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Abstract—A virtual cluster consists of a multitude of virtual 
machines and software components that are doomed to fail 
eventually. In many environments, such failures can result in 
unanticipated, potentially devastating failure behavior and in 
service unavailability. The ability of failover is essential to the 
virtual cluster’s availability, reliability, and manageability. 
Most of the existing methods have several common 
disadvantages: requiring modifications to the target processes 
or their OSes, which is usually error prone and sometimes 
impractical; only targeting at taking checkpoints of processes, 
not whole entire OS images, which limits the areas to be 
applied. In this paper we present VirtCFT, an innovative and 
practical system of fault tolerance for virtual cluster. VirtCFT 
is a system-level, coordinated distributed checkpointing fault 
tolerant system. It coordinates the distributed VMs to 
periodically reach the globally consistent state and take the 
checkpoint of the whole virtual cluster including states of CPU, 
memory, disk of each VM as well as the network 
communications. When faults occur, VirtCFT will 
automatically recover the entire virtual cluster to the correct 
state within a few seconds and keep it running. Superior to all 
the existing fault tolerance mechanisms, VirtCFT provides a 
simpler and totally transparent fault tolerant platform that 
allows existing, unmodified software and operating system 
(version unawareness) to be protected from the failure of the 
physical machine on which it runs. We have implemented this 
system based on the Xen virtualization platform. Our 
experiments with real-world benchmarks demonstrate the 
effectiveness and correctness of VirtCFT. 

Keywords-Fault Tolerance; Coordinated Checkpointing; 
Virtual Machine; High Availability 

I. INTRODUCTION 
In recent years, internet services have been growing in 

number and functionality, and the increasing demand for 
computing power and reducing of the running cost have led 
to the widespread of virtualization technology [1]. 

In this way, using virtual cluster provided by virtual 
machine to decrease the number of physical machines leads 
to better utilization of resources like space, electric power, 
maintenance, and management [1]. A virtual cluster is 
consisted of multiple virtual machines (VMs) distributed 
across physical hosts. A virtual cluster can execute 
distributed application such as client-server systems and 
transaction processing; or an isolated, private sandbox-like 

environment with little performance reduction; or a flexible 
computing environment customized by the users. In fact, 
Amazon’s Elastic Compute Cloud (EC2) already uses the 
virtual cluster to provide customers with a completely 
customized environment on which to execute their 
computations [21]. 

However, with the increased use of virtual clusters, fault-
tolerance has also become a major issue. As the virtual 
cluster consists of large counts of virtual machines 
functioning as compute nodes, faults are becoming common 
place. Even more unfortunately, the failure of a single virtual 
machine usually causes a significant crash of fault of the 
other related part of the virtual cluster to fail. Because the 
running state is not stored redundantly, loss of any data is 
catastrophic. Especially, the scientific computing is quite 
time consuming. It often executes hours even days to get the 
result, it is unbearable to start it all over again just because 
fault happens. Thus, the large computing potential of virtual 
cluster is often impeded by its susceptibility of failures. 

In order to bring high availability to virtual cluster, it is 
highly desirable to provide a mechanism of fault tolerance to 
protect the entire virtual environment from failure. It can 
save running states of entire VMs as well as network 
communication. This mechanism needs to ensure the entire 
virtual cluster recovery to the correct state when fault is 
detected. 

In this paper, we propose VirtCFT, a fault tolerance 
system for virtual cluster based on the Virtual Machine 
Monitor (VMM) Xen. VirtCFT runs beneath target virtual 
cluster and can provide fault tolerance to arbitrary 
applications like executing MPI programs. VirtCFT initiates 
coordination of virtual machines, continuously takes and 
replicates checkpoints of individual VMs to additional 
backup host for fault resiliency. When a virtual machine 
crashes for any reason, the latest taken checkpoints will be 
immediately restored on a backup physical node and the 
backup VM will replace the crashed primary VM to provide 
services until the primary VM recovers. 

Different from all the existing distributed checkpointing 
fault tolerant techniques, VirtCFT aims to transparently 
backup the entire OS at the virtual machine level, while all 
the other checkpoint-recovery methods are only concerned 
with taking checkpoints of target processes. Besides, 
VirtCFT does not require any modification to applications as 
well as the guest operating system (GuestOS). 
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Our system can be extended to platform of cloud 
computing for providing fault-tolerance. Further, our system 
can be easily developed to include supporting for job 
schedulers like PBS, and monitor of virtual cluster like 
Open-Nebulas. With such functionality, migration and load 
balance can be used to reduce checkpoint overhead while 
still providing fault-tolerance. 

