally
need to manually invocate checkpoint routines.

B. Fault Tolerance with Virtualization Technology
Virtualization technology has appeared as a solution to

decouple the complex dependency of application execution,
checkpointing and restoration from the underlying physical
infrastructure. Recently, three solutions have been proposed
based on Xen migration. Paper [2] advocates using migration
and anticipation as a proactive method to move VM from
unhealthy nodes to healthy ones in a high performance
computing environment. Though this method can be used for
predictable failure scenarios, it does not provide protection
against unexpected failures nor restore distributed execution
states in the event of such failures. Remus [3] is a practical
high-availability service that provides a running system to
transparently continue execution on an alternate physical
host in the face of failure with only seconds of downtime.
However, the focus of Remus is individual VMs whereas
VirtCFT focuses on virtual cluster and need to address
problem of coordination. Another solution is Kemari [4],
which offers a feasible synchronous approach to fault
tolerance based on logging and replay. However, it cannot
maintain the network connection after the failover, which is
not suitable for virtual cluster performing as science
computing like running MPI program.

III. SYSTEM DESIGN
In order to enhance the utility of virtual clusters, some

form of fault tolerance must be presented. Based on Xen, we
propose a fault tolerant solution—VirtCFT, a virtual machine
level, virtualization solution with coordinated distributed
checkpointing.

The main challenge to provide such fault tolerance to
virtual cluster lies in that in order to recover the virtual
cluster to the correct state, the checkpoint of each VM in the
cluster need to be coordinated to compose a globally
consistent state. Such phase of coordination is essential in
that the correctness and consistency of the VM execution and
communication states need to be guaranteed when doing
recovery in the future. The other challenge is the efficiency;
in other words, overhead caused by the fault tolerance
mechanism need to be concerned. To address the first
challenge, we adopt a modified global coordinated algorithm
with synchronous checkpointing to ensure that all VMs are
coordinated their checkpoint actions so that global consistent
checkpoint is guaranteed. To address the second challenge,
we involve an optimized virtualization technique by which
checkpoint of individual VM is continuously sent to the
backup host so that the redundant data need to save is
sharply reduced. As such, we are able to failover the entire
virtual cluster with both correctness and efficiency.

148

After we have analyzed the main difficulties, we then
come to the detail design of VirtCFT. In order for virtual
cluster to do fault tolerance with the property of correctness,
we need to ensure the computing execution on virtual cluster
come out the correct result after the fault resiliency, which
means the captured checkpoints should be globally
consistent [17]. If we could simultaneously save checkpoints
of all virtual machines and the states of virtual network, we
would have a consistent global state. It is notoriously
difficult to capture globally synchronized clocks cross
physical machines, so taking simultaneous checkpoints is
impractical. A possible globally consistent state given by
Chandy and Lamport [17] can be regarded as a relaxation of
the requirement. Informally, we can describe a globally
consistent state composed by the distributed entities (e.g.,
processes or VMs) that do not contain a message which is
recorded as being received by some VMs but not logged as
being sent out by any other VM.

We use Figure 1 to show an example and illustrate why
globally consistent state composed by virtual machines is
vital as well as how the consistent state consisting of four
VMs is reached. Messages exchanged between VMs are
marked by arrows going from the sender to the receiver. The
execution line of the VMs is separated by a cut. A cut is
consist of a sequence of events – one cut event at the
execution line of each VM that separates each VM’s timeline
into two parts. The part on the left of the cut corresponds to
state before the cut event (past) and the part on the right of
the cut corresponds to state after the cut event (future). A cut
is globally consistent only if there are no messages passed
from the future to the past. As a result, if all VMs come to an
agreement on a globally consistent state before a checkpoint
is set, we can say that checkpoints taken at this point together
make a valid globally consistent state. In VM2’s checkpoint
taken at time B, message m3 is recorded as being received,
but VM1’s checkpoint at time A has no record that the
message m3 has been sent out. Then the state is inconsistent
because VM2 receives a message which is sent by no one. By
avoiding messages like m3, which is also called the orphan
message [19], we can say that checkpoint A, B, C, D consist
of a globally consistent state.