The rest of the paper is organized as follows. Section 2 
discusses the related work of fault tolerance mechanism. 
Section 3 details the design and implementation of VirtCFT 
on top of Xen. In section 4, we test VirtCFT with several 
popular benchmarks and analyze the experiments. We draw 
the conclusion of the paper in section 5. 

II. RELATED WORKS 

A. Fault Tolerance Mechanism 
Over the years, computer scientists and commercial 

companies have developed numerous practical mechanisms 
to achieve fault tolerance for cluster. Many of techniques are 
proposed to deal with distributed applications, yet very few 
have addressed the need for providing fault tolerance to an 
entire cluster environment, and even fewer to a virtual cluster 
with the virtualization technology. 

One of the main components of fault tolerance 
mechanism is checkpoint/rollback. Traditional fault tolerance 
can be classified by several levels of checkpointing, each of 
which balances generality and efficiency differently. These 
techniques can be mainly classified into application-level, 
OS-level (e.g. [6, 7]), and library-level (e.g. [8–10]) fault 
tolerance. Although these solutions work fine in their own 
rights and perform well in specific scenarios, each has its 
own limitations. 

Application-level checkpointing is the most common 
one. It requires the programmer to manually identify the live 
data structures, the accurate points in the application where it 
is possible to take the checkpoint. It is error-prone and needs 
access to source code of application which is impossible 
under certain circumstances. OS-level checkpointing often 
requires modifications to the OS kernel or requires new 
kernel modules, which may bring more errors and instability. 
Besides, it will introduce incompatibility to other system-
level applications and make them unable to execute. 
Similarly, only a certain kinds of applications can benefit 
from linking to a specific checkpointing library. This is due 
to that the checkpointing library is usually developed as part 
of the message passing library (such as MPI) which not all 
applications can use. Moreover, many of these solutions 
cannot maintain communication of network connected and 
adjust dependencies of application on local resources such as 
process identifiers (PIDs), IP addresses, MAC addresses, and 
file descriptors. The problems of dependencies are usually 
the main obstacles that prevent a checkpoint from being 
recoverable on a backup physical host. 

In addition to different granularities, fault tolerance can 
also be categorized as automatic methods (checkpoint-based 
or log-based) [11, 12, 13] and non-automated approaches [9, 
14]. Checkpoint-based methods usually rely on a 
combination of OS support to checkpoint a process image 

(e.g., via Berkeley Labs Checkpoint Restart (BLCR) Linux 
module [16]) combined with a coordinated checkpoint 
protocol handling the complexities arising from each 
process. Log-based methods generally rely on logging 
messages and possibly their temporal ordering, then rollback 
and replay input deterministically when a fault occurs. Yet it 
is impractical for real-time operation, especially in a multi-
processor environment. Non-automatic approaches generally 
need to manually invocate checkpoint routines. 

B. Fault Tolerance with Virtualization Technology 
Virtualization technology has appeared as a solution to 

decouple the complex dependency of application execution, 
checkpointing and restoration from the underlying physical 
infrastructure. Recently, three solutions have been proposed 
based on Xen migration. Paper [2] advocates using migration 
and anticipation as a proactive method to move VM from 
unhealthy nodes to healthy ones in a high performance 
computing environment. Though this method can be used for 
predictable failure scenarios, it does not provide protection 
against unexpected failures nor restore distributed execution 
states in the event of such failures. Remus [3] is a practical 
high-availability service that provides a running system to 
transparently continue execution on an alternate physical 
host in the face of failure with only seconds of downtime. 
However, the focus of Remus is individual VMs whereas 
VirtCFT focuses on virtual cluster and need to address 
problem of coordination. Another solution is Kemari [4], 
which offers a feasible synchronous approach to fault 
tolerance based on logging and replay. However, it cannot 
maintain the network connection after the failover, which is 
not suitable for virtual cluster performing as science 
computing like running MPI program. 

III. SYSTEM DESIGN 
In order to enhance the utility of virtual clusters, some 

form of fault tolerance must be presented. Based on Xen, we 
propose a fault tolerant solution—VirtCFT, a virtual machine 
level, virtualization solution with coordinated distributed 
checkpointing. 

The main challenge to provide such fault tolerance to 
virtual cluster lies in that in order to recover the virtual 
cluster to the correct state, the checkpoint of each VM in the 
cluster need to be coordinated to compose a globally 
consistent state. Such phase of coordination is essential in 
that the correctness and consistency of the VM execution and 
communication states need to be guaranteed when doing 
recovery in the future. The other challenge is the efficiency; 
in other words, overhead caused by the fault tolerance 
mechanism need to be concerned. To address the first 
challenge, we adopt a modified global coordinated algorithm 
with synchronous checkpointing to ensure that all VMs are 
coordinated their checkpoint actions so that global consistent 
checkpoint is guaranteed. To address the second challenge, 
we involve an optimized virtualization technique by which 
checkpoint of individual VM is continuously sent to the 
backup host so that the redundant data need to save is 
sharply reduced. As such, we are able to failover the entire 
virtual cluster with both correctness and efficiency. 
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After we have analyzed the main difficulties, we then 
come to the detail design of VirtCFT. In order for virtual 
cluster to do fault tolerance with the property of correctness, 
we need to ensure the computing execution on virtual cluster 
come out the correct result after the fault resiliency, which 
means the captured checkpoints should be globally 
consistent [17]. If we could simultaneously save checkpoints 
of all virtual machines and the states of virtual network, we 
would have a consistent global state. It is notoriously 
difficult to capture globally synchronized clocks cross 
physical machines, so taking simultaneous checkpoints is 
impractical. A possible globally consistent state given by 
Chandy and Lamport [17] can be regarded as a relaxation of 
the requirement. Informally, we can describe a globally 
consistent state composed by the distributed entities (e.g., 
processes or VMs) that do not contain a message which is 
recorded as being received by some VMs but not logged as 
being sent out by any other VM. 

We use Figure 1 to show an example and illustrate why 
globally consistent state composed by virtual machines is 
vital as well as how the consistent state consisting of four 
VMs is reached. Messages exchanged between VMs are 
marked by arrows going from the sender to the receiver. The 
execution line of the VMs is separated by a cut. A cut is 
consist of a sequence of events – one cut event at the 
execution line of each VM that separates each VM’s timeline 
into two parts. The part on the left of the cut corresponds to 
state before the cut event (past) and the part on the right of 
the cut corresponds to state after the cut event (future). A cut 
is globally consistent only if there are no messages passed 
from the future to the past. As a result, if all VMs come to an 
agreement on a globally consistent state before a checkpoint 
is set, we can say that checkpoints taken at this point together 
make a valid globally consistent state. In VM2’s checkpoint 
taken at time B, message m3 is recorded as being received, 
but VM1’s checkpoint at time A has no record that the 
message m3 has been sent out. Then the state is inconsistent 
because VM2 receives a message which is sent by no one. By 
avoiding messages like m3, which is also called the orphan 
message [19], we can say that checkpoint A, B, C, D consist 
of a globally consistent state. 

 
Figure 1.  The correctness definition 

In our approach, under the assumption of a reliable 
communication channel, we adopt two-phase commit 

coordinated-blocking algorithm [18] for FIFO 
communication channels to reach the globally consistent 
state by avoiding orphan messages (a post-checkpoint 
network message). It is mainly used to prevent network 
message generated by a VM whose checkpoint has been 
taken from being received by a VM whose checkpoint has 
not been completed. Therefore, the VMs’ checkpoints will 
form a globally consistent state [7] which is guaranteed to be 
safely restored to the correct state. 

The overview of our coordinated algorithm can be 
described as below: 

Coordinated checkpointing assumes single coordinator, 
as opposed to multiple coordinators concurrently invoking 
the algorithm to take checkpoints. The coordinated process 
occurs as a sequence of phases: 

Phase 1: The checkpoint coordinator broadcasts 
checkpointing request CHKP_REQ to all virtual machines. 
Then the coordinator waits to collect ACK. 

Phase 2: When the VM receives the CHKP_REQ signal, 
it then checks whether it is ready to take a checkpoint to save 
the current state of the VM. If the VM is ready, it buffers all 
the outgoing messages and sends confirmation YES_ACK to 
the coordinator. 