Figure 1. The correctness definition

In our approach, under the assumption of a reliable
communication channel, we adopt two-phase commit

coordinated-blocking algorithm [18] for FIFO
communication channels to reach the globally consistent
state by avoiding orphan messages (a post-checkpoint
network message). It is mainly used to prevent network
message generated by a VM whose checkpoint has been
taken from being received by a VM whose checkpoint has
not been completed. Therefore, the VMs’ checkpoints will
form a globally consistent state [7] which is guaranteed to be
safely restored to the correct state.

The overview of our coordinated algorithm can be
described as below:

Coordinated checkpointing assumes single coordinator,
as opposed to multiple coordinators concurrently invoking
the algorithm to take checkpoints. The coordinated process
occurs as a sequence of phases:

Phase 1: The checkpoint coordinator broadcasts
checkpointing request CHKP_REQ to all virtual machines.
Then the coordinator waits to collect ACK.

Phase 2: When the VM receives the CHKP_REQ signal,
it then checks whether it is ready to take a checkpoint to save
the current state of the VM. If the VM is ready, it buffers all
the outgoing messages and sends confirmation YES_ACK to
the coordinator.

Phase 3: After the coordinator receives YES_ACK from
all the VMs, the coordinator then sends valid signals to all
the VMs to take tentative checkpoints. Each domain informs
coordinator whether it is succeeded in taking a tentative
checkpoint. If coordinator can ensure that all the VMs have
successfully taken tentative checkpoints, the coordinator
decides that all tentative checkpoints should be changed into
permanent status and sends VALIDATE signals to all VMs;
otherwise the coordinator decides that all the tentative
checkpoints should be discarded and sends INVALID
messages to all VMs.

Phase 4: When the VM receives the VALIDATE signal,
it changes its previous tentative checkpoint into permanent
status, sends the CHKP_SUC message to the coordinator and
unblocks all the connections.

Phase 5: The coordinated operation is completed when
the coordinator receives the CHKP_SUC messages from all
other VMs.

The whole progress can be demonstrated as Figure 2.
Arrows represent coordinated signals. The coordination
process begins when the coordinator broadcasts the
CKPT_REQ. At the global state C1 (A, B, C), the virtual
machines receive CKPT_REQ. At this time, each virtual
machine tries to do tentative checkpointing to save the local
state. At the global state C2 (D, E, F), the virtual machines
change their tentative checkpoints to permanent checkpoints.
As a result, all the virtual machines can only send messages
again later than C2. Therefore, there will be no orphan
messages return from the future to the past. C1 is hereby the
globally consistent state.

Our protocol based on this algorithm is different from
other existing coordinated protocols in that it is targeting at
transparently taking checkpoints of entire operating system,
while all the other coordinated protocols are only concerned
with taking checkpoints of target processes. This goal
requires us to modify and instantiate our protocol underneath

149

the target operating system which leads us to the virtual
machine technology.

Figure 2. Two-phase coordinated-blocking protocol

Based on all the analysis above, we can give the specific
framework of our multiple virtual machine fault tolerant
system and show how each component of our system
interacts with other part. As shown in Figure 3, within the
dashed box, VM checkpoint coordinator, fault sensor, and
recovery scheduler are essential and are supposed to be
stable. Fault sensor and recovery scheduler are used to
handle occasional fault caused by virtual machines. The
coordinator where the coordinated protocol is implemented
masters the whole condition of virtual cluster and interacts
with local communication daemon on each host via the
network. The local daemon has its own independent
coordination daemon and replication daemon. These
daemons can help the distributed host to control all the
virtual machines running above it to coordinate with other
virtual machines across hosts as well as creating replications
of each virtual machine.

Figure 3. Framework of VirtCFT

IV. SYSTEM IMPLEMENTATION
We have described the basic idea of VirtCFT and the

mechanism of our fault tolerance for virtual cluster. Now we
present the detail implementation of each component. These
components, including VM-level coordinator, replication
daemon with incremental checkpointing, and recovery
scheduler, are all implemented based on Xen virtualization

platform.

A. Overview
VirtCFT is designed and implemented as a virtual

machine level, coordinated fault tolerant system. Different
from all the previous related systems which are concerned
with taking checkpoints of processes, our system aims at
restoring the entire virtual cluster to the previous correct state
set by continuously taking incremental checkpoints of entire
OS images of virtual cluster with virtualization technology.