Phase 3: After the coordinator receives YES_ACK from 
all the VMs, the coordinator then sends valid signals to all 
the VMs to take tentative checkpoints. Each domain informs 
coordinator whether it is succeeded in taking a tentative 
checkpoint. If coordinator can ensure that all the VMs have 
successfully taken tentative checkpoints, the coordinator 
decides that all tentative checkpoints should be changed into 
permanent status and sends VALIDATE signals to all VMs; 
otherwise the coordinator decides that all the tentative 
checkpoints should be discarded and sends INVALID 
messages to all VMs. 

Phase 4: When the VM receives the VALIDATE signal, 
it changes its previous tentative checkpoint into permanent 
status, sends the CHKP_SUC message to the coordinator and 
unblocks all the connections. 

Phase 5: The coordinated operation is completed when 
the coordinator receives the CHKP_SUC messages from all 
other VMs. 

The whole progress can be demonstrated as Figure 2. 
Arrows represent coordinated signals. The coordination 
process begins when the coordinator broadcasts the 
CKPT_REQ. At the global state C1 (A, B, C), the virtual 
machines receive CKPT_REQ. At this time, each virtual 
machine tries to do tentative checkpointing to save the local 
state. At the global state C2 (D, E, F), the virtual machines 
change their tentative checkpoints to permanent checkpoints. 
As a result, all the virtual machines can only send messages 
again later than C2. Therefore, there will be no orphan 
messages return from the future to the past. C1 is hereby the 
globally consistent state. 

Our protocol based on this algorithm is different from 
other existing coordinated protocols in that it is targeting at 
transparently taking checkpoints of entire operating system, 
while all the other coordinated protocols are only concerned 
with taking checkpoints of target processes. This goal 
requires us to modify and instantiate our protocol underneath 
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the target operating system which leads us to the virtual 
machine technology. 

 
Figure 2.  Two-phase coordinated-blocking protocol 

Based on all the analysis above, we can give the specific 
framework of our multiple virtual machine fault tolerant 
system and show how each component of our system 
interacts with other part. As shown in Figure 3, within the 
dashed box, VM checkpoint coordinator, fault sensor, and 
recovery scheduler are essential and are supposed to be 
stable. Fault sensor and recovery scheduler are used to 
handle occasional fault caused by virtual machines. The 
coordinator where the coordinated protocol is implemented 
masters the whole condition of virtual cluster and interacts 
with local communication daemon on each host via the 
network. The local daemon has its own independent 
coordination daemon and replication daemon. These 
daemons can help the distributed host to control all the 
virtual machines running above it to coordinate with other 
virtual machines across hosts as well as creating replications 
of each virtual machine. 

 
Figure 3.  Framework of VirtCFT 

IV. SYSTEM IMPLEMENTATION 
We have described the basic idea of VirtCFT and the 

mechanism of our fault tolerance for virtual cluster. Now we 
present the detail implementation of each component. These 
components, including VM-level coordinator, replication 
daemon with incremental checkpointing, and recovery 
scheduler, are all implemented based on Xen virtualization 

platform. 

A. Overview 
VirtCFT is designed and implemented as a virtual 

machine level, coordinated fault tolerant system. Different 
from all the previous related systems which are concerned 
with taking checkpoints of processes, our system aims at 
restoring the entire virtual cluster to the previous correct state 
set by continuously taking incremental checkpoints of entire 
OS images of virtual cluster with virtualization technology. 

The system architecture of VirtCFT can be demonstrated 
as Figure 4. It is mainly composed of following parts: VM-
level coordinator which consists of coordinated module and 
network control module used for coordinating virtual 
machines to reach the globally consistent state. Replication 
daemon is responsible for backup redundant data to the 
additional peer host with incremental checkpoint which can 
tremendously reduce the overhead of checkpointing. Fault 
sensor and recovery scheduler restore the virtual cluster from 
failure to correct state when a fault occur. The fault sensor 
continuously probes the state of the virtual cluster until a 
fault being detected, and then the recovery scheduler will roll 
back the related virtual machines to reach the former correct 
consistent state established by coordinator and allow the 
entire system to keep running from that point. The more 
detail design can be described as following. 

 

Figure 4.  System architecture 

B. VM-level Coordinator 
Considering that our coordinated checkpointing protocol 

is required to be totally transparent to the process and the OS 
running in guest domains, we have to implement our 
protocol beneath the guest OS. In Xen, domain 0 is the 
special control domain of the Xen system and more 
importantly, all the network messages heading to the guest 
domains will go through domain 0 first, all of which makes 
the domain 0 a perfect choice to implement our coordinated 
checkpointing protocol. 

For the virtual cluster, there are two types of 
communication which can be referred to as inter-host and 
intra-host communications. For the VMs in the same 
physical host, they communicate through a Linux ethernet 
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bridge as it is widely implemented in a typical Xen setup, so 
the coordination process can be accomplished 
simultaneously. For communication across hosts, we add a 
module between VM and Linux ethernet bridge which can be 
used to carry our coordinated signals to address process of 
coordination. The coordination protocol is implemented as 
the description in the above section of the system design. 

When the coordinator spots the global consistent state, 
we need to block and later unblock all the outgoing network 
messages of a guest domain. According to our algorithm, 
when a virtual machine receives a message from the 
coordinator commanding to set the tentative checkpoint, all 
the outgoing messages of the virtual machine must be 
blocked before we take a checkpoint of the virtual machine, 
and after finishing the checkpointing, we need to unblock 
these blocked connections. We implement these blocking 
and unblocking functionalities by adding a new kernel 
module in the traffic control [20] module of the domain 0 
kernel, shown in Figure 5. This module waits the 
coordinating signals to determine whether it is time to block 
the network messages. If so, the module blocks all the 
outgoing messages of this virtual machine until the 
checkpointing process has finished and receives an unblock 
command. The advantage of this method is that all the 
network messages communicating with VM need to go 
through domain 0 first, thus block the outgoing messages in 
domain 0 will simultaneously block all the other guest 
operating systems above the virtual machine monitor. In 
addition, a buffering scheme also needs to be added so that it 
can preserve the messages dropped during the process of 
blocking. 

 
Figure 5.  Traffic control in domain0 with bridge mechanism and TC 

C. Replication Daemon with Incremental Checkpointing 
To provide an effective fault tolerant system, we need a 

mechanism that enables a VM to run on additional physical 
host with minimum possible overhead. More importantly, the 
network connections should not be disconnected while 

failover is in progress. The states need to be preserved 
include information of VCPU, memory, disk, I/O device, and 
network communicate. 

Xen provides a capability of live migration, which 
enables the guest VM to be transferred from one physical 
host to another [5]. During migration, it will preserve the 
state of all the processes on the guest, which effectively 
allows the VM to keep executing without interruption. 

This technique is extended to transparently (to the 
GuestOS) mark all VM memory pages as read only. The Xen 
hypervisor is then able to capture all writes that a VM makes 
to memory and update a bitmap of pages of Shadow Page 
Table that have been dirtied since the previous epoch. In 
each epoch, the Xen hypervisor atomically reads and resets 
this bitmap, and the iterative process of sending dirty pages 
goes until progress can no longer be made. Finally, the live 
migration process suspends execution of the VM and enters a 
final phase of stop-and-copy, where any remaining pages 
including VCPU states are transmitted and execution 
resumes on the destination host. 

To fulfill our need, we modify Xen as repeatedly 
executing the final step of live migration: each round, the 
guest is paused while the replication daemon interacts with 
the source host in obtaining the dirtied memory pages and 
VCPU state and putting them into a buffer. The guest then 
resumes execution on the current host, rather than restoring 
on the destination host. Another primary change required to 
be added for support is that the VM needs to keep running 
after it has been suspended. Previously, Xen will terminate 
the VM after saving and sending the states out. To 
implement such migration, we create a replication daemon of 
checkpointing to obtain only newly-dirty memory each 
round of VM. Instead, the original VM will not be destroyed 
after its state has been copied. The VM will keep schedulable 
even after being suspended, that means, the VM will resume 
continuing the computation. 

In addition to the states saved above, disk state is also 
needed to backup. Disk checkpointing is yet not 
implemented in Xen, however, we can also incrementally 
save the VM’s file system by using the LVM snapshot 
capability. The LVM snapshot records changes made to a 
logical volume after the snapshot has been made. In 
VirtCFT, the LVM snapshots are taken during the stop-and-
copy phase when a VM is suspended. It can be processed 
and submitted asynchronously to the backup host after the 
VM resumes executing. 