The system architecture of VirtCFT can be demonstrated
as Figure 4. It is mainly composed of following parts: VM-
level coordinator which consists of coordinated module and
network control module used for coordinating virtual
machines to reach the globally consistent state. Replication
daemon is responsible for backup redundant data to the
additional peer host with incremental checkpoint which can
tremendously reduce the overhead of checkpointing. Fault
sensor and recovery scheduler restore the virtual cluster from
failure to correct state when a fault occur. The fault sensor
continuously probes the state of the virtual cluster until a
fault being detected, and then the recovery scheduler will roll
back the related virtual machines to reach the former correct
consistent state established by coordinator and allow the
entire system to keep running from that point. The more
detail design can be described as following.

Figure 4. System architecture

B. VM-level Coordinator
Considering that our coordinated checkpointing protocol

is required to be totally transparent to the process and the OS
running in guest domains, we have to implement our
protocol beneath the guest OS. In Xen, domain 0 is the
special control domain of the Xen system and more
importantly, all the network messages heading to the guest
domains will go through domain 0 first, all of which makes
the domain 0 a perfect choice to implement our coordinated
checkpointing protocol.

For the virtual cluster, there are two types of
communication which can be referred to as inter-host and
intra-host communications. For the VMs in the same
physical host, they communicate through a Linux ethernet

150

bridge as it is widely implemented in a typical Xen setup, so
the coordination process can be accomplished
simultaneously. For communication across hosts, we add a
module between VM and Linux ethernet bridge which can be
used to carry our coordinated signals to address process of
coordination. The coordination protocol is implemented as
the description in the above section of the system design.

When the coordinator spots the global consistent state,
we need to block and later unblock all the outgoing network
messages of a guest domain. According to our algorithm,
when a virtual machine receives a message from the
coordinator commanding to set the tentative checkpoint, all
the outgoing messages of the virtual machine must be
blocked before we take a checkpoint of the virtual machine,
and after finishing the checkpointing, we need to unblock
these blocked connections. We implement these blocking
and unblocking functionalities by adding a new kernel
module in the traffic control [20] module of the domain 0
kernel, shown in Figure 5. This module waits the
coordinating signals to determine whether it is time to block
the network messages. If so, the module blocks all the
outgoing messages of this virtual machine until the
checkpointing process has finished and receives an unblock
command. The advantage of this method is that all the
network messages communicating with VM need to go
through domain 0 first, thus block the outgoing messages in
domain 0 will simultaneously block all the other guest
operating systems above the virtual machine monitor. In
addition, a buffering scheme also needs to be added so that it
can preserve the messages dropped during the process of
blocking.

Figure 5. Traffic control in domain0 with bridge mechanism and TC

C. Replication Daemon with Incremental Checkpointing
To provide an effective fault tolerant system, we need a

mechanism that enables a VM to run on additional physical
host with minimum possible overhead. More importantly, the
network connections should not be disconnected while

failover is in progress. The states need to be preserved
include information of VCPU, memory, disk, I/O device, and
network communicate.

Xen provides a capability of live migration, which
enables the guest VM to be transferred from one physical
host to another [5]. During migration, it will preserve the
state of all the processes on the guest, which effectively
allows the VM to keep executing without interruption.

This technique is extended to transparently (to the
GuestOS) mark all VM memory pages as read only. The Xen
hypervisor is then able to capture all writes that a VM makes
to memory and update a bitmap of pages of Shadow Page
Table that have been dirtied since the previous epoch. In
each epoch, the Xen hypervisor atomically reads and resets
this bitmap, and the iterative process of sending dirty pages
goes until progress can no longer be made. Finally, the live
migration process suspends execution of the VM and enters a
final phase of stop-and-copy, where any remaining pages
including VCPU states are transmitted and execution
resumes on the destination host.

To fulfill our need, we modify Xen as repeatedly
executing the final step of live migration: each round, the
guest is paused while the replication daemon interacts with
the source host in obtaining the dirtied memory pages and
VCPU state and putting them into a buffer. The guest then
resumes execution on the current host, rather than restoring
on the destination host. Another primary change required to
be added for support is that the VM needs to keep running
after it has been suspended. Previously, Xen will terminate
the VM after saving and sending the states out. To
implement such migration, we create a replication daemon of
checkpointing to obtain only newly-dirty memory each
round of VM. Instead, the original VM will not be destroyed
after its state has been copied. The VM will keep schedulable
even after being suspended, that means, the VM will resume
continuing the computation.

In addition to the states saved above, disk state is also
needed to backup. Disk checkpointing is yet not
implemented in Xen, however, we can also incrementally
save the VM’s file system by using the LVM snapshot
capability. The LVM snapshot records changes made to a
logical volume after the snapshot has been made. In
VirtCFT, the LVM snapshots are taken during the stop-and-
copy phase when a VM is suspended. It can be processed
and submitted asynchronously to the backup host after the
VM resumes executing.

D. Recovery Scheduler
In this paper, we make the assumption that failures

follow the fail-stop model. That is, one or more virtual
machines crash or stop sending or receiving network
messages. Because the main feature of our system is the state
capture and replication of the whole system, error produced
by software will also be saved which is the consequence of
providing transparently system-level fault tolerance.

In order to trigger the recovery phase, we currently use a
failure sensor set in user space to watch possible failures. It
periodically sends messages to inquiry other virtual
machines whether they are in normal condition. A timeout of

151

the virtual machine responding to inquiry requests will result
in the failure sensor assuming that that virtual machine has
crashed and give a failure report to the failure sensor.

When faults occur, the fault sensor detects the failed VM
and triggers the recovery scheduler to send messages to all
the other domains to inform this failure and initiate recovery
process. It is needed to roll back the related virtual machines
to the latest globally consistent state and drop all the
uncommitted states. After the recovery, in order to ensure the
newly established system state not to be interrupted by
communication events, which will result in message losing
and inconsistencies in the global state, it still need to report
to the recovery scheduler in hypervisor and wait the recovery
scheduler responding the request. After that the entire virtual
cluster can continue to execute correctly again.

We implement the recovery scheduler based on Xen’s
xm_restore which is the destination side of live migration
process. It will introduce the advantages of virtualization
technology that the backup virtual machine is able to
maintain its network address unchanged. With this feature, it
is greatly benefit the recovery process. For example, a
running MPI computation needs not to update their address
caches or any process IDs. Since the entire VM is
checkpointed, the MPI job sees the environment as it is prior
to checkpointing.

V. PERFORMANCE EVALUATION
In this section, we first measure the overhead brought by

our system, and then give a thorough test of our design and
implementation by using NPB MPI benchmarks.

A. Experimental Setup
We build our experimental environment on a pair of two-

socket servers (server1 and server2) connected by a one
gigabit Ethernet network, each sockets have 4 Intel Xeon
1.6GHz CPUs. Both servers have 4GB DDR RAM and
150GB hard disk. We use Linux 2.6.18 with Xen 3.4.0
installed as the operation system. Identical images of VM
exist on both the primary and backup host and the path is
assumed to be the same on the backup as it is on the primary.
In all cases the VM is configured to have a single CPU with
512MB of RAM, and installed a Red Hat Enterprise Linux
5.3 as guest OS. To execute evaluation, we create our test
environment as virtual Linux clusters of 4 VMs. All the
virtual machines and physical machines are connected with
each other based on the bridging mechanism provided by
Xen. The experiment environment is shown in Figure 6.

B. Performance Overhead
The purpose of the evaluation for the performance of

VirtCFT is to compute the overhead of VirtCFT introduced
into the virtual cluster as well as the overhead of
coordination phase. In order to ensure the accuracy of our
evaluation, we reboot all virtual machines ready for test so
that virtual machines can run with low load. In order to
demonstrate the effectiveness of checkpointing the file
system, no extraordinary measures are taken to reduce the
GuestOS image size. We use the most recent version of the
Xen-3.4-testing version for all tests.

Figure 6. The experiment enviroment

NAS Parallel Benchmarks (NPB) [15] developed at the
NASA Advanced Supercomputing (NAS) contains a
combination of computational kernels. For our analysis, we
choose to use EP and IS. EP is a compute-bound MPI
benchmark with a few network communications. IS is an IO-
bound MPI benchmark with large amounts of network
transaction.

We first measure these benchmarks’ runtime when they
are executed on 4 virtual machines (the configuration of
these physical machines is described above) without any
fault tolerant functionality. Then we initiate the VirtCFT
without coordinating process and record their runtime. By
comparing these two groups of runtime, we find out that the
ability of providing fault tolerance to each VM without
coordinated checkpointing itself will incur approximately
20%~40% performance penalty than that generated in 4
virtual machines environment without fault tolerance. This is
a necessary consequence to provide both transparency and
generality by saving redundant states of the entire VM.