D. Recovery Scheduler 
In this paper, we make the assumption that failures 

follow the fail-stop model. That is, one or more virtual 
machines crash or stop sending or receiving network 
messages. Because the main feature of our system is the state 
capture and replication of the whole system, error produced 
by software will also be saved which is the consequence of 
providing transparently system-level fault tolerance. 

In order to trigger the recovery phase, we currently use a 
failure sensor set in user space to watch possible failures. It 
periodically sends messages to inquiry other virtual 
machines whether they are in normal condition. A timeout of 
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the virtual machine responding to inquiry requests will result 
in the failure sensor assuming that that virtual machine has 
crashed and give a failure report to the failure sensor. 

When faults occur, the fault sensor detects the failed VM 
and triggers the recovery scheduler to send messages to all 
the other domains to inform this failure and initiate recovery 
process. It is needed to roll back the related virtual machines 
to the latest globally consistent state and drop all the 
uncommitted states. After the recovery, in order to ensure the 
newly established system state not to be interrupted by 
communication events, which will result in message losing 
and inconsistencies in the global state, it still need to report 
to the recovery scheduler in hypervisor and wait the recovery 
scheduler responding the request. After that the entire virtual 
cluster can continue to execute correctly again. 

We implement the recovery scheduler based on Xen’s 
xm_restore which is the destination side of live migration 
process. It will introduce the advantages of virtualization 
technology that the backup virtual machine is able to 
maintain its network address unchanged. With this feature, it 
is greatly benefit the recovery process. For example, a 
running MPI computation needs not to update their address 
caches or any process IDs. Since the entire VM is 
checkpointed, the MPI job sees the environment as it is prior 
to checkpointing. 

V. PERFORMANCE EVALUATION 
In this section, we first measure the overhead brought by 

our system, and then give a thorough test of our design and 
implementation by using NPB MPI benchmarks. 

A. Experimental Setup 
We build our experimental environment on a pair of two-

socket servers (server1 and server2) connected by a one 
gigabit Ethernet network, each sockets have 4 Intel Xeon 
1.6GHz CPUs. Both servers have 4GB DDR RAM and 
150GB hard disk. We use Linux 2.6.18 with Xen 3.4.0 
installed as the operation system. Identical images of VM 
exist on both the primary and backup host and the path is 
assumed to be the same on the backup as it is on the primary. 
In all cases the VM is configured to have a single CPU with 
512MB of RAM, and installed a Red Hat Enterprise Linux 
5.3 as guest OS. To execute evaluation, we create our test 
environment as virtual Linux clusters of 4 VMs. All the 
virtual machines and physical machines are connected with 
each other based on the bridging mechanism provided by 
Xen. The experiment environment is shown in Figure 6. 

B. Performance Overhead 
The purpose of the evaluation for the performance of 

VirtCFT is to compute the overhead of VirtCFT introduced 
into the virtual cluster as well as the overhead of 
coordination phase. In order to ensure the accuracy of our 
evaluation, we reboot all virtual machines ready for test so 
that virtual machines can run with low load. In order to 
demonstrate the effectiveness of checkpointing the file 
system, no extraordinary measures are taken to reduce the 
GuestOS image size. We use the most recent version of the 
Xen-3.4-testing version for all tests. 

 
Figure 6.  The experiment enviroment 

NAS Parallel Benchmarks (NPB) [15] developed at the 
NASA Advanced Supercomputing (NAS) contains a 
combination of computational kernels. For our analysis, we 
choose to use EP and IS. EP is a compute-bound MPI 
benchmark with a few network communications. IS is an IO-
bound MPI benchmark with large amounts of network 
transaction. 

We first measure these benchmarks’ runtime when they 
are executed on 4 virtual machines (the configuration of 
these physical machines is described above) without any 
fault tolerant functionality. Then we initiate the VirtCFT 
without coordinating process and record their runtime. By 
comparing these two groups of runtime, we find out that the 
ability of providing fault tolerance to each VM without 
coordinated checkpointing itself will incur approximately 
20%~40% performance penalty than that generated in 4 
virtual machines environment without fault tolerance. This is 
a necessary consequence to provide both transparency and 
generality by saving redundant states of the entire VM. 