After this, we start our VirtCFT with coordinated
checkpiointing and evaluate the runtime with different
coordinating intervals, including 400ms, 200ms, and 100ms.
Shown in Figure 7, we choose EP and Class A and record its
runtime under different situations. We first initiate 4
processes; each process is pinned to one of the 4 VMs and
has full access to a single processor. To test the performance
of VirtCFT accurately, we then repeat the EP benchmarks 10
times. We find out when the coordinating interval is 100ms,
the runtime is relatively high to fault tolerance of the virtual
cluster without coordinated checkpointing, but when we
increase the coordinating interval, the runtime overhead
caused by our system begins to drop. The reason is that when
we increase the interval, the whole virtual cluster will do less
coordinated checkpointing, which means the whole system
will suspend less time during a period of time and can spend
more time on computing. When we update the interval to
400 seconds, the runtime increase is already less than 30
percent comparing with the FT enabled without coordination
situation. We are sure if we continue increasing the
coordinating interval, the runtime overhead caused by
VirtCFT will keep dropping.

152

Figure 7. EP.4.A runtime

After evaluating the performance of EP.A.4, we then
choose Class B (the Class B problems are roughly four times
larger than the Class A problems) to see how VirtCFT will
perform if we large the problem size. As shown in Figure 8,
the results show a proportionately overhead comparing with
EP.4.A, the overhead of runtime does not go up sharply as
the problem size rises. Besides, the runtime overhead still
gradually decreases as we increase the coordinating interval.
Thus we can say that VirtCFT is suitable for larger task or
job that need longer time to compute without extra overhead
of runtime.

Figure 8. EP.4.B runtime

The runtime overhead of our system is reasonable on
dealing with compute-bound benchmark since this is an
inevitable consequence to provide fault tolerance to the
whole virtual cluster by saving the entire running state of
each VM. We still need to test some extreme cases with I/O
intensive applications. We then choose IS, a NPB benchmark
without including computation of floating point, but mainly
with significant network exchanging communications.

As shown in Figure 9, the runtime dramatically increases
if we set the coordinating interval to 400ms, but when we
decrease the interval, the runtime overhead caused by
VirtCFT begins to reduce. The sharply rising overhead in
this case is largely due to output-commit delay on the
network interface and as we decrease the interval, the impact
caused by network delay can be partly mitigated. Another
reason is that workloads produced by benchmark are
considerably more intensive than that expected in a typical

virtual cluster. In fact, even though VirtCFT is sensitive to
network latency, there are still several potential ways of
optimization to reduce the network delay.

Figure 9. IS.4.A runtime

In Figure 10, we show the time needed to restore a
computation for the EP and IS benchmark with different
coordinating intervals. In the case of recovering, the
dominating factors include the time of activation of backup
VMs to their checkpointed states, the coordinating intervals,
and the type of application running on the virtual cluster.
With the increasing of the interval of coordinated
checkpointing, the downtime to resume the virtual cluster
slightly grows. This can be explained by that the interval is
longer, so does the time to detect the fault is longer.

Figure 10. Time to restart from a failure

To verify the correctness of VirtCFT, we run the NAS
MPI benchmark programs in our experimental environment.
By comparing the outputs of the following: (1) an
uninterrupted MPI benchmark execution generated in the
ordinary environments, (2) the same benchmark execution
under the protection of VirtCFT and (3) the same benchmark
execution recovered by VirtCFT after randomly injecting
network failures or power off, we confirm that all executions
generate the same results.

VI. CONCLUSION
In this paper, we present the design and implementation

of a transparently virtual machine level Fault-Tolerant
system: VirtCFT. Comparing to all the existing fault tolerant

153

systems, VirtCFT is different in that it is aiming at
recovering the entire virtual cluster to the previous correct
state when fault occurs by transparently taking incremental
checkpoints of virtual machine images coordinately. To
make VirtCFT totally transparent to the target virtual
machines, we choose to implement our mechanism in the
control domain of the Xen virtualization platform. We
modify the Xen source code to implement the live checkpoint
so that the primary host can continually transfer its updated
information to the backup host without distinction. We
implemented a coordinated checkpoint protocol, including
adding control info, and modules severing as blocking and
unblocking outgoing messages. Besides, we also implement
a set of user level daemons which are the management unit
in our implementation. We apply several popular
benchmarks to verify the correctness of VirtCFT and
evaluate its overhead.

ACKNOWLEDGMENT
This work is supported by National 973 Basic Research

Program of China under grant No.2007CB310900, NSFC
under grant No.61073024 and 60973037, NCET under grant
07-0334, and Wuhan Chenguang Program under grant
No.201050231075.

REFERENCES
[1] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current

Technology and Future Trends”, IEEE Computer Magazine, May
2005.

[2] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott,
“Proactive Fault Tolerance for HPC with Xen Virtualization”, Proc.
ACM International Conference on Supercomputing, 2007.

[3] B. Cully, G. Lefebvre, D. Meyer, M. Freeley, N. Hutchinson, and A.
Warfield, “Remus: High Availability via Asynchronous Virtual
Machine Replication”, Proc. USENIX NSDI, 2008.

[4] Y. Tamura, K. Sato, S.Kihara, and S. Moriai, “Kemari: virtual
machine synchronization for fault tolerance”, Proc. USENIX'08
Poster Session, San Jose, CA, USA, 2008.

[5] I. Philp, “Software failures and the road to a petaflop machine”, Proc.
the 1st Workshop on High Performance Computing Reliability Issues,
2005.

[6] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The Design and
Implementation of Zap: A System for Migrating Computing
Environments”, Proc. USENIX OSDI, 2002.

[7] H. Zhong and J. Nieh, “Linux Checkpoint/Restart As a Kernel
Module”, Technical Report CUCS-014-01, Department of Computer
Science, Columbia University, 2001.

[8] J. Sankaran, J. M. Squyres, B. Barret, A. Lumsdaine, J. Duell, P.
Hargrove, and E. Roman, “The LAM/MPI Checkpoint/Restart
Framework: System-Initiated Checkpointing”, Proceedings of the
LACSI Symposium, 2003.

[9] G. E. Fagg and J. Dongarra, “FT-MPI: Fault Tolerant MPI,
Supporting Dynamic Applications in a Dynamic World”, Proc. the
7th European PVM/MPI User’s GroupMeeting, LNCS, Vol.1908,
2000.

[10] Y. Chen, J. S. Plank, and K. Li, “CLIP: A Checkpointing Tool for
Message-Passing Parallel Programs”, Proc. IEEE Supercomputing,
1997.

[11] G. Stellner, “CoCheck: checkpointing and process migration for
MPI”, Proc. of IPPS’96, 1996.

[12] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P.
Hargrove, and E. Roman. “The LAM/MPI checkpoint/restart
framework: System-initiated checkpointing”, Proc. LACSI
Symposium, Sante Fe, New Mexico, USA, October 2003.

[13] G. Bosilca, A. Boutellier, and F. Cappello, “MPICH-V: Toward a
scalable fault tolerant MPI for volatile nodes”, Proc. Supercomputing,
Nov. 2002.

[14] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.
Risinger, M. A. Taylor, T. S. Woodall, and M. W. Sukalski,
“Architecture of LA-MPI, a network-fault-tolerant MPI”, Proc.
International Parallel and Distributed Processing Symposium, 2004.

[15] NPB, http://www.nas.nasa.gov/Resources/Software/npb.html.
[16] J. Duell, “The design and implementation of berkeley lab’s linux

checkpoint/restart”, Technical Report, Lawrence Berkeley National
Laboratory, 2000.

[17] M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems”, ACM Transactions on
Computing Systems,Vol.3, No.1, pp.63-75, February 1985.

[18] B. S. Boutros and B. C. Desai, “A two-phase commit protocol and its
performance”, Proc. the 7th International Workshop on Database and
Expert Systems Applications, 1996.

[19] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E.
Rodriguezb, and F. Cappello, “Blocking vs. Non-Blocking
Coordinated Checkpointing for Large-Scale Fault Tolerant MPI”,
Proc. the 2006 ACM/IEEE conference on Supercomputing, Nov,
2006.

[20] W. Almesberger, “Linux network traffic control implementation
overview”, Proc. of 5th Annual Linux Expo, 1999, Raleigh, NC,
pp.153-164.

[21] A. Weiss, “Computing in the clouds”, netWorke, pp.16-25, November
2007.

154