After this, we start our VirtCFT with coordinated 
checkpiointing and evaluate the runtime with different 
coordinating intervals, including 400ms, 200ms, and 100ms. 
Shown in Figure 7, we choose EP and Class A and record its 
runtime under different situations. We first initiate 4 
processes; each process is pinned to one of the 4 VMs and 
has full access to a single processor. To test the performance 
of VirtCFT accurately, we then repeat the EP benchmarks 10 
times. We find out when the coordinating interval is 100ms, 
the runtime is relatively high to fault tolerance of the virtual 
cluster without coordinated checkpointing, but when we 
increase the coordinating interval, the runtime overhead 
caused by our system begins to drop. The reason is that when 
we increase the interval, the whole virtual cluster will do less 
coordinated checkpointing, which means the whole system 
will suspend less time during a period of time and can spend 
more time on computing. When we update the interval to 
400 seconds, the runtime increase is already less than 30 
percent comparing with the FT enabled without coordination 
situation. We are sure if we continue increasing the 
coordinating interval, the runtime overhead caused by 
VirtCFT will keep dropping. 
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Figure 7.  EP.4.A runtime 

After evaluating the performance of EP.A.4, we then 
choose Class B (the Class B problems are roughly four times 
larger than the Class A problems) to see how VirtCFT will 
perform if we large the problem size. As shown in Figure 8, 
the results show a proportionately overhead comparing with 
EP.4.A, the overhead of runtime does not go up sharply as 
the problem size rises. Besides, the runtime overhead still 
gradually decreases as we increase the coordinating interval. 
Thus we can say that VirtCFT is suitable for larger task or 
job that need longer time to compute without extra overhead 
of runtime. 

 
Figure 8.  EP.4.B runtime 

The runtime overhead of our system is reasonable on 
dealing with compute-bound benchmark since this is an 
inevitable consequence to provide fault tolerance to the 
whole virtual cluster by saving the entire running state of 
each VM. We still need to test some extreme cases with I/O 
intensive applications. We then choose IS, a NPB benchmark 
without including computation of floating point, but mainly 
with significant network exchanging communications. 

As shown in Figure 9, the runtime dramatically increases 
if we set the coordinating interval to 400ms, but when we 
decrease the interval, the runtime overhead caused by 
VirtCFT begins to reduce. The sharply rising overhead in 
this case is largely due to output-commit delay on the 
network interface and as we decrease the interval, the impact 
caused by network delay can be partly mitigated. Another 
reason is that workloads produced by benchmark are 
considerably more intensive than that expected in a typical 

virtual cluster. In fact, even though VirtCFT is sensitive to 
network latency, there are still several potential ways of 
optimization to reduce the network delay. 

 
Figure 9.  IS.4.A runtime 

In Figure 10, we show the time needed to restore a 
computation for the EP and IS benchmark with different 
coordinating intervals. In the case of recovering, the 
dominating factors include the time of activation of backup 
VMs to their checkpointed states, the coordinating intervals, 
and the type of application running on the virtual cluster. 
With the increasing of the interval of coordinated 
checkpointing, the downtime to resume the virtual cluster 
slightly grows. This can be explained by that the interval is 
longer, so does the time to detect the fault is longer. 

 
Figure 10.  Time to restart from a failure 

To verify the correctness of VirtCFT, we run the NAS 
MPI benchmark programs in our experimental environment. 
By comparing the outputs of the following: (1) an 
uninterrupted MPI benchmark execution generated in the 
ordinary environments, (2) the same benchmark execution 
under the protection of VirtCFT and (3) the same benchmark 
execution recovered by VirtCFT after randomly injecting 
network failures or power off, we confirm that all executions 
generate the same results. 

VI. CONCLUSION 
In this paper, we present the design and implementation 

of a transparently virtual machine level Fault-Tolerant 
system: VirtCFT. Comparing to all the existing fault tolerant 
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systems, VirtCFT is different in that it is aiming at 
recovering the entire virtual cluster to the previous correct 
state when fault occurs by transparently taking incremental 
checkpoints of virtual machine images coordinately. To 
make VirtCFT totally transparent to the target virtual 
machines, we choose to implement our mechanism in the 
control domain of the Xen virtualization platform. We 
modify the Xen source code to implement the live checkpoint 
so that the primary host can continually transfer its updated 
information to the backup host without distinction. We 
implemented a coordinated checkpoint protocol, including 
adding control info, and modules severing as blocking and 
unblocking outgoing messages. Besides, we also implement 
a set of user level daemons which are the management unit 
in our implementation. We apply several popular 
benchmarks to verify the correctness of VirtCFT and 
evaluate its overhead. 
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